Mercurial > hg > js-dsp-test
comparison fft/fftw/fftw-3.3.4/rdft/simd/common/hc2cbdftv_12.c @ 19:26056e866c29
Add FFTW to comparison table
author | Chris Cannam |
---|---|
date | Tue, 06 Oct 2015 13:08:39 +0100 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
18:8db794ca3e0b | 19:26056e866c29 |
---|---|
1 /* | |
2 * Copyright (c) 2003, 2007-14 Matteo Frigo | |
3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology | |
4 * | |
5 * This program is free software; you can redistribute it and/or modify | |
6 * it under the terms of the GNU General Public License as published by | |
7 * the Free Software Foundation; either version 2 of the License, or | |
8 * (at your option) any later version. | |
9 * | |
10 * This program is distributed in the hope that it will be useful, | |
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
13 * GNU General Public License for more details. | |
14 * | |
15 * You should have received a copy of the GNU General Public License | |
16 * along with this program; if not, write to the Free Software | |
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA | |
18 * | |
19 */ | |
20 | |
21 /* This file was automatically generated --- DO NOT EDIT */ | |
22 /* Generated on Tue Mar 4 13:51:49 EST 2014 */ | |
23 | |
24 #include "codelet-rdft.h" | |
25 | |
26 #ifdef HAVE_FMA | |
27 | |
28 /* Generated by: ../../../genfft/gen_hc2cdft_c.native -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -trivial-stores -variables 32 -no-generate-bytw -n 12 -dif -sign 1 -name hc2cbdftv_12 -include hc2cbv.h */ | |
29 | |
30 /* | |
31 * This function contains 71 FP additions, 51 FP multiplications, | |
32 * (or, 45 additions, 25 multiplications, 26 fused multiply/add), | |
33 * 88 stack variables, 2 constants, and 24 memory accesses | |
34 */ | |
35 #include "hc2cbv.h" | |
36 | |
37 static void hc2cbdftv_12(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) | |
38 { | |
39 DVK(KP866025403, +0.866025403784438646763723170752936183471402627); | |
40 DVK(KP500000000, +0.500000000000000000000000000000000000000000000); | |
41 { | |
42 INT m; | |
43 for (m = mb, W = W + ((mb - 1) * ((TWVL / VL) * 22)); m < me; m = m + VL, Rp = Rp + (VL * ms), Ip = Ip + (VL * ms), Rm = Rm - (VL * ms), Im = Im - (VL * ms), W = W + (TWVL * 22), MAKE_VOLATILE_STRIDE(48, rs)) { | |
44 V Tz, TT, T1, T1j, TN, TF, TP, TL, Tx, T15, TJ, T1b, T1g, T1l, T18; | |
45 V T12, TO, TC, TK, Tl, T16, TQ, TU, TG, T1c, TM, T1k, Ty, T19, T1a; | |
46 V T13, T14, T1h, T1i, TS, TR, T1m, T1n, TI, TH; | |
47 { | |
48 V T2, Tm, T7, Tp, T8, Tq, T9, Tu, T5, Tr, Tg, Tn, Tj, Ta, T3; | |
