comparison fft/fftw/fftw-3.3.4/reodft/reodft11e-r2hc.c @ 19:26056e866c29

Add FFTW to comparison table
author Chris Cannam
date Tue, 06 Oct 2015 13:08:39 +0100
parents
children
comparison
equal deleted inserted replaced
18:8db794ca3e0b 19:26056e866c29
1 /*
2 * Copyright (c) 2003, 2007-14 Matteo Frigo
3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
18 *
19 */
20
21
22 /* Do an R{E,O}DFT11 problem via an R2HC problem, with some
23 pre/post-processing ala FFTPACK. Use a trick from:
24
25 S. C. Chan and K. L. Ho, "Direct methods for computing discrete
26 sinusoidal transforms," IEE Proceedings F 137 (6), 433--442 (1990).
27
28 to re-express as an REDFT01 (DCT-III) problem.
29
30 NOTE: We no longer use this algorithm, because it turns out to suffer
31 a catastrophic loss of accuracy for certain inputs, apparently because
32 its post-processing multiplies the output by a cosine. Near the zero
33 of the cosine, the REDFT01 must produce a near-singular output.
34 */
35
36 #include "reodft.h"
37
38 typedef struct {
39 solver super;
40 } S;
41
42 typedef struct {
43 plan_rdft super;
44 plan *cld;
45 twid *td, *td2;
46 INT is, os;
47 INT n;
48 INT vl;
49 INT ivs, ovs;
50 rdft_kind kind;
51 } P;
52
53 static void apply_re11(const plan *ego_, R *I, R *O)
54 {
55 const P *ego = (const P *) ego_;
56 INT is = ego->is, os = ego->os;
57 INT i, n = ego->n;
58 INT iv, vl = ego->vl;
59 INT ivs = ego->ivs, ovs = ego->ovs;
60 R *W;
61 R *buf;
62 E cur;
63
64 buf = (R *) MALLOC(sizeof(R) * n, BUFFERS);
65
66 for (iv = 0; iv < vl; ++iv, I += ivs, O += ovs) {
67 /* I wish that this didn't require an extra pass. */
68 /* FIXME: use recursive/cascade summation for better stability? */
69 buf[n - 1] = cur = K(2.0) * I[is * (n - 1)];
70 for (i = n - 1; i > 0; --i) {
71 E curnew;
72 buf[(i - 1)] = curnew = K(2.0) * I[is * (i - 1)] - cur;
73 cur = curnew;
74 }
75
76 W = ego->td->W;
77 for (i = 1; i < n - i; ++i) {
78 E a, b, apb, amb, wa, wb;
79 a = buf[i];
80 b = buf[n - i];
81 apb = a + b;
82 amb = a - b;
83 wa = W[2*i];
84 wb = W[2*i + 1];
85 buf[i] = wa * amb + wb * apb;
86 buf[n - i] = wa * apb - wb * amb;
87 }
88 if (i == n - i) {
89 buf[i] = K(2.0) * buf[i] * W[2*i];
90 }
91
92 {
93 plan_rdft *cld = (plan_rdft *) ego->cld;
94 cld->apply((plan *) cld, buf, buf);
95 }
96
97 W = ego->td2->W;
98 O[0] = W[0] * buf[0];
99 for (i = 1; i < n - i; ++i) {
100 E a, b;
101 INT k;
102 a = buf[i];
103 b = buf[n - i];
104 k = i + i;
105 O[os * (k - 1)] = W[k - 1] * (a - b);
106 O[os * k] = W[k] * (a + b);
107 }
108 if (i == n - i) {
109 O[os * (n - 1)] = W[n - 1] * buf[i];
110 }
111 }
112
113 X(ifree)(buf);
114 }
115
116 /* like for rodft01, rodft11 is obtained from redft11 by
117 reversing the input and flipping the sign of every other output. */
118 static void apply_ro11(const plan *ego_, R *I, R *O)
119 {
120 const P *ego = (const P *) ego_;
121 INT is = ego->is, os = ego->os;
122 INT i, n = ego->n;
123 INT iv, vl = ego->vl;
124 INT ivs = ego->ivs, ovs = ego->ovs;
125 R *W;
126 R *buf;
127 E cur;
128
129 buf = (R *) MALLOC(sizeof(R) * n, BUFFERS);
130
131 for (iv = 0; iv < vl; ++iv, I += ivs, O += ovs) {
132 /* I wish that this didn't require an extra pass. */
133 /* FIXME: use recursive/cascade summation for better stability? */
134 buf[n - 1] = cur = K(2.0) * I[0];
135 for (i = n - 1; i > 0; --i) {
136 E curnew;
137 buf[(i - 1)] = curnew = K(2.0) * I[is * (n - i)] - cur;
138 cur = curnew;
139 }
140
141 W = ego->td->W;
142 for (i = 1; i < n - i; ++i) {
143 E a, b, apb, amb, wa, wb;
144 a = buf[i];
145 b = buf[n - i];
146 apb = a + b;
