Mercurial > hg > js-dsp-test
comparison fft/fftw/fftw-3.3.4/rdft/simd/common/hc2cbdftv_10.c @ 19:26056e866c29
Add FFTW to comparison table
author | Chris Cannam |
---|---|
date | Tue, 06 Oct 2015 13:08:39 +0100 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
18:8db794ca3e0b | 19:26056e866c29 |
---|---|
1 /* | |
2 * Copyright (c) 2003, 2007-14 Matteo Frigo | |
3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology | |
4 * | |
5 * This program is free software; you can redistribute it and/or modify | |
6 * it under the terms of the GNU General Public License as published by | |
7 * the Free Software Foundation; either version 2 of the License, or | |
8 * (at your option) any later version. | |
9 * | |
10 * This program is distributed in the hope that it will be useful, | |
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
13 * GNU General Public License for more details. | |
14 * | |
15 * You should have received a copy of the GNU General Public License | |
16 * along with this program; if not, write to the Free Software | |
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA | |
18 * | |
19 */ | |
20 | |
21 /* This file was automatically generated --- DO NOT EDIT */ | |
22 /* Generated on Tue Mar 4 13:51:49 EST 2014 */ | |
23 | |
24 #include "codelet-rdft.h" | |
25 | |
26 #ifdef HAVE_FMA | |
27 | |
28 /* Generated by: ../../../genfft/gen_hc2cdft_c.native -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -trivial-stores -variables 32 -no-generate-bytw -n 10 -dif -sign 1 -name hc2cbdftv_10 -include hc2cbv.h */ | |
29 | |
30 /* | |
31 * This function contains 61 FP additions, 50 FP multiplications, | |
32 * (or, 33 additions, 22 multiplications, 28 fused multiply/add), | |
33 * 76 stack variables, 4 constants, and 20 memory accesses | |
34 */ | |
35 #include "hc2cbv.h" | |
36 | |
37 static void hc2cbdftv_10(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) | |
38 { | |
39 DVK(KP559016994, +0.559016994374947424102293417182819058860154590); | |
40 DVK(KP250000000, +0.250000000000000000000000000000000000000000000); | |
41 DVK(KP618033988, +0.618033988749894848204586834365638117720309180); | |
42 DVK(KP951056516, +0.951056516295153572116439333379382143405698634); | |
43 { | |
44 INT m; | |
45 for (m = mb, W = W + ((mb - 1) * ((TWVL / VL) * 18)); m < me; m = m + VL, Rp = Rp + (VL * ms), Ip = Ip + (VL * ms), Rm = Rm - (VL * ms), Im = Im - (VL * ms), W = W + (TWVL * 18), MAKE_VOLATILE_STRIDE(40, rs)) { | |