49 V T4, Te, Tf, Th, Ti, TV, T6, TW, Tk, TD, Tt, TB, T11, T1f, Tw; | |
50 V TE, TX, Tc, Ts, T10, TZ, To, Tb, Tv, T17, T1d, T1e, TY, TA, Td; | |
51 T2 = LD(&(Rp[0]), ms, &(Rp[0])); | |
52 Tm = LD(&(Rp[WS(rs, 3)]), ms, &(Rp[WS(rs, 1)])); | |
53 T7 = LD(&(Rm[WS(rs, 5)]), -ms, &(Rm[WS(rs, 1)])); | |
54 Tp = LD(&(Rm[WS(rs, 2)]), -ms, &(Rm[0])); | |
55 T3 = LD(&(Rp[WS(rs, 4)]), ms, &(Rp[0])); | |
56 T4 = LD(&(Rm[WS(rs, 3)]), -ms, &(Rm[WS(rs, 1)])); | |
57 Te = LD(&(Rp[WS(rs, 1)]), ms, &(Rp[WS(rs, 1)])); | |
58 Tf = LD(&(Rp[WS(rs, 5)]), ms, &(Rp[WS(rs, 1)])); | |
59 Th = LD(&(Rm[0]), -ms, &(Rm[0])); | |
60 Ti = LD(&(Rm[WS(rs, 4)]), -ms, &(Rm[0])); | |
61 T8 = VCONJ(T7); | |
62 Tq = VCONJ(Tp); | |
63 T9 = LD(&(Rp[WS(rs, 2)]), ms, &(Rp[0])); | |
64 Tu = VFNMSCONJ(T4, T3); | |
65 T5 = VFMACONJ(T4, T3); | |
66 Tr = VADD(Te, Tf); | |
67 Tg = VSUB(Te, Tf); | |
68 Tn = VADD(Ti, Th); | |
69 Tj = VSUB(Th, Ti); | |
70 Ta = LD(&(Rm[WS(rs, 1)]), -ms, &(Rm[WS(rs, 1)])); | |
71 TV = LDW(&(W[TWVL * 4])); | |
72 Tz = LDW(&(W[TWVL * 18])); | |
73 T6 = VFNMS(LDK(KP500000000), T5, T2); | |
74 TW = VADD(T2, T5); | |
75 Ts = VFNMS(LDK(KP500000000), Tr, Tq); | |
76 T10 = VFMACONJ(Tp, Tr); | |
77 TZ = VFMACONJ(Tn, Tm); | |
78 To = VFNMS(LDK(KP500000000), VCONJ(Tn), Tm); | |
79 Tk = VFMACONJ(Tj, Tg); | |
80 TD = VFNMSCONJ(Tj, Tg); | |
81 Tb = VFMACONJ(Ta, T9); | |
82 Tv = VFMSCONJ(Ta, T9); | |
83 TT = LDW(&(W[TWVL * 2])); | |
84 T1 = LDW(&(W[TWVL * 20])); | |
85 Tt = VSUB(To, Ts); | |
86 TB = VADD(To, Ts); | |
87 T11 = VSUB(TZ, T10); | |
88 T1f = VADD(TZ, T10); | |
89 Tw = VSUB(Tu, Tv); | |
90 TE = VADD(Tu, Tv); | |
91 TX = VFMACONJ(T7, Tb); | |
92 Tc = VFNMS(LDK(KP500000000), Tb, T8); | |
93 T1j = LDW(&(W[0])); | |
94 T17 = LDW(&(W[TWVL * 16])); | |
95 T1d = LDW(&(W[TWVL * 10])); | |
96 TN = LDW(&(W[TWVL * 6])); | |
97 TF = VMUL(LDK(KP866025403), VSUB(TD, TE)); | |
98 TP = VMUL(LDK(KP866025403), VADD(TE, TD)); | |
99 TL = VFNMS(LDK(KP866025403), Tw, Tt); | |
100 Tx = VFMA(LDK(KP866025403), Tw, Tt); | |
101 T1e = VADD(TW, TX); | |
102 TY = VSUB(TW, TX); | |
103 TA = VADD(T6, Tc); | |
104 Td = VSUB(T6, Tc); | |
105 T15 = LDW(&(W[TWVL * 14])); | |
106 TJ = LDW(&(W[TWVL * 8])); | |
107 T1b = LDW(&(W[TWVL * 12])); | |
108 T1g = VZMUL(T1d, VSUB(T1e, T1f)); | |
109 T1l = VADD(T1e, T1f); | |
110 T18 = VZMULI(T17, VFMAI(T11, TY)); | |
111 T12 = VZMULI(TV, VFNMSI(T11, TY)); | |
112 TO = VADD(TA, TB); | |
113 TC = VSUB(TA, TB); | |
114 TK = VFNMS(LDK(KP866025403), Tk, Td); | |
115 Tl = VFMA(LDK(KP866025403), Tk, Td); | |
116 } | |
117 T16 = VZMUL(T15, VFNMSI(TP, TO)); | |
