Mercurial > hg > js-dsp-test
comparison fft/fftw/fftw-3.3.4/reodft/reodft00e-splitradix.c @ 19:26056e866c29
Add FFTW to comparison table
author | Chris Cannam |
---|---|
date | Tue, 06 Oct 2015 13:08:39 +0100 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
18:8db794ca3e0b | 19:26056e866c29 |
---|---|
1 /* | |
2 * Copyright (c) 2005 Matteo Frigo | |
3 * Copyright (c) 2005 Massachusetts Institute of Technology | |
4 * | |
5 * This program is free software; you can redistribute it and/or modify | |
6 * it under the terms of the GNU General Public License as published by | |
7 * the Free Software Foundation; either version 2 of the License, or | |
8 * (at your option) any later version. | |
9 * | |
10 * This program is distributed in the hope that it will be useful, | |
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
13 * GNU General Public License for more details. | |
14 * | |
15 * You should have received a copy of the GNU General Public License | |
16 * along with this program; if not, write to the Free Software | |
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA | |
18 * | |
19 */ | |
20 | |
21 | |
22 /* Do an R{E,O}DFT00 problem (of an odd length n) recursively via an | |
23 R{E,O}DFT00 problem and an RDFT problem of half the length. | |
24 | |
25 This works by "logically" expanding the array to a real-even/odd DFT of | |
26 length 2n-/+2 and then applying the split-radix algorithm. | |
27 | |
28 In this way, we can avoid having to pad to twice the length | |
29 (ala redft00-r2hc-pad), saving a factor of ~2 for n=2^m+/-1, | |
30 but don't incur the accuracy loss that the "ordinary" algorithm | |
31 sacrifices (ala redft00-r2hc.c). | |
32 */ | |
33 | |
34 #include "reodft.h" | |
35 | |
36 typedef struct { | |
37 solver super; | |
38 } S; | |
39 | |
40 typedef struct { | |
41 plan_rdft super; | |
42 plan *clde, *cldo; | |
43 twid *td; | |
44 INT is, os; | |
45 INT n; | |
46 INT vl; | |
47 INT ivs, ovs; | |
48 } P; | |
49 | |
50 /* redft00 */ | |
51 static void apply_e(const plan *ego_, R *I, R *O) | |
52 { | |
53 const P *ego = (const P *) ego_; | |
54 INT is = ego->is, os = ego->os; | |
55 INT i, j, n = ego->n + 1, n2 = (n-1)/2; | |
56 INT iv, vl = ego->vl; | |
57 INT ivs = ego->ivs, ovs = ego->ovs; | |
58 R *W = ego->td->W - 2; | |
59 R *buf; | |
60 | |
61 buf = (R *) MALLOC(sizeof(R) * n2, BUFFERS); | |
62 | |
63 for (iv = 0; iv < vl; ++iv, I += ivs, O += ovs) { | |
64 /* do size (n-1)/2 r2hc transform of odd-indexed elements | |
65 with stride 4, "wrapping around" end of array with even | |
66 boundary conditions */ | |
67 for (j = 0, i = 1; i < n; i += 4) | |
68 buf[j++] = I[is * i]; | |
69 for (i = 2*n-2-i; i > 0; i -= 4) | |
70 buf[j++] = I[is * i]; | |
71 { | |
72 plan_rdft *cld = (plan_rdft *) ego->cldo; | |
73 cld->apply((plan *) cld, buf, buf); | |
74 } | |
75 | |
76 /* do size (n+1)/2 redft00 of the even-indexed elements, | |