46 V Ts, T4, TR, T1, TZ, TD, Ty, Tn, Ti, TT, T11, TJ, T15, Tr, TN; | |
47 V TE, Tv, To, Tb, T8, Tw, Te, Tx, Th, Tt, T7, T9, T2, T3, Tc; | |
48 V Td, Tf, Tg, T5, T6, Tu, Ta; | |
49 T2 = LD(&(Rp[0]), ms, &(Rp[0])); | |
50 T3 = LD(&(Rm[WS(rs, 4)]), -ms, &(Rm[0])); | |
51 Tc = LD(&(Rp[WS(rs, 4)]), ms, &(Rp[0])); | |
52 Td = LD(&(Rm[0]), -ms, &(Rm[0])); | |
53 Tf = LD(&(Rp[WS(rs, 1)]), ms, &(Rp[WS(rs, 1)])); | |
54 Tg = LD(&(Rm[WS(rs, 3)]), -ms, &(Rm[WS(rs, 1)])); | |
55 T5 = LD(&(Rp[WS(rs, 2)]), ms, &(Rp[0])); | |
56 T6 = LD(&(Rm[WS(rs, 2)]), -ms, &(Rm[0])); | |
57 T8 = LD(&(Rp[WS(rs, 3)]), ms, &(Rp[WS(rs, 1)])); | |
58 Ts = VFMACONJ(T3, T2); | |
59 T4 = VFNMSCONJ(T3, T2); | |
60 Tw = VFMACONJ(Td, Tc); | |
61 Te = VFNMSCONJ(Td, Tc); | |
62 Tx = VFMACONJ(Tg, Tf); | |
63 Th = VFMSCONJ(Tg, Tf); | |
64 Tt = VFMACONJ(T6, T5); | |
65 T7 = VFNMSCONJ(T6, T5); | |
66 T9 = LD(&(Rm[WS(rs, 1)]), -ms, &(Rm[WS(rs, 1)])); | |
67 TR = LDW(&(W[TWVL * 8])); | |
68 T1 = LDW(&(W[TWVL * 4])); | |
69 TZ = LDW(&(W[TWVL * 12])); | |
70 TD = VSUB(Tw, Tx); | |
71 Ty = VADD(Tw, Tx); | |
72 Tn = VSUB(Te, Th); | |
73 Ti = VADD(Te, Th); | |
74 Tu = VFMACONJ(T9, T8); | |
75 Ta = VFMSCONJ(T9, T8); | |
76 TT = LDW(&(W[TWVL * 6])); | |
77 T11 = LDW(&(W[TWVL * 10])); | |
78 TJ = LDW(&(W[TWVL * 16])); | |
79 T15 = LDW(&(W[0])); | |
80 Tr = LDW(&(W[TWVL * 2])); | |
81 TN = LDW(&(W[TWVL * 14])); | |
82 TE = VSUB(Tt, Tu); | |
83 Tv = VADD(Tt, Tu); | |
84 To = VSUB(T7, Ta); | |
85 Tb = VADD(T7, Ta); | |
86 { | |
87 V TV, TF, Tz, TB, TL, Tp, Tj, Tl, T17, TA, TS, Tk, TC, TU, TK; | |
88 V Tm, TO, TG, T12, TW, T16, TM, T10, Tq, TX, TY, T18, T19, TQ, TP; | |
89 V T13, T14, TI, TH; | |
90 TV = VMUL(LDK(KP951056516), VFMA(LDK(KP618033988), TD, TE)); | |
91 TF = VMUL(LDK(KP951056516), VFNMS(LDK(KP618033988), TE, TD)); | |
92 Tz = VADD(Tv, Ty); | |
93 TB = VSUB(Tv, Ty); | |
94 TL = VMUL(LDK(KP951056516), VFMA(LDK(KP618033988), Tn, To)); | |
95 Tp = VMUL(LDK(KP951056516), VFNMS(LDK(KP618033988), To, Tn)); | |
96 Tj = VADD(Tb, Ti); | |
97 Tl = VSUB(Tb, Ti); | |
98 T17 = VADD(Ts, Tz); | |
99 TA = VFNMS(LDK(KP250000000), Tz, Ts); | |
100 TS = VZMULI(TR, VADD(T4, Tj)); | |
101 Tk = VFNMS(LDK(KP250000000), Tj, T4); | |
102 TC = VFNMS(LDK(KP559016994), TB, TA); | |
103 TU = VFMA(LDK(KP559016994), TB, TA); | |
104 TK = VFMA(LDK(KP559016994), Tl, Tk); | |