118 TQ = VZMUL(TN, VFMAI(TP, TO)); | |
119 TU = VZMUL(TT, VFMAI(TF, TC)); | |
120 TG = VZMUL(Tz, VFNMSI(TF, TC)); | |
121 T1c = VZMULI(T1b, VFNMSI(TL, TK)); | |
122 TM = VZMULI(TJ, VFMAI(TL, TK)); | |
123 T1k = VZMULI(T1j, VFMAI(Tx, Tl)); | |
124 Ty = VZMULI(T1, VFNMSI(Tx, Tl)); | |
125 T19 = VCONJ(VSUB(T16, T18)); | |
126 T1a = VADD(T16, T18); | |
127 T13 = VCONJ(VSUB(TU, T12)); | |
128 T14 = VADD(TU, T12); | |
129 T1h = VADD(T1c, T1g); | |
130 T1i = VCONJ(VSUB(T1g, T1c)); | |
131 TS = VCONJ(VSUB(TQ, TM)); | |
132 TR = VADD(TM, TQ); | |
133 T1m = VADD(T1k, T1l); | |
134 T1n = VCONJ(VSUB(T1l, T1k)); | |
135 TI = VCONJ(VSUB(TG, Ty)); | |
136 TH = VADD(Ty, TG); | |
137 ST(&(Rm[WS(rs, 4)]), T19, -ms, &(Rm[0])); | |
138 ST(&(Rp[WS(rs, 4)]), T1a, ms, &(Rp[0])); | |
139 ST(&(Rm[WS(rs, 1)]), T13, -ms, &(Rm[WS(rs, 1)])); | |
140 ST(&(Rp[WS(rs, 1)]), T14, ms, &(Rp[WS(rs, 1)])); | |
141 ST(&(Rp[WS(rs, 3)]), T1h, ms, &(Rp[WS(rs, 1)])); | |
142 ST(&(Rm[WS(rs, 3)]), T1i, -ms, &(Rm[WS(rs, 1)])); | |
143 ST(&(Rm[WS(rs, 2)]), TS, -ms, &(Rm[0])); | |
144 ST(&(Rp[WS(rs, 2)]), TR, ms, &(Rp[0])); | |
145 ST(&(Rp[0]), T1m, ms, &(Rp[0])); | |
146 ST(&(Rm[0]), T1n, -ms, &(Rm[0])); | |
147 ST(&(Rm[WS(rs, 5)]), TI, -ms, &(Rm[WS(rs, 1)])); | |
148 ST(&(Rp[WS(rs, 5)]), TH, ms, &(Rp[WS(rs, 1)])); | |
149 } | |
150 } | |
151 VLEAVE(); | |
152 } | |
153 | |
154 static const tw_instr twinstr[] = { | |
155 VTW(1, 1), | |
156 VTW(1, 2), | |
157 VTW(1, 3), | |
158 VTW(1, 4), | |
159 VTW(1, 5), | |
160 VTW(1, 6), | |
161 VTW(1, 7), | |
162 VTW(1, 8), | |
163 VTW(1, 9), | |
164 VTW(1, 10), | |
165 VTW(1, 11), | |
166 {TW_NEXT, VL, 0} | |
167 }; | |
168 | |
169 static const hc2c_desc desc = { 12, XSIMD_STRING("hc2cbdftv_12"), twinstr, &GENUS, {45, 25, 26, 0} }; | |
170 | |
171 void XSIMD(codelet_hc2cbdftv_12) (planner *p) { | |
172 X(khc2c_register) (p, hc2cbdftv_12, &desc, HC2C_VIA_DFT); | |
173 } | |
174 #else /* HAVE_FMA */ | |
175 | |
176 /* Generated by: ../../../genfft/gen_hc2cdft_c.native -simd -compact -variables 4 -pipeline-latency 8 -trivial-stores -variables 32 -no-generate-bytw -n 12 -dif -sign 1 -name hc2cbdftv_12 -include hc2cbv.h */ | |
177 | |
178 /* | |
179 * This function contains 71 FP additions, 30 FP multiplications, | |
180 * (or, 67 additions, 26 multiplications, 4 fused multiply/add), | |
181 * 90 stack variables, 2 constants, and 24 memory accesses | |
182 */ | |
183 #include "hc2cbv.h" | |
184 | |
185 static void hc2cbdftv_12(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) | |
186 { | |
187 DVK(KP866025403, +0.866025403784438646763723170752936183471402627); | |
