Mercurial > hg > js-dsp-test
view fft/nayuki/fft-test.html @ 0:d7c216b6a84f
Pull in some FFT implementations for test
author | Chris Cannam |
---|---|
date | Thu, 01 Oct 2015 15:50:58 +0100 |
parents | |
children |
line wrap: on
line source
<!-- - FFT and convolution test (JavaScript) - - Copyright (c) 2014 Project Nayuki - http://www.nayuki.io/page/free-small-fft-in-multiple-languages - - (MIT License) - Permission is hereby granted, free of charge, to any person obtaining a copy of - this software and associated documentation files (the "Software"), to deal in - the Software without restriction, including without limitation the rights to - use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of - the Software, and to permit persons to whom the Software is furnished to do so, - subject to the following conditions: - * The above copyright notice and this permission notice shall be included in - all copies or substantial portions of the Software. - * The Software is provided "as is", without warranty of any kind, express or - implied, including but not limited to the warranties of merchantability, - fitness for a particular purpose and noninfringement. In no event shall the - authors or copyright holders be liable for any claim, damages or other - liability, whether in an action of contract, tort or otherwise, arising from, - out of or in connection with the Software or the use or other dealings in the - Software. --> <!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <title>FFT and convolution test (JavaScript)</title> </head> <body> <script src="fft.js" type="application/javascript"></script> <pre> <script> /* Main and test functions */ function main() { // Test power-of-2 size FFTs for (var i = 0; i <= 12; i++) testFft(1 << i); // Test small size FFTs for (var i = 0; i < 30; i++) testFft(i); // Test diverse size FFTs var prev = 0; for (var i = 0; i <= 100; i++) { var n = Math.round(Math.pow(1500, i / 100.0)); if (n > prev) { testFft(n); prev = n; } } // Test power-of-2 size convolutions for (var i = 0; i <= 12; i++) testConvolution(1 << i); // Test diverse size convolutions prev = 0; for (var i = 0; i <= 100; i++) { var n = Math.round(Math.pow(1500, i / 100.0)); if (n > prev) { testConvolution(n); prev = n; } } document.write("\nMax log err = " + maxLogError.toFixed(1)); document.write("\nTest " + (maxLogError < -10 ? "passed" : "failed")); } function testFft(size) { var inputreal = randomReals(size); var inputimag = randomReals(size); var refoutreal = new Array(size); var refoutimag = new Array(size); naiveDft(inputreal, inputimag, refoutreal, refoutimag, false); var actualoutreal = inputreal.slice(0); var actualoutimag = inputimag.slice(0); transform(actualoutreal, actualoutimag); document.write("fftsize=" + size + " logerr=" + log10RmsErr(refoutreal, refoutimag, actualoutreal, actualoutimag).toFixed(1) + "\n"); } function testConvolution(size) { var input0real = randomReals(size); var input0imag = randomReals(size); var input1real = randomReals(size); var input1imag = randomReals(size); var refoutreal = new Array(size); var refoutimag = new Array(size); naiveConvolve(input0real, input0imag, input1real, input1imag, refoutreal, refoutimag); var actualoutreal = new Array(size); var actualoutimag = new Array(size); convolveComplex(input0real, input0imag, input1real, input1imag, actualoutreal, actualoutimag); document.write("convsize=" + size + " logerr=" + log10RmsErr(refoutreal, refoutimag, actualoutreal, actualoutimag).toFixed(1) + "\n"); } /* Naive reference computation functions */ function naiveDft(inreal, inimag, outreal, outimag, inverse) { if (inreal.length != inimag.length || inreal.length != outreal.length || outreal.length != outimag.length) throw "Mismatched lengths"; var n = inreal.length; var coef = (inverse ? 2 : -2) * Math.PI; for (var k = 0; k < n; k++) { // For each output element var sumreal = 0; var sumimag = 0; for (var t = 0; t < n; t++) { // For each input element var angle = coef * (t * k % n) / n; // This is more accurate than t * k sumreal += inreal[t]*Math.cos(angle) - inimag[t]*Math.sin(angle); sumimag += inreal[t]*Math.sin(angle) + inimag[t]*Math.cos(angle); } outreal[k] = sumreal; outimag[k] = sumimag; } } function naiveConvolve(xreal, ximag, yreal, yimag, outreal, outimag) { if (xreal.length != ximag.length || xreal.length != yreal.length || yreal.length != yimag.length || xreal.length != outreal.length || outreal.length != outimag.length) throw "Mismatched lengths"; var n = xreal.length; for (var i = 0; i < n; i++) { var sumreal = 0; var sumimag = 0; for (var j = 0; j < n; j++) { var k = (i - j + n) % n; sumreal += xreal[k] * yreal[j] - ximag[k] * yimag[j]; sumimag += xreal[k] * yimag[j] + ximag[k] * yreal[j]; } outreal[i] = sumreal; outimag[i] = sumimag; } } /* Utility functions */ var maxLogError = Number.NEGATIVE_INFINITY; function log10RmsErr(xreal, ximag, yreal, yimag) { if (xreal.length != ximag.length || xreal.length != yreal.length || yreal.length != yimag.length) throw "Mismatched lengths"; var err = 0; for (var i = 0; i < xreal.length; i++) err += (xreal[i] - yreal[i]) * (xreal[i] - yreal[i]) + (ximag[i] - yimag[i]) * (ximag[i] - yimag[i]); err = Math.sqrt(err / Math.max(xreal.length, 1)); // Now this is a root mean square (RMS) error err = err > 0 ? Math.log(err) / Math.log(10) : -99; maxLogError = Math.max(err, maxLogError); return err; } function randomReals(size) { var result = new Array(size); for (var i = 0; i < result.length; i++) result[i] = Math.random() * 2 - 1; return result; } main(); </script> </pre> </body> </html>