105 Tm = VFNMS(LDK(KP559016994), Tl, Tk); | |
106 TO = VZMUL(TN, VFMAI(TF, TC)); | |
107 TG = VZMUL(Tr, VFNMSI(TF, TC)); | |
108 T12 = VZMUL(T11, VFMAI(TV, TU)); | |
109 TW = VZMUL(TT, VFNMSI(TV, TU)); | |
110 T16 = VZMULI(T15, VFMAI(TL, TK)); | |
111 TM = VZMULI(TJ, VFNMSI(TL, TK)); | |
112 T10 = VZMULI(TZ, VFNMSI(Tp, Tm)); | |
113 Tq = VZMULI(T1, VFMAI(Tp, Tm)); | |
114 TX = VADD(TS, TW); | |
115 TY = VCONJ(VSUB(TW, TS)); | |
116 T18 = VADD(T16, T17); | |
117 T19 = VCONJ(VSUB(T17, T16)); | |
118 TQ = VCONJ(VSUB(TO, TM)); | |
119 TP = VADD(TM, TO); | |
120 T13 = VADD(T10, T12); | |
121 T14 = VCONJ(VSUB(T12, T10)); | |
122 TI = VCONJ(VSUB(TG, Tq)); | |
123 TH = VADD(Tq, TG); | |
124 ST(&(Rp[WS(rs, 2)]), TX, ms, &(Rp[0])); | |
125 ST(&(Rm[WS(rs, 2)]), TY, -ms, &(Rm[0])); | |
126 ST(&(Rp[0]), T18, ms, &(Rp[0])); | |
127 ST(&(Rm[0]), T19, -ms, &(Rm[0])); | |
128 ST(&(Rm[WS(rs, 4)]), TQ, -ms, &(Rm[0])); | |
129 ST(&(Rp[WS(rs, 4)]), TP, ms, &(Rp[0])); | |
130 ST(&(Rp[WS(rs, 3)]), T13, ms, &(Rp[WS(rs, 1)])); | |
131 ST(&(Rm[WS(rs, 3)]), T14, -ms, &(Rm[WS(rs, 1)])); | |
132 ST(&(Rm[WS(rs, 1)]), TI, -ms, &(Rm[WS(rs, 1)])); | |
133 ST(&(Rp[WS(rs, 1)]), TH, ms, &(Rp[WS(rs, 1)])); | |
134 } | |
135 } | |
136 } | |
137 VLEAVE(); | |
138 } | |
139 | |
140 static const tw_instr twinstr[] = { | |
141 VTW(1, 1), | |
142 VTW(1, 2), | |
143 VTW(1, 3), | |
144 VTW(1, 4), | |
145 VTW(1, 5), | |
146 VTW(1, 6), | |
147 VTW(1, 7), | |
148 VTW(1, 8), | |
149 VTW(1, 9), | |
150 {TW_NEXT, VL, 0} | |
151 }; | |
152 | |
153 static const hc2c_desc desc = { 10, XSIMD_STRING("hc2cbdftv_10"), twinstr, &GENUS, {33, 22, 28, 0} }; | |
154 | |
155 void XSIMD(codelet_hc2cbdftv_10) (planner *p) { | |
156 X(khc2c_register) (p, hc2cbdftv_10, &desc, HC2C_VIA_DFT); | |
157 } | |
158 #else /* HAVE_FMA */ | |
159 | |
160 /* Generated by: ../../../genfft/gen_hc2cdft_c.native -simd -compact -variables 4 -pipeline-latency 8 -trivial-stores -variables 32 -no-generate-bytw -n 10 -dif -sign 1 -name hc2cbdftv_10 -include hc2cbv.h */ | |
161 | |
162 /* | |
163 * This function contains 61 FP additions, 30 FP multiplications, | |
164 * (or, 55 additions, 24 multiplications, 6 fused multiply/add), | |
165 * 81 stack variables, 4 constants, and 20 memory accesses | |
166 */ | |
167 #include "hc2cbv.h" | |
168 | |
169 static void hc2cbdftv_10(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) | |
170 { | |
