comparison fft/fftw/fftw-3.3.4/rdft/scalar/r2cf/r2cf_15.c @ 19:26056e866c29

Add FFTW to comparison table
author Chris Cannam
date Tue, 06 Oct 2015 13:08:39 +0100
parents
children
comparison
equal deleted inserted replaced
18:8db794ca3e0b 19:26056e866c29
1 /*
2 * Copyright (c) 2003, 2007-14 Matteo Frigo
3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
18 *
19 */
20
21 /* This file was automatically generated --- DO NOT EDIT */
22 /* Generated on Tue Mar 4 13:49:07 EST 2014 */
23
24 #include "codelet-rdft.h"
25
26 #ifdef HAVE_FMA
27
28 /* Generated by: ../../../genfft/gen_r2cf.native -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -n 15 -name r2cf_15 -include r2cf.h */
29
30 /*
31 * This function contains 64 FP additions, 35 FP multiplications,
32 * (or, 36 additions, 7 multiplications, 28 fused multiply/add),
33 * 50 stack variables, 8 constants, and 30 memory accesses
34 */
35 #include "r2cf.h"
36
37 static void r2cf_15(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs)
38 {
39 DK(KP910592997, +0.910592997310029334643087372129977886038870291);
40 DK(KP823639103, +0.823639103546331925877420039278190003029660514);
41 DK(KP559016994, +0.559016994374947424102293417182819058860154590);
42 DK(KP951056516, +0.951056516295153572116439333379382143405698634);
43 DK(KP250000000, +0.250000000000000000000000000000000000000000000);
44 DK(KP618033988, +0.618033988749894848204586834365638117720309180);
45 DK(KP866025403, +0.866025403784438646763723170752936183471402627);
46 DK(KP500000000, +0.500000000000000000000000000000000000000000000);
47 {
48 INT i;
49 for (i = v; i > 0; i = i - 1, R0 = R0 + ivs, R1 = R1 + ivs, Cr = Cr + ovs, Ci = Ci + ovs, MAKE_VOLATILE_STRIDE(60, rs), MAKE_VOLATILE_STRIDE(60, csr), MAKE_VOLATILE_STRIDE(60, csi)) {
50 E Tw, Tz, Tp, Ty;
51 {
52 E Ti, TF, TR, TN, TX, T11, TM, TS, Tl, TH, Tf, To, TT, TD, Tg;
53 E Th;
54 TD = R0[0];
55 Tg = R0[WS(rs, 5)];
56 Th = R1[WS(rs, 2)];
57 {
58 E Tj, Tq, Tt, Tm, T3, Tk, T4, Ta, Tr, Td, Tu, T5, TE;
59 Tj = R1[WS(rs, 1)];
60 Tq = R0[WS(rs, 3)];
61 Tt = R1[WS(rs, 4)];
62 TE = Th + Tg;
63 Ti = Tg - Th;
64 Tm = R0[WS(rs, 6)];
65 {
66 E T8, T9, T1, T2, Tb, Tc;
67 T1 = R0[WS(rs, 4)];
68 T2 = R1[WS(rs, 6)];
69 TF = FNMS(KP500000000, TE, TD);
70 TR = TD + TE;
71 T8 = R1[WS(rs, 5)];
72 T3 = T1 - T2;
73 Tk = T1 + T2;
74 T9 = R1[0];
75 Tb = R0[WS(rs, 7)];
76 Tc = R0[WS(rs, 2)];
77 T4 = R0[WS(rs, 1)];
78 Ta = T8 - T9;
79 Tr = T8 + T9;
80 Td = Tb - Tc;
81 Tu = Tb + Tc;
82 T5 = R1[WS(rs, 3)];
83 }
84 {
85 E Ts, Tv, Te, Tn, T7, T6, TV, TW;
86 TV = Tq + Tr;
87 Ts = FNMS(KP500000000, Tr, Tq);
88 Tv = FNMS(KP500000000, Tu, Tt);
89 TW = Tt + Tu;
90 Te = Ta + Td;
91 TN = Td - Ta;
92 Tn = T4 + T5;
93 T6 = T4 - T5;
94 TX = TV + TW;
95 T11 = TW - TV;
96 TM = T6 - T3;
97 T7 = T3 + T6;
98 TS = Tj + Tk;
99 Tl = FNMS(KP500000000, Tk, Tj);
100 TH = Ts + Tv;
101 Tw = Ts - Tv;
102 Tz = Te - T7;
103 Tf = T7 + Te;