188 DVK(KP500000000, +0.500000000000000000000000000000000000000000000); | |
189 { | |
190 INT m; | |
191 for (m = mb, W = W + ((mb - 1) * ((TWVL / VL) * 22)); m < me; m = m + VL, Rp = Rp + (VL * ms), Ip = Ip + (VL * ms), Rm = Rm - (VL * ms), Im = Im - (VL * ms), W = W + (TWVL * 22), MAKE_VOLATILE_STRIDE(48, rs)) { | |
192 V TY, TZ, Tf, TC, Tq, TG, Tm, TF, Ty, TD, T13, T1h, T2, T9, T3; | |
193 V T5, T6, Tc, Tb, Td, T8, T4, Ta, T7, Te, To, Tp, Tr, Tv, Ti; | |
194 V Ts, Tl, Tw, Tu, Tg, Th, Tj, Tk, Tt, Tx, T11, T12; | |
195 T2 = LD(&(Rp[0]), ms, &(Rp[0])); | |
196 T8 = LD(&(Rm[WS(rs, 5)]), -ms, &(Rm[WS(rs, 1)])); | |
197 T9 = VCONJ(T8); | |
198 T3 = LD(&(Rp[WS(rs, 4)]), ms, &(Rp[0])); | |
199 T4 = LD(&(Rm[WS(rs, 3)]), -ms, &(Rm[WS(rs, 1)])); | |
200 T5 = VCONJ(T4); | |
201 T6 = VADD(T3, T5); | |
202 Tc = LD(&(Rp[WS(rs, 2)]), ms, &(Rp[0])); | |
203 Ta = LD(&(Rm[WS(rs, 1)]), -ms, &(Rm[WS(rs, 1)])); | |
204 Tb = VCONJ(Ta); | |
205 Td = VADD(Tb, Tc); | |
206 TY = VADD(T2, T6); | |
207 TZ = VADD(T9, Td); | |
208 T7 = VFNMS(LDK(KP500000000), T6, T2); | |
209 Te = VFNMS(LDK(KP500000000), Td, T9); | |
210 Tf = VSUB(T7, Te); | |
211 TC = VADD(T7, Te); | |
212 To = VSUB(T3, T5); | |
213 Tp = VSUB(Tb, Tc); | |
214 Tq = VMUL(LDK(KP866025403), VSUB(To, Tp)); | |
215 TG = VADD(To, Tp); | |
216 Tr = LD(&(Rp[WS(rs, 3)]), ms, &(Rp[WS(rs, 1)])); | |
217 Tu = LD(&(Rm[WS(rs, 2)]), -ms, &(Rm[0])); | |
218 Tv = VCONJ(Tu); | |
219 Tg = LD(&(Rm[WS(rs, 4)]), -ms, &(Rm[0])); | |
220 Th = LD(&(Rm[0]), -ms, &(Rm[0])); | |
221 Ti = VCONJ(VSUB(Tg, Th)); | |
222 Ts = VCONJ(VADD(Tg, Th)); | |
223 Tj = LD(&(Rp[WS(rs, 1)]), ms, &(Rp[WS(rs, 1)])); | |
224 Tk = LD(&(Rp[WS(rs, 5)]), ms, &(Rp[WS(rs, 1)])); | |
225 Tl = VSUB(Tj, Tk); | |
226 Tw = VADD(Tj, Tk); | |
227 Tm = VMUL(LDK(KP866025403), VSUB(Ti, Tl)); | |
228 TF = VADD(Ti, Tl); | |
229 Tt = VFNMS(LDK(KP500000000), Ts, Tr); | |
230 Tx = VFNMS(LDK(KP500000000), Tw, Tv); | |
231 Ty = VSUB(Tt, Tx); | |
232 TD = VADD(Tt, Tx); | |
233 T11 = VADD(Tr, Ts); | |
234 T12 = VADD(Tv, Tw); | |
235 T13 = VBYI(VSUB(T11, T12)); | |
236 T1h = VADD(T11, T12); | |
237 { | |
238 V T1n, T1i, T14, T1a, TA, T1m, TS, T18, TO, T1e, TI, TW, T1g, T1f, T10; | |
239 V TX, T19, Tn, Tz, T1, T1l, TQ, TR, TP, T17, TM, TN, TL, T1d, TE; | |
240 V TH, TB, TV, TJ, T1p, T1k, TT, T1o, TK, TU, T1j, T1b, T16, T1c, T15; | |
241 T1g = VADD(TY, TZ); | |
242 T1n = VADD(T1g, T1h); | |
243 T1f = LDW(&(W[TWVL * 10])); | |
244 T1i = VZMUL(T1f, VSUB(T1g, T1h)); | |
245 T10 = VSUB(TY, TZ); | |
246 TX = LDW(&(W[TWVL * 4])); | |
247 T14 = VZMULI(TX, VSUB(T10, T13)); | |