77 writing to O: */ | |
78 { | |
79 plan_rdft *cld = (plan_rdft *) ego->clde; | |
80 cld->apply((plan *) cld, I, O); | |
81 } | |
82 | |
83 /* combine the results with the twiddle factors to get output */ | |
84 { /* DC element */ | |
85 E b20 = O[0], b0 = K(2.0) * buf[0]; | |
86 O[0] = b20 + b0; | |
87 O[2*(n2*os)] = b20 - b0; | |
88 /* O[n2*os] = O[n2*os]; */ | |
89 } | |
90 for (i = 1; i < n2 - i; ++i) { | |
91 E ap, am, br, bi, wr, wi, wbr, wbi; | |
92 br = buf[i]; | |
93 bi = buf[n2 - i]; | |
94 wr = W[2*i]; | |
95 wi = W[2*i+1]; | |
96 #if FFT_SIGN == -1 | |
97 wbr = K(2.0) * (wr*br + wi*bi); | |
98 wbi = K(2.0) * (wr*bi - wi*br); | |
99 #else | |
100 wbr = K(2.0) * (wr*br - wi*bi); | |
101 wbi = K(2.0) * (wr*bi + wi*br); | |
102 #endif | |
103 ap = O[i*os]; | |
104 O[i*os] = ap + wbr; | |
105 O[(2*n2 - i)*os] = ap - wbr; | |
106 am = O[(n2 - i)*os]; | |
107 #if FFT_SIGN == -1 | |
108 O[(n2 - i)*os] = am - wbi; | |
109 O[(n2 + i)*os] = am + wbi; | |
110 #else | |
111 O[(n2 - i)*os] = am + wbi; | |
112 O[(n2 + i)*os] = am - wbi; | |
113 #endif | |
114 } | |
115 if (i == n2 - i) { /* Nyquist element */ | |
116 E ap, wbr; | |
117 wbr = K(2.0) * (W[2*i] * buf[i]); | |
118 ap = O[i*os]; | |
119 O[i*os] = ap + wbr; | |
120 O[(2*n2 - i)*os] = ap - wbr; | |
121 } | |
122 } | |
123 | |
124 X(ifree)(buf); | |
125 } | |
126 | |
127 /* rodft00 */ | |
128 static void apply_o(const plan *ego_, R *I, R *O) | |
129 { | |
130 const P *ego = (const P *) ego_; | |
131 INT is = ego->is, os = ego->os; | |
132 INT i, j, n = ego->n - 1, n2 = (n+1)/2; | |
133 INT iv, vl = ego->vl; | |
134 INT ivs = ego->ivs, ovs = ego->ovs; | |
135 R *W = ego->td->W - 2; | |
136 R *buf; | |
137 | |
138 buf = (R *) MALLOC(sizeof(R) * n2, BUFFERS); | |
139 | |
140 for (iv = 0; iv < vl; ++iv, I += ivs, O += ovs) { | |
141 /* do size (n+1)/2 r2hc transform of even-indexed elements | |
142 with stride 4, "wrapping around" end of array with odd | |
143 boundary conditions */ | |
144 for (j = 0, i = 0; i < n; i += 4) | |
145 buf[j++] = I[is * i]; | |
146 for (i = 2*n-i; i > 0; i -= 4) | |
147 buf[j++] = -I[is * i]; | |
148 { | |
149 plan_rdft *cld = (plan_rdft *) ego->cldo; | |
150 cld->apply((plan *) cld, buf, buf); | |
151 } | |
152 | |
153 /* do size (n-1)/2 rodft00 of the odd-indexed elements, | |
154 writing to O: */ | |
155 { | |
156 plan_rdft *cld = (plan_rdft *) ego->clde; | |
157 if (I == O) { | |
158 /* can't use I+is and I, subplan would lose in-placeness */ | |
159 cld->apply((plan *) cld, I + is, I + is); | |
160 /* we could maybe avoid this copy by modifying the | |
161 twiddle loop, but currently I can't be bothered. */ | |
162 A(is >= os); | |
163 for (i = 0; i < n2-1; ++i) | |
164 O[os*i] = I[is*(i+1)]; | |
165 } | |
166 else | |
167 cld->apply((plan *) cld, I + is, O); | |
168 } | |
169 | |
170 /* combine the results with the twiddle factors to get output */ | |