104 To = FNMS(KP500000000, Tn, Tm);
105 TT = Tm + Tn;
106 }
107 }
108 {
109 E TO, TQ, TU, T12, TK, TI, TG;
110 Ci[WS(csi, 5)] = KP866025403 * (Tf - Ti);
111 TG = Tl + To;
112 Tp = Tl - To;
113 TO = FMA(KP618033988, TN, TM);
114 TQ = FNMS(KP618033988, TM, TN);
115 TU = TS + TT;
116 T12 = TS - TT;
117 TK = TG - TH;
118 TI = TG + TH;
119 {
120 E T10, TY, TL, TP, TJ, TZ;
121 T10 = TU - TX;
122 TY = TU + TX;
123 Cr[WS(csr, 5)] = TF + TI;
124 TJ = FNMS(KP250000000, TI, TF);
125 Ci[WS(csi, 6)] = -(KP951056516 * (FNMS(KP618033988, T11, T12)));
126 Ci[WS(csi, 3)] = KP951056516 * (FMA(KP618033988, T12, T11));
127 TL = FMA(KP559016994, TK, TJ);
128 TP = FNMS(KP559016994, TK, TJ);
129 Cr[0] = TR + TY;
130 TZ = FNMS(KP250000000, TY, TR);
131 Cr[WS(csr, 4)] = FNMS(KP823639103, TO, TL);
132 Cr[WS(csr, 1)] = FMA(KP823639103, TO, TL);
133 Cr[WS(csr, 7)] = FNMS(KP823639103, TQ, TP);
134 Cr[WS(csr, 2)] = FMA(KP823639103, TQ, TP);
135 Cr[WS(csr, 6)] = FMA(KP559016994, T10, TZ);
136 Cr[WS(csr, 3)] = FNMS(KP559016994, T10, TZ);
137 Ty = FMA(KP250000000, Tf, Ti);
138 }
139 }
140 }
141 {
142 E TB, Tx, TC, TA;
143 TB = FNMS(KP618033988, Tp, Tw);
144 Tx = FMA(KP618033988, Tw, Tp);
145 TC = FNMS(KP559016994, Tz, Ty);
146 TA = FMA(KP559016994, Tz, Ty);
147 Ci[WS(csi, 2)] = KP951056516 * (FNMS(KP910592997, TC, TB));
148 Ci[WS(csi, 7)] = KP951056516 * (FMA(KP910592997, TC, TB));
149 Ci[WS(csi, 4)] = KP951056516 * (FMA(KP910592997, TA, Tx));
150 Ci[WS(csi, 1)] = -(KP951056516 * (FNMS(KP910592997, TA, Tx)));
151 }
152 }
153 }
154 }
155
156 static const kr2c_desc desc = { 15, "r2cf_15", {36, 7, 28, 0}, &GENUS };
157
158 void X(codelet_r2cf_15) (planner *p) {
159 X(kr2c_register) (p, r2cf_15, &desc);
160 }
161
162 #else /* HAVE_FMA */
163
164 /* Generated by: ../../../genfft/gen_r2cf.native -compact -variables 4 -pipeline-latency 4 -n 15 -name r2cf_15 -include r2cf.h */
165
166 /*
167 * This function contains 64 FP additions, 25 FP multiplications,
168 * (or, 50 additions, 11 multiplications, 14 fused multiply/add),
169 * 47 stack variables, 10 constants, and 30 memory accesses
170 */
171 #include "r2cf.h"
172
173 static void r2cf_15(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs)
174 {
175 DK(KP484122918, +0.484122918275927110647408174972799951354115213);
176 DK(KP216506350, +0.216506350946109661690930792688234045867850657);
177 DK(KP951056516, +0.951056516295153572116439333379382143405698634);
178 DK(KP587785252, +0.587785252292473129168705954639072768597652438);
179 DK(KP250000000, +0.250000000000000000000000000000000000000000000);
180 DK(KP559016994, +0.559016994374947424102293417182819058860154590);
181 DK(KP509036960, +0.509036960455127183450980863393907648510733164);
182 DK(KP823639103, +0.823639103546331925877420039278190003029660514);
183 DK(KP866025403, +0.866025403784438646763723170752936183471402627);
184 DK(KP500000000, +0.500000000000000000000000000000000000000000000);
185 {
186 INT i;