171 DVK(KP250000000, +0.250000000000000000000000000000000000000000000); | |
172 DVK(KP951056516, +0.951056516295153572116439333379382143405698634); | |
173 DVK(KP587785252, +0.587785252292473129168705954639072768597652438); | |
174 DVK(KP559016994, +0.559016994374947424102293417182819058860154590); | |
175 { | |
176 INT m; | |
177 for (m = mb, W = W + ((mb - 1) * ((TWVL / VL) * 18)); m < me; m = m + VL, Rp = Rp + (VL * ms), Ip = Ip + (VL * ms), Rm = Rm - (VL * ms), Im = Im - (VL * ms), W = W + (TWVL * 18), MAKE_VOLATILE_STRIDE(40, rs)) { | |
178 V T5, TE, Ts, Tt, TC, Tz, TH, TJ, To, Tq, T2, T4, T3, T9, Tx; | |
179 V Tm, TB, Td, Ty, Ti, TA, T6, T8, T7, Tl, Tk, Tj, Tc, Tb, Ta; | |
180 V Tf, Th, Tg, TF, TG, Te, Tn; | |
181 T2 = LD(&(Rp[0]), ms, &(Rp[0])); | |
182 T3 = LD(&(Rm[WS(rs, 4)]), -ms, &(Rm[0])); | |
183 T4 = VCONJ(T3); | |
184 T5 = VSUB(T2, T4); | |
185 TE = VADD(T2, T4); | |
186 T6 = LD(&(Rp[WS(rs, 2)]), ms, &(Rp[0])); | |
187 T7 = LD(&(Rm[WS(rs, 2)]), -ms, &(Rm[0])); | |
188 T8 = VCONJ(T7); | |
189 T9 = VSUB(T6, T8); | |
190 Tx = VADD(T6, T8); | |
191 Tl = LD(&(Rp[WS(rs, 1)]), ms, &(Rp[WS(rs, 1)])); | |
192 Tj = LD(&(Rm[WS(rs, 3)]), -ms, &(Rm[WS(rs, 1)])); | |
193 Tk = VCONJ(Tj); | |
194 Tm = VSUB(Tk, Tl); | |
195 TB = VADD(Tk, Tl); | |
196 Tc = LD(&(Rp[WS(rs, 3)]), ms, &(Rp[WS(rs, 1)])); | |
197 Ta = LD(&(Rm[WS(rs, 1)]), -ms, &(Rm[WS(rs, 1)])); | |
198 Tb = VCONJ(Ta); | |
199 Td = VSUB(Tb, Tc); | |
200 Ty = VADD(Tb, Tc); | |
201 Tf = LD(&(Rp[WS(rs, 4)]), ms, &(Rp[0])); | |
202 Tg = LD(&(Rm[0]), -ms, &(Rm[0])); | |
203 Th = VCONJ(Tg); | |
204 Ti = VSUB(Tf, Th); | |
205 TA = VADD(Tf, Th); | |
206 Ts = VSUB(T9, Td); | |
207 Tt = VSUB(Ti, Tm); | |
208 TC = VSUB(TA, TB); | |
209 Tz = VSUB(Tx, Ty); | |
210 TF = VADD(Tx, Ty); | |
211 TG = VADD(TA, TB); | |
212 TH = VADD(TF, TG); | |
213 TJ = VMUL(LDK(KP559016994), VSUB(TF, TG)); | |
214 Te = VADD(T9, Td); | |
215 Tn = VADD(Ti, Tm); | |
216 To = VADD(Te, Tn); | |
217 Tq = VMUL(LDK(KP559016994), VSUB(Te, Tn)); | |
218 { | |
219 V T1c, TX, Tv, T1b, TR, T15, TL, T17, TT, T11, TW, Tu, TQ, Tr, TP; | |
220 V Tp, T1, T1a, TO, T14, TD, T10, TK, TZ, TI, Tw, T16, TS, TY, TM; | |
221 V TU, T1e, TN, T1d, T19, T13, TV, T18, T12; | |
222 T1c = VADD(TE, TH); | |
223 TW = LDW(&(W[TWVL * 8])); | |
224 TX = VZMULI(TW, VADD(T5, To)); | |
225 Tu = VBYI(VFNMS(LDK(KP951056516), Tt, VMUL(LDK(KP587785252), Ts))); | |
226 TQ = VBYI(VFMA(LDK(KP951056516), Ts, VMUL(LDK(KP587785252), Tt))); | |