171 O[(n2-1)*os] = K(2.0) * buf[0]; | |
172 for (i = 1; i < n2 - i; ++i) { | |
173 E ap, am, br, bi, wr, wi, wbr, wbi; | |
174 br = buf[i]; | |
175 bi = buf[n2 - i]; | |
176 wr = W[2*i]; | |
177 wi = W[2*i+1]; | |
178 #if FFT_SIGN == -1 | |
179 wbr = K(2.0) * (wr*br + wi*bi); | |
180 wbi = K(2.0) * (wi*br - wr*bi); | |
181 #else | |
182 wbr = K(2.0) * (wr*br - wi*bi); | |
183 wbi = K(2.0) * (wr*bi + wi*br); | |
184 #endif | |
185 ap = O[(i-1)*os]; | |
186 O[(i-1)*os] = wbi + ap; | |
187 O[(2*n2-1 - i)*os] = wbi - ap; | |
188 am = O[(n2-1 - i)*os]; | |
189 #if FFT_SIGN == -1 | |
190 O[(n2-1 - i)*os] = wbr + am; | |
191 O[(n2-1 + i)*os] = wbr - am; | |
192 #else | |
193 O[(n2-1 - i)*os] = wbr + am; | |
194 O[(n2-1 + i)*os] = wbr - am; | |
195 #endif | |
196 } | |
197 if (i == n2 - i) { /* Nyquist element */ | |
198 E ap, wbi; | |
199 wbi = K(2.0) * (W[2*i+1] * buf[i]); | |
200 ap = O[(i-1)*os]; | |
201 O[(i-1)*os] = wbi + ap; | |
202 O[(2*n2-1 - i)*os] = wbi - ap; | |
203 } | |
204 } | |
205 | |
206 X(ifree)(buf); | |
207 } | |
208 | |
209 static void awake(plan *ego_, enum wakefulness wakefulness) | |
210 { | |
211 P *ego = (P *) ego_; | |
212 static const tw_instr reodft00e_tw[] = { | |
213 { TW_COS, 1, 1 }, | |
214 { TW_SIN, 1, 1 }, | |
215 { TW_NEXT, 1, 0 } | |
216 }; | |
217 | |
218 X(plan_awake)(ego->clde, wakefulness); | |
219 X(plan_awake)(ego->cldo, wakefulness); | |
220 X(twiddle_awake)(wakefulness, &ego->td, reodft00e_tw, | |
221 2*ego->n, 1, ego->n/4); | |
222 } | |
223 | |
224 static void destroy(plan *ego_) | |
225 { | |
226 P *ego = (P *) ego_; | |
227 X(plan_destroy_internal)(ego->cldo); | |
228 X(plan_destroy_internal)(ego->clde); | |
229 } | |
230 | |
231 static void print(const plan *ego_, printer *p) | |
232 { | |
233 const P *ego = (const P *) ego_; | |
234 if (ego->super.apply == apply_e) | |
235 p->print(p, "(redft00e-splitradix-%D%v%(%p%)%(%p%))", | |
236 ego->n + 1, ego->vl, ego->clde, ego->cldo); | |
237 else | |
238 p->print(p, "(rodft00e-splitradix-%D%v%(%p%)%(%p%))", | |
239 ego->n - 1, ego->vl, ego->clde, ego->cldo); | |
240 } | |
241 | |
242 static int applicable0(const solver *ego_, const problem *p_) | |
243 { | |
244 const problem_rdft *p = (const problem_rdft *) p_; | |
245 UNUSED(ego_); | |
246 | |
247 return (1 | |
248 && p->sz->rnk == 1 | |
249 && p->vecsz->rnk <= 1 | |
250 && (p->kind[0] == REDFT00 || p->kind[0] == RODFT00) | |
251 && p->sz->dims[0].n > 1 /* don't create size-0 sub-plans */ | |
252 && p->sz->dims[0].n % 2 /* odd: 4 divides "logical" DFT */ | |
253 && (p->I != p->O || p->vecsz->rnk == 0 | |
254 || p->vecsz->dims[0].is == p->vecsz->dims[0].os) | |
255 && (p->kind[0] != RODFT00 || p->I != p->O || | |
256 p->sz->dims[0].is >= p->sz->dims[0].os) /* laziness */ | |
257 ); | |
258 } | |
259 | |
260 static int applicable(const solver *ego, const problem *p, const planner *plnr) | |
261 { | |