187 for (i = v; i > 0; i = i - 1, R0 = R0 + ivs, R1 = R1 + ivs, Cr = Cr + ovs, Ci = Ci + ovs, MAKE_VOLATILE_STRIDE(60, rs), MAKE_VOLATILE_STRIDE(60, csr), MAKE_VOLATILE_STRIDE(60, csi)) {
188 E Ti, TR, TL, TD, TE, T7, Te, Tf, TV, TW, TX, Tv, Ty, TH, To;
189 E Tr, TG, TS, TT, TU;
190 {
191 E TJ, Tg, Th, TK;
192 TJ = R0[0];
193 Tg = R0[WS(rs, 5)];
194 Th = R1[WS(rs, 2)];
195 TK = Th + Tg;
196 Ti = Tg - Th;
197 TR = TJ + TK;
198 TL = FNMS(KP500000000, TK, TJ);
199 }
200 {
201 E Tm, Tt, Tw, Tp, T3, Tx, Ta, Tn, Td, Tq, T6, Tu;
202 Tm = R1[WS(rs, 1)];
203 Tt = R0[WS(rs, 3)];
204 Tw = R1[WS(rs, 4)];
205 Tp = R0[WS(rs, 6)];
206 {
207 E T1, T2, T8, T9;
208 T1 = R0[WS(rs, 7)];
209 T2 = R0[WS(rs, 2)];
210 T3 = T1 - T2;
211 Tx = T1 + T2;
212 T8 = R1[WS(rs, 6)];
213 T9 = R0[WS(rs, 4)];
214 Ta = T8 - T9;
215 Tn = T9 + T8;
216 }
217 {
218 E Tb, Tc, T4, T5;
219 Tb = R1[WS(rs, 3)];
220 Tc = R0[WS(rs, 1)];
221 Td = Tb - Tc;
222 Tq = Tc + Tb;
223 T4 = R1[0];
224 T5 = R1[WS(rs, 5)];
225 T6 = T4 - T5;
226 Tu = T5 + T4;
227 }
228 TD = Ta - Td;
229 TE = T6 + T3;
230 T7 = T3 - T6;
231 Te = Ta + Td;
232 Tf = T7 - Te;
233 TV = Tt + Tu;
234 TW = Tw + Tx;
235 TX = TV + TW;
236 Tv = FNMS(KP500000000, Tu, Tt);
237 Ty = FNMS(KP500000000, Tx, Tw);
238 TH = Tv + Ty;
239 To = FNMS(KP500000000, Tn, Tm);
240 Tr = FNMS(KP500000000, Tq, Tp);
241 TG = To + Tr;
242 TS = Tm + Tn;
243 TT = Tp + Tq;
244 TU = TS + TT;
245 }
246 Ci[WS(csi, 5)] = KP866025403 * (Tf - Ti);
247 {
248 E TF, TP, TI, TM, TN, TQ, TO;
249 TF = FMA(KP823639103, TD, KP509036960 * TE);
250 TP = FNMS(KP509036960, TD, KP823639103 * TE);
251 TI = KP559016994 * (TG - TH);
252 TM = TG + TH;
253 TN = FNMS(KP250000000, TM, TL);
254 Cr[WS(csr, 5)] = TL + TM;
255 TQ = TN - TI;
256 Cr[WS(csr, 2)] = TP + TQ;
257 Cr[WS(csr, 7)] = TQ - TP;
258 TO = TI + TN;
259 Cr[WS(csr, 1)] = TF + TO;
260 Cr[WS(csr, 4)] = TO - TF;
261 }
262 {
263 E T11, T12, T10, TY, TZ;
264 T11 = TS - TT;
265 T12 = TW - TV;
266 Ci[WS(csi, 3)] = FMA(KP587785252, T11, KP951056516 * T12);
267 Ci[WS(csi, 6)] = FNMS(KP951056516, T11, KP587785252 * T12);
268 T10 = KP559016994 * (TU - TX);
269 TY = TU + TX;
270 TZ = FNMS(KP250000000, TY, TR);
271 Cr[WS(csr, 3)] = TZ - T10;
272 Cr[0] = TR + TY;
273 Cr[WS(csr, 6)] = T10 + TZ;
274 {
275 E Tl, TB, TA, TC;
276 {
277 E Tj, Tk, Ts, Tz;
278 Tj = FMA(KP866025403, Ti, KP216506350 * Tf);
279 Tk = KP484122918 * (Te + T7);
280 Tl = Tj + Tk;
281 TB = Tk - Tj;
282 Ts = To - Tr;
283 Tz = Tv - Ty;
284 TA = FMA(KP951056516, Ts, KP587785252 * Tz);
285 TC = FNMS(KP587785252, Ts, KP951056516 * Tz);
286 }
287 Ci[WS(csi, 1)] = Tl - TA;
288 Ci[WS(csi, 7)] = TC - TB;
289 Ci[WS(csi, 4)] = Tl + TA;
290 Ci[WS(csi, 2)] = TB + TC;
291 }
292 }
293 }
294 }
295 }
296
297 static const kr2c_desc desc = { 15, "r2cf_15", {50, 11, 14, 0}, &GENUS };
298
299 void X(codelet_r2cf_15) (planner *p) {
300 X(kr2c_register) (p, r2cf_15, &desc);
301 }
302
303 #endif /* HAVE_FMA */