147 amb = a - b;
148 wa = W[2*i];
149 wb = W[2*i + 1];
150 buf[i] = wa * amb + wb * apb;
151 buf[n - i] = wa * apb - wb * amb;
152 }
153 if (i == n - i) {
154 buf[i] = K(2.0) * buf[i] * W[2*i];
155 }
156
157 {
158 plan_rdft *cld = (plan_rdft *) ego->cld;
159 cld->apply((plan *) cld, buf, buf);
160 }
161
162 W = ego->td2->W;
163 O[0] = W[0] * buf[0];
164 for (i = 1; i < n - i; ++i) {
165 E a, b;
166 INT k;
167 a = buf[i];
168 b = buf[n - i];
169 k = i + i;
170 O[os * (k - 1)] = W[k - 1] * (b - a);
171 O[os * k] = W[k] * (a + b);
172 }
173 if (i == n - i) {
174 O[os * (n - 1)] = -W[n - 1] * buf[i];
175 }
176 }
177
178 X(ifree)(buf);
179 }
180
181 static void awake(plan *ego_, enum wakefulness wakefulness)
182 {
183 P *ego = (P *) ego_;
184 static const tw_instr reodft010e_tw[] = {
185 { TW_COS, 0, 1 },
186 { TW_SIN, 0, 1 },
187 { TW_NEXT, 1, 0 }
188 };
189 static const tw_instr reodft11e_tw[] = {
190 { TW_COS, 1, 1 },
191 { TW_NEXT, 2, 0 }
192 };
193
194 X(plan_awake)(ego->cld, wakefulness);
195
196 X(twiddle_awake)(wakefulness,
197 &ego->td, reodft010e_tw, 4*ego->n, 1, ego->n/2+1);
198 X(twiddle_awake)(wakefulness,
199 &ego->td2, reodft11e_tw, 8*ego->n, 1, ego->n * 2);
200 }
201
202 static void destroy(plan *ego_)
203 {
204 P *ego = (P *) ego_;
205 X(plan_destroy_internal)(ego->cld);
206 }
207
208 static void print(const plan *ego_, printer *p)
209 {
210 const P *ego = (const P *) ego_;
211 p->print(p, "(%se-r2hc-%D%v%(%p%))",
212 X(rdft_kind_str)(ego->kind), ego->n, ego->vl, ego->cld);
213 }
214
215 static int applicable0(const solver *ego_, const problem *p_)
216 {
217 const problem_rdft *p = (const problem_rdft *) p_;
218
219 UNUSED(ego_);
220
221 return (1
222 && p->sz->rnk == 1
223 && p->vecsz->rnk <= 1
224 && (p->kind[0] == REDFT11 || p->kind[0] == RODFT11)
225 );
226 }
227
228 static int applicable(const solver *ego, const problem *p, const planner *plnr)
229 {
230 return (!NO_SLOWP(plnr) && applicable0(ego, p));
231 }
232
233 static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr)
234 {
235 P *pln;
236 const problem_rdft *p;
237 plan *cld;
238 R *buf;
239 INT n;
240 opcnt ops;
241
242 static const plan_adt padt = {
243 X(rdft_solve), awake, print, destroy
244 };
245
246 if (!applicable(ego_, p_, plnr))
247 return (plan *)0;
248
249 p = (const problem_rdft *) p_;
250
251 n = p->sz->dims[0].n;
252 buf = (R *) MALLOC(sizeof(R) * n, BUFFERS);
253
254 cld = X(mkplan_d)(plnr, X(mkproblem_rdft_1_d)(X(mktensor_1d)(n, 1, 1),
255 X(mktensor_0d)(),
256 buf, buf, R2HC));
257 X(ifree)(buf);
258 if (!cld)
259 return (plan *)0;
260
261 pln = MKPLAN_RDFT(P, &padt, p->kind[0]==REDFT11 ? apply_re11:apply_ro11);
262 pln->n = n;
263 pln->is = p->sz->dims[0].is;
264 pln->os = p->sz->dims[0].os;
265 pln->cld = cld;
266 pln->td = pln->td2 = 0;
267 pln->kind = p->kind[0];
268
269 X(tensor_tornk1)(p->vecsz, &pln->vl, &pln->ivs, &pln->ovs);
270
271 X(ops_zero)(&ops);
272 ops.other = 5 + (n-1) * 2 + (n-1)/2 * 12 + (1 - n % 2) * 6;
273 ops.add = (n - 1) * 1 + (n-1)/2 * 6;
274 ops.mul = 2 + (n-1) * 1 + (n-1)/2 * 6 + (1 - n % 2) * 3;
275
276 X(ops_zero)(&pln->super.super.ops);
277 X(ops_madd2)(pln->vl, &ops, &pln->super.super.ops);
278 X(ops_madd2)(pln->vl, &cld->ops, &pln->super.super.ops);
279
280 return &(pln->super.super);
281 }
282
283 /* constructor */
284 static solver *mksolver(void)
285 {
286 static const solver_adt sadt = { PROBLEM_RDFT, mkplan, 0 };
287 S *slv = MKSOLVER(S, &sadt);
288 return &(slv->super);
289 }
290
291 void X(reodft11e_r2hc_register)(planner *p)
292 {
293 REGISTER_SOLVER(p, mksolver());
294 }