comparison fft/fftw/fftw-3.3.4/rdft/simd/common/hc2cbdftv_10.c @ 19:26056e866c29

Add FFTW to comparison table
author Chris Cannam
date Tue, 06 Oct 2015 13:08:39 +0100
parents
children
comparison
equal deleted inserted replaced
18:8db794ca3e0b 19:26056e866c29
1 /*
2 * Copyright (c) 2003, 2007-14 Matteo Frigo
3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
18 *
19 */
20
21 /* This file was automatically generated --- DO NOT EDIT */
22 /* Generated on Tue Mar 4 13:51:49 EST 2014 */
23
24 #include "codelet-rdft.h"
25
26 #ifdef HAVE_FMA
27
28 /* Generated by: ../../../genfft/gen_hc2cdft_c.native -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -trivial-stores -variables 32 -no-generate-bytw -n 10 -dif -sign 1 -name hc2cbdftv_10 -include hc2cbv.h */
29
30 /*
31 * This function contains 61 FP additions, 50 FP multiplications,
32 * (or, 33 additions, 22 multiplications, 28 fused multiply/add),
33 * 76 stack variables, 4 constants, and 20 memory accesses
34 */
35 #include "hc2cbv.h"
36
37 static void hc2cbdftv_10(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
38 {
39 DVK(KP559016994, +0.559016994374947424102293417182819058860154590);
40 DVK(KP250000000, +0.250000000000000000000000000000000000000000000);
41 DVK(KP618033988, +0.618033988749894848204586834365638117720309180);
42 DVK(KP951056516, +0.951056516295153572116439333379382143405698634);
43 {
44 INT m;
45 for (m = mb, W = W + ((mb - 1) * ((TWVL / VL) * 18)); m < me; m = m + VL, Rp = Rp + (VL * ms), Ip = Ip + (VL * ms), Rm = Rm - (VL * ms), Im = Im - (VL * ms), W = W + (TWVL * 18), MAKE_VOLATILE_STRIDE(40, rs)) {
46 V Ts, T4, TR, T1, TZ, TD, Ty, Tn, Ti, TT, T11, TJ, T15, Tr, TN;
47 V TE, Tv, To, Tb, T8, Tw, Te, Tx, Th, Tt, T7, T9, T2, T3, Tc;
48 V Td, Tf, Tg, T5, T6, Tu, Ta;
49 T2 = LD(&(Rp[0]), ms, &(Rp[0]));
50 T3 = LD(&(Rm[WS(rs, 4)]), -ms, &(Rm[0]));
51 Tc = LD(&(Rp[WS(rs, 4)]), ms, &(Rp[0]));
52 Td = LD(&(Rm[0]), -ms, &(Rm[0]));
53 Tf = LD(&(Rp[WS(rs, 1)]), ms, &(Rp[WS(rs, 1)]));
54 Tg = LD(&(Rm[WS(rs, 3)]), -ms, &(Rm[WS(rs, 1)]));
55 T5 = LD(&(Rp[WS(rs, 2)]), ms, &(Rp[0]));
56 T6 = LD(&(Rm[WS(rs, 2)]), -ms, &(Rm[0]));
57 T8 = LD(&(Rp[WS(rs, 3)]), ms, &(Rp[WS(rs, 1)]));
58 Ts = VFMACONJ(T3, T2);
59 T4 = VFNMSCONJ(T3, T2);
60 Tw = VFMACONJ(Td, Tc);
61 Te = VFNMSCONJ(Td, Tc);
62 Tx = VFMACONJ(Tg, Tf);
63 Th = VFMSCONJ(Tg, Tf);
64 Tt = VFMACONJ(T6, T5);
65 T7 = VFNMSCONJ(T6, T5);
66 T9 = LD(&(Rm[WS(rs, 1)]), -ms, &(Rm[WS(rs, 1)]));
67 TR = LDW(&(W[TWVL * 8]));
68 T1 = LDW(&(W[TWVL * 4]));
69 TZ = LDW(&(W[TWVL * 12]));
70 TD = VSUB(Tw, Tx);