227 Tp = VFNMS(LDK(KP250000000), To, T5); | |
228 Tr = VSUB(Tp, Tq); | |
229 TP = VADD(Tq, Tp); | |
230 T1 = LDW(&(W[TWVL * 4])); | |
231 Tv = VZMULI(T1, VSUB(Tr, Tu)); | |
232 T1a = LDW(&(W[0])); | |
233 T1b = VZMULI(T1a, VADD(TQ, TP)); | |
234 TO = LDW(&(W[TWVL * 16])); | |
235 TR = VZMULI(TO, VSUB(TP, TQ)); | |
236 T14 = LDW(&(W[TWVL * 12])); | |
237 T15 = VZMULI(T14, VADD(Tu, Tr)); | |
238 TD = VBYI(VFNMS(LDK(KP951056516), TC, VMUL(LDK(KP587785252), Tz))); | |
239 T10 = VBYI(VFMA(LDK(KP951056516), Tz, VMUL(LDK(KP587785252), TC))); | |
240 TI = VFNMS(LDK(KP250000000), TH, TE); | |
241 TK = VSUB(TI, TJ); | |
242 TZ = VADD(TJ, TI); | |
243 Tw = LDW(&(W[TWVL * 2])); | |
244 TL = VZMUL(Tw, VADD(TD, TK)); | |
245 T16 = LDW(&(W[TWVL * 10])); | |
246 T17 = VZMUL(T16, VADD(T10, TZ)); | |
247 TS = LDW(&(W[TWVL * 14])); | |
248 TT = VZMUL(TS, VSUB(TK, TD)); | |
249 TY = LDW(&(W[TWVL * 6])); | |
250 T11 = VZMUL(TY, VSUB(TZ, T10)); | |
251 TM = VADD(Tv, TL); | |
252 ST(&(Rp[WS(rs, 1)]), TM, ms, &(Rp[WS(rs, 1)])); | |
253 TU = VADD(TR, TT); | |
254 ST(&(Rp[WS(rs, 4)]), TU, ms, &(Rp[0])); | |
255 T1e = VCONJ(VSUB(T1c, T1b)); | |
256 ST(&(Rm[0]), T1e, -ms, &(Rm[0])); | |
257 TN = VCONJ(VSUB(TL, Tv)); | |
258 ST(&(Rm[WS(rs, 1)]), TN, -ms, &(Rm[WS(rs, 1)])); | |
259 T1d = VADD(T1b, T1c); | |
260 ST(&(Rp[0]), T1d, ms, &(Rp[0])); | |
261 T19 = VCONJ(VSUB(T17, T15)); | |
262 ST(&(Rm[WS(rs, 3)]), T19, -ms, &(Rm[WS(rs, 1)])); | |
263 T13 = VCONJ(VSUB(T11, TX)); | |
264 ST(&(Rm[WS(rs, 2)]), T13, -ms, &(Rm[0])); | |
265 TV = VCONJ(VSUB(TT, TR)); | |
266 ST(&(Rm[WS(rs, 4)]), TV, -ms, &(Rm[0])); | |
267 T18 = VADD(T15, T17); | |
268 ST(&(Rp[WS(rs, 3)]), T18, ms, &(Rp[WS(rs, 1)])); | |
269 T12 = VADD(TX, T11); | |
270 ST(&(Rp[WS(rs, 2)]), T12, ms, &(Rp[0])); | |
271 } | |
272 } | |
273 } | |
274 VLEAVE(); | |
275 } | |
276 | |
277 static const tw_instr twinstr[] = { | |
278 VTW(1, 1), | |
279 VTW(1, 2), | |
280 VTW(1, 3), | |
281 VTW(1, 4), | |
282 VTW(1, 5), | |
283 VTW(1, 6), | |
284 VTW(1, 7), | |
285 VTW(1, 8), | |
286 VTW(1, 9), | |
287 {TW_NEXT, VL, 0} | |
288 }; | |
289 | |
290 static const hc2c_desc desc = { 10, XSIMD_STRING("hc2cbdftv_10"), twinstr, &GENUS, {55, 24, 6, 0} }; | |
291 | |
292 void XSIMD(codelet_hc2cbdftv_10) (planner *p) { | |
293 X(khc2c_register) (p, hc2cbdftv_10, &desc, HC2C_VIA_DFT); | |
294 } | |
295 #endif /* HAVE_FMA */ |