262 return (!NO_SLOWP(plnr) && applicable0(ego, p)); | |
263 } | |
264 | |
265 static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr) | |
266 { | |
267 P *pln; | |
268 const problem_rdft *p; | |
269 plan *clde, *cldo; | |
270 R *buf; | |
271 INT n, n0; | |
272 opcnt ops; | |
273 int inplace_odd; | |
274 | |
275 static const plan_adt padt = { | |
276 X(rdft_solve), awake, print, destroy | |
277 }; | |
278 | |
279 if (!applicable(ego_, p_, plnr)) | |
280 return (plan *)0; | |
281 | |
282 p = (const problem_rdft *) p_; | |
283 | |
284 n = (n0 = p->sz->dims[0].n) + (p->kind[0] == REDFT00 ? (INT)-1 : (INT)1); | |
285 A(n > 0 && n % 2 == 0); | |
286 buf = (R *) MALLOC(sizeof(R) * (n/2), BUFFERS); | |
287 | |
288 inplace_odd = p->kind[0]==RODFT00 && p->I == p->O; | |
289 clde = X(mkplan_d)(plnr, X(mkproblem_rdft_1_d)( | |
290 X(mktensor_1d)(n0-n/2, 2*p->sz->dims[0].is, | |
291 inplace_odd ? p->sz->dims[0].is | |
292 : p->sz->dims[0].os), | |
293 X(mktensor_0d)(), | |
294 TAINT(p->I | |
295 + p->sz->dims[0].is * (p->kind[0]==RODFT00), | |
296 p->vecsz->rnk ? p->vecsz->dims[0].is : 0), | |
297 TAINT(p->O | |
298 + p->sz->dims[0].is * inplace_odd, | |
299 p->vecsz->rnk ? p->vecsz->dims[0].os : 0), | |
300 p->kind[0])); | |
301 if (!clde) { | |
302 X(ifree)(buf); | |
303 return (plan *)0; | |
304 } | |
305 | |
306 cldo = X(mkplan_d)(plnr, X(mkproblem_rdft_1_d)( | |
307 X(mktensor_1d)(n/2, 1, 1), | |
308 X(mktensor_0d)(), | |
309 buf, buf, R2HC)); | |
310 X(ifree)(buf); | |
311 if (!cldo) | |
312 return (plan *)0; | |
313 | |
314 pln = MKPLAN_RDFT(P, &padt, p->kind[0] == REDFT00 ? apply_e : apply_o); | |
315 | |
316 pln->n = n; | |
317 pln->is = p->sz->dims[0].is; | |
318 pln->os = p->sz->dims[0].os; | |
319 pln->clde = clde; | |
320 pln->cldo = cldo; | |
321 pln->td = 0; | |
322 | |
323 X(tensor_tornk1)(p->vecsz, &pln->vl, &pln->ivs, &pln->ovs); | |
324 | |
325 X(ops_zero)(&ops); | |
326 ops.other = n/2; | |
327 ops.add = (p->kind[0]==REDFT00 ? (INT)2 : (INT)0) + | |
328 (n/2-1)/2 * 6 + ((n/2)%2==0) * 2; | |
329 ops.mul = 1 + (n/2-1)/2 * 6 + ((n/2)%2==0) * 2; | |
330 | |
331 /* tweak ops.other so that r2hc-pad is used for small sizes, which | |
332 seems to be a lot faster on my machine: */ | |
333 ops.other += 256; | |
334 | |
335 X(ops_zero)(&pln->super.super.ops); | |
336 X(ops_madd2)(pln->vl, &ops, &pln->super.super.ops); | |
337 X(ops_madd2)(pln->vl, &clde->ops, &pln->super.super.ops); | |
338 X(ops_madd2)(pln->vl, &cldo->ops, &pln->super.super.ops); | |
339 | |
340 return &(pln->super.super); | |
341 } | |
342 | |
343 /* constructor */ | |
344 static solver *mksolver(void) | |
345 { | |
346 static const solver_adt sadt = { PROBLEM_RDFT, mkplan, 0 }; | |
347 S *slv = MKSOLVER(S, &sadt); | |
348 return &(slv->super); | |
349 } | |
350 | |
351 void X(reodft00e_splitradix_register)(planner *p) | |
352 { | |
353 REGISTER_SOLVER(p, mksolver()); | |
354 } |