71 Ty = VADD(Tw, Tx);
72 Tn = VSUB(Te, Th);
73 Ti = VADD(Te, Th);
74 Tu = VFMACONJ(T9, T8);
75 Ta = VFMSCONJ(T9, T8);
76 TT = LDW(&(W[TWVL * 6]));
77 T11 = LDW(&(W[TWVL * 10]));
78 TJ = LDW(&(W[TWVL * 16]));
79 T15 = LDW(&(W[0]));
80 Tr = LDW(&(W[TWVL * 2]));
81 TN = LDW(&(W[TWVL * 14]));
82 TE = VSUB(Tt, Tu);
83 Tv = VADD(Tt, Tu);
84 To = VSUB(T7, Ta);
85 Tb = VADD(T7, Ta);
86 {
87 V TV, TF, Tz, TB, TL, Tp, Tj, Tl, T17, TA, TS, Tk, TC, TU, TK;
88 V Tm, TO, TG, T12, TW, T16, TM, T10, Tq, TX, TY, T18, T19, TQ, TP;
89 V T13, T14, TI, TH;
90 TV = VMUL(LDK(KP951056516), VFMA(LDK(KP618033988), TD, TE));
91 TF = VMUL(LDK(KP951056516), VFNMS(LDK(KP618033988), TE, TD));
92 Tz = VADD(Tv, Ty);
93 TB = VSUB(Tv, Ty);
94 TL = VMUL(LDK(KP951056516), VFMA(LDK(KP618033988), Tn, To));
95 Tp = VMUL(LDK(KP951056516), VFNMS(LDK(KP618033988), To, Tn));
96 Tj = VADD(Tb, Ti);
97 Tl = VSUB(Tb, Ti);
98 T17 = VADD(Ts, Tz);
99 TA = VFNMS(LDK(KP250000000), Tz, Ts);
100 TS = VZMULI(TR, VADD(T4, Tj));
101 Tk = VFNMS(LDK(KP250000000), Tj, T4);
102 TC = VFNMS(LDK(KP559016994), TB, TA);
103 TU = VFMA(LDK(KP559016994), TB, TA);
104 TK = VFMA(LDK(KP559016994), Tl, Tk);
105 Tm = VFNMS(LDK(KP559016994), Tl, Tk);
106 TO = VZMUL(TN, VFMAI(TF, TC));
107 TG = VZMUL(Tr, VFNMSI(TF, TC));
108 T12 = VZMUL(T11, VFMAI(TV, TU));
109 TW = VZMUL(TT, VFNMSI(TV, TU));
110 T16 = VZMULI(T15, VFMAI(TL, TK));
111 TM = VZMULI(TJ, VFNMSI(TL, TK));
112 T10 = VZMULI(TZ, VFNMSI(Tp, Tm));
113 Tq = VZMULI(T1, VFMAI(Tp, Tm));
114 TX = VADD(TS, TW);
115 TY = VCONJ(VSUB(TW, TS));
116 T18 = VADD(T16, T17);
117 T19 = VCONJ(VSUB(T17, T16));
118 TQ = VCONJ(VSUB(TO, TM));
119 TP = VADD(TM, TO);
120 T13 = VADD(T10, T12);
121 T14 = VCONJ(VSUB(T12, T10));
122 TI = VCONJ(VSUB(TG, Tq));
123 TH = VADD(Tq, TG);
124 ST(&(Rp[WS(rs, 2)]), TX, ms, &(Rp[0]));
125 ST(&(Rm[WS(rs, 2)]), TY, -ms, &(Rm[0]));
126 ST(&(Rp[0]), T18, ms, &(Rp[0]));
127 ST(&(Rm[0]), T19, -ms, &(Rm[0]));
128 ST(&(Rm[WS(rs, 4)]), TQ, -ms, &(Rm[0]));
129 ST(&(Rp[WS(rs, 4)]), TP, ms, &(Rp[0]));
130 ST(&(Rp[WS(rs, 3)]), T13, ms, &(Rp[WS(rs, 1)]));
131 ST(&(Rm[WS(rs, 3)]), T14, -ms, &(Rm[WS(rs, 1)]));
132 ST(&(Rm[WS(rs, 1)]), TI, -ms, &(Rm[WS(rs, 1)]));
133 ST(&(Rp[WS(rs, 1)]), TH, ms, &(Rp[WS(rs, 1)]));
134 }
135 }
136 }
137 VLEAVE();
138 }
139
140 static const tw_instr twinstr[] = {
141 VTW(1, 1),
142 VTW(1, 2),
143 VTW(1, 3),
144 VTW(1, 4),
145 VTW(1, 5),
146 VTW(1, 6),
147 VTW(1, 7),
148 VTW(1, 8),
149 VTW(1, 9),
150 {TW_NEXT, VL, 0}
151 };
152
153 static const hc2c_desc desc = { 10, XSIMD_STRING("hc2cbdftv_10"), twinstr, &GENUS, {33, 22, 28, 0} };