248 T19 = LDW(&(W[TWVL * 16])); | |
249 T1a = VZMULI(T19, VADD(T10, T13)); | |
250 Tn = VSUB(Tf, Tm); | |
251 Tz = VBYI(VADD(Tq, Ty)); | |
252 T1 = LDW(&(W[TWVL * 20])); | |
253 TA = VZMULI(T1, VSUB(Tn, Tz)); | |
254 T1l = LDW(&(W[0])); | |
255 T1m = VZMULI(T1l, VADD(Tn, Tz)); | |
256 TQ = VBYI(VMUL(LDK(KP866025403), VADD(TG, TF))); | |
257 TR = VADD(TC, TD); | |
258 TP = LDW(&(W[TWVL * 6])); | |
259 TS = VZMUL(TP, VADD(TQ, TR)); | |
260 T17 = LDW(&(W[TWVL * 14])); | |
261 T18 = VZMUL(T17, VSUB(TR, TQ)); | |
262 TM = VADD(Tf, Tm); | |
263 TN = VBYI(VSUB(Ty, Tq)); | |
264 TL = LDW(&(W[TWVL * 8])); | |
265 TO = VZMULI(TL, VADD(TM, TN)); | |
266 T1d = LDW(&(W[TWVL * 12])); | |
267 T1e = VZMULI(T1d, VSUB(TM, TN)); | |
268 TE = VSUB(TC, TD); | |
269 TH = VBYI(VMUL(LDK(KP866025403), VSUB(TF, TG))); | |
270 TB = LDW(&(W[TWVL * 18])); | |
271 TI = VZMUL(TB, VSUB(TE, TH)); | |
272 TV = LDW(&(W[TWVL * 2])); | |
273 TW = VZMUL(TV, VADD(TH, TE)); | |
274 TJ = VADD(TA, TI); | |
275 ST(&(Rp[WS(rs, 5)]), TJ, ms, &(Rp[WS(rs, 1)])); | |
276 T1p = VCONJ(VSUB(T1n, T1m)); | |
277 ST(&(Rm[0]), T1p, -ms, &(Rm[0])); | |
278 T1k = VCONJ(VSUB(T1i, T1e)); | |
279 ST(&(Rm[WS(rs, 3)]), T1k, -ms, &(Rm[WS(rs, 1)])); | |
280 TT = VADD(TO, TS); | |
281 ST(&(Rp[WS(rs, 2)]), TT, ms, &(Rp[0])); | |
282 T1o = VADD(T1m, T1n); | |
283 ST(&(Rp[0]), T1o, ms, &(Rp[0])); | |
284 TK = VCONJ(VSUB(TI, TA)); | |
285 ST(&(Rm[WS(rs, 5)]), TK, -ms, &(Rm[WS(rs, 1)])); | |
286 TU = VCONJ(VSUB(TS, TO)); | |
287 ST(&(Rm[WS(rs, 2)]), TU, -ms, &(Rm[0])); | |
288 T1j = VADD(T1e, T1i); | |
289 ST(&(Rp[WS(rs, 3)]), T1j, ms, &(Rp[WS(rs, 1)])); | |
290 T1b = VCONJ(VSUB(T18, T1a)); | |
291 ST(&(Rm[WS(rs, 4)]), T1b, -ms, &(Rm[0])); | |
292 T16 = VADD(TW, T14); | |
293 ST(&(Rp[WS(rs, 1)]), T16, ms, &(Rp[WS(rs, 1)])); | |
294 T1c = VADD(T18, T1a); | |
295 ST(&(Rp[WS(rs, 4)]), T1c, ms, &(Rp[0])); | |
296 T15 = VCONJ(VSUB(TW, T14)); | |
297 ST(&(Rm[WS(rs, 1)]), T15, -ms, &(Rm[WS(rs, 1)])); | |
298 } | |
299 } | |
300 } | |
301 VLEAVE(); | |
302 } | |
303 | |
304 static const tw_instr twinstr[] = { | |
305 VTW(1, 1), | |
306 VTW(1, 2), | |
307 VTW(1, 3), | |
308 VTW(1, 4), | |
309 VTW(1, 5), | |
310 VTW(1, 6), | |
311 VTW(1, 7), | |
312 VTW(1, 8), | |
313 VTW(1, 9), | |
314 VTW(1, 10), | |
315 VTW(1, 11), | |
316 {TW_NEXT, VL, 0} | |
317 }; | |
318 | |
319 static const hc2c_desc desc = { 12, XSIMD_STRING("hc2cbdftv_12"), twinstr, &GENUS, {67, 26, 4, 0} }; | |
320 | |
321 void XSIMD(codelet_hc2cbdftv_12) (planner *p) { | |
322 X(khc2c_register) (p, hc2cbdftv_12, &desc, HC2C_VIA_DFT); | |
323 } | |
324 #endif /* HAVE_FMA */ |