154
155 void XSIMD(codelet_hc2cbdftv_10) (planner *p) {
156 X(khc2c_register) (p, hc2cbdftv_10, &desc, HC2C_VIA_DFT);
157 }
158 #else /* HAVE_FMA */
159
160 /* Generated by: ../../../genfft/gen_hc2cdft_c.native -simd -compact -variables 4 -pipeline-latency 8 -trivial-stores -variables 32 -no-generate-bytw -n 10 -dif -sign 1 -name hc2cbdftv_10 -include hc2cbv.h */
161
162 /*
163 * This function contains 61 FP additions, 30 FP multiplications,
164 * (or, 55 additions, 24 multiplications, 6 fused multiply/add),
165 * 81 stack variables, 4 constants, and 20 memory accesses
166 */
167 #include "hc2cbv.h"
168
169 static void hc2cbdftv_10(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
170 {
171 DVK(KP250000000, +0.250000000000000000000000000000000000000000000);
172 DVK(KP951056516, +0.951056516295153572116439333379382143405698634);
173 DVK(KP587785252, +0.587785252292473129168705954639072768597652438);
174 DVK(KP559016994, +0.559016994374947424102293417182819058860154590);
175 {
176 INT m;
177 for (m = mb, W = W + ((mb - 1) * ((TWVL / VL) * 18)); m < me; m = m + VL, Rp = Rp + (VL * ms), Ip = Ip + (VL * ms), Rm = Rm - (VL * ms), Im = Im - (VL * ms), W = W + (TWVL * 18), MAKE_VOLATILE_STRIDE(40, rs)) {
178 V T5, TE, Ts, Tt, TC, Tz, TH, TJ, To, Tq, T2, T4, T3, T9, Tx;
179 V Tm, TB, Td, Ty, Ti, TA, T6, T8, T7, Tl, Tk, Tj, Tc, Tb, Ta;
180 V Tf, Th, Tg, TF, TG, Te, Tn;
181 T2 = LD(&(Rp[0]), ms, &(Rp[0]));
182 T3 = LD(&(Rm[WS(rs, 4)]), -ms, &(Rm[0]));
183 T4 = VCONJ(T3);
184 T5 = VSUB(T2, T4);
185 TE = VADD(T2, T4);
186 T6 = LD(&(Rp[WS(rs, 2)]), ms, &(Rp[0]));
187 T7 = LD(&(Rm[WS(rs, 2)]), -ms, &(Rm[0]));
188 T8 = VCONJ(T7);
189 T9 = VSUB(T6, T8);
190 Tx = VADD(T6, T8);
191 Tl = LD(&(Rp[WS(rs, 1)]), ms, &(Rp[WS(rs, 1)]));
192 Tj = LD(&(Rm[WS(rs, 3)]), -ms, &(Rm[WS(rs, 1)]));
193 Tk = VCONJ(Tj);
194 Tm = VSUB(Tk, Tl);
195 TB = VADD(Tk, Tl);
196 Tc = LD(&(Rp[WS(rs, 3)]), ms, &(Rp[WS(rs, 1)]));
197 Ta = LD(&(Rm[WS(rs, 1)]), -ms, &(Rm[WS(rs, 1)]));
198 Tb = VCONJ(Ta);
199 Td = VSUB(Tb, Tc);
200 Ty = VADD(Tb, Tc);
201 Tf = LD(&(Rp[WS(rs, 4)]), ms, &(Rp[0]));
202 Tg = LD(&(Rm[0]), -ms, &(Rm[0]));
203 Th = VCONJ(Tg);
204 Ti = VSUB(Tf, Th);
205 TA = VADD(Tf, Th);
206 Ts = VSUB(T9, Td);
207 Tt = VSUB(Ti, Tm);
208 TC = VSUB(TA, TB);
209 Tz = VSUB(Tx, Ty);
210 TF = VADD(Tx, Ty);
211 TG = VADD(TA, TB);
212 TH = VADD(TF, TG);
213 TJ = VMUL(LDK(KP559016994), VSUB(TF, TG));
214 Te = VADD(T9, Td);
215 Tn = VADD(Ti, Tm);
216 To = VADD(Te, Tn);
217 Tq = VMUL(LDK(KP559016994), VSUB(Te, Tn));
218 {
219 V T1c, TX, Tv, T1b, TR, T15, TL, T17, TT, T11, TW, Tu, TQ, Tr, TP;
220 V Tp, T1, T1a, TO, T14, TD, T10, TK, TZ, TI, Tw, T16, TS, TY, TM;
221 V TU, T1e, TN, T1d, T19, T13, TV, T18, T12;
222 T1c = VADD(TE, TH);
223 TW = LDW(&(W[TWVL * 8]));
224 TX = VZMULI(TW, VADD(T5, To));
225 Tu = VBYI(VFNMS(LDK(KP951056516), Tt, VMUL(LDK(KP587785252), Ts)));
226 TQ = VBYI(VFMA(LDK(KP951056516), Ts, VMUL(LDK(KP587785252), Tt)));
227 Tp = VFNMS(LDK(KP250000000), To, T5);
228 Tr = VSUB(Tp, Tq);
229 TP = VADD(Tq, Tp);
230 T1 = LDW(&(W[TWVL * 4]));
231 Tv = VZMULI(T1, VSUB(Tr, Tu));
232 T1a = LDW(&(W[0]));
233 T1b = VZMULI(T1a, VADD(TQ, TP));
234 TO = LDW(&(W[TWVL * 16]));
235 TR = VZMULI(TO, VSUB(TP, TQ));
236 T14 = LDW(&(W[TWVL * 12]));
237 T15 = VZMULI(T14, VADD(Tu, Tr));
238 TD = VBYI(VFNMS(LDK(KP951056516), TC, VMUL(LDK(KP587785252), Tz)));
239 T10 = VBYI(VFMA(LDK(KP951056516), Tz, VMUL(LDK(KP587785252), TC)));
240 TI = VFNMS(LDK(KP250000000), TH, TE);
241 TK = VSUB(TI, TJ);
242 TZ = VADD(TJ, TI);
243 Tw = LDW(&(W[TWVL * 2]));
244 TL = VZMUL(Tw, VADD(TD, TK));
245 T16 = LDW(&(W[TWVL * 10]));
246 T17 = VZMUL(T16, VADD(T10, TZ));
247 TS = LDW(&(W[TWVL * 14]));
248 TT = VZMUL(TS, VSUB(TK, TD));
249 TY = LDW(&(W[TWVL * 6]));
250 T11 = VZMUL(TY, VSUB(TZ, T10));
251 TM = VADD(Tv, TL);
252 ST(&(Rp[WS(rs, 1)]), TM, ms, &(Rp[WS(rs, 1)]));
253 TU = VADD(TR, TT);
254 ST(&(Rp[WS(rs, 4)]), TU, ms, &(Rp[0]));
255 T1e = VCONJ(VSUB(T1c, T1b));
256 ST(&(Rm[0]), T1e, -ms, &(Rm[0]));
257 TN = VCONJ(VSUB(TL, Tv));
258 ST(&(Rm[WS(rs, 1)]), TN, -ms, &(Rm[WS(rs, 1)]));
259 T1d = VADD(T1b, T1c);
260 ST(&(Rp[0]), T1d, ms, &(Rp[0]));
261 T19 = VCONJ(VSUB(T17, T15));
262 ST(&(Rm[WS(rs, 3)]), T19, -ms, &(Rm[WS(rs, 1)]));
263 T13 = VCONJ(VSUB(T11, TX));
264 ST(&(Rm[WS(rs, 2)]), T13, -ms, &(Rm[0]));
265 TV = VCONJ(VSUB(TT, TR));
266 ST(&(Rm[WS(rs, 4)]), TV, -ms, &(Rm[0]));
267 T18 = VADD(T15, T17);
268 ST(&(Rp[WS(rs, 3)]), T18, ms, &(Rp[WS(rs, 1)]));
269 T12 = VADD(TX, T11);
270 ST(&(Rp[WS(rs, 2)]), T12, ms, &(Rp[0]));
271 }
272 }
273 }
274 VLEAVE();
275 }
276
277 static const tw_instr twinstr[] = {
278 VTW(1, 1),
279 VTW(1, 2),
280 VTW(1, 3),
281 VTW(1, 4),
282 VTW(1, 5),
283 VTW(1, 6),
284 VTW(1, 7),
285 VTW(1, 8),
286 VTW(1, 9),
287 {TW_NEXT, VL, 0}
288 };
289
290 static const hc2c_desc desc = { 10, XSIMD_STRING("hc2cbdftv_10"), twinstr, &GENUS, {55, 24, 6, 0} };
291
292 void XSIMD(codelet_hc2cbdftv_10) (planner *p) {
293 X(khc2c_register) (p, hc2cbdftv_10, &desc, HC2C_VIA_DFT);
294 }
295 #endif /* HAVE_FMA */