Mercurial > hg > js-dsp-test
comparison fft/fftw/fftw-3.3.4/rdft/scalar/r2cf/r2cf_14.c @ 19:26056e866c29
Add FFTW to comparison table
author | Chris Cannam |
---|---|
date | Tue, 06 Oct 2015 13:08:39 +0100 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
18:8db794ca3e0b | 19:26056e866c29 |
---|---|
1 /* | |
2 * Copyright (c) 2003, 2007-14 Matteo Frigo | |
3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology | |
4 * | |
5 * This program is free software; you can redistribute it and/or modify | |
6 * it under the terms of the GNU General Public License as published by | |
7 * the Free Software Foundation; either version 2 of the License, or | |
8 * (at your option) any later version. | |
9 * | |
10 * This program is distributed in the hope that it will be useful, | |
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
13 * GNU General Public License for more details. | |
14 * | |
15 * You should have received a copy of the GNU General Public License | |
16 * along with this program; if not, write to the Free Software | |
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA | |
18 * | |
19 */ | |
20 | |
21 /* This file was automatically generated --- DO NOT EDIT */ | |
22 /* Generated on Tue Mar 4 13:49:07 EST 2014 */ | |
23 | |
24 #include "codelet-rdft.h" | |
25 | |
26 #ifdef HAVE_FMA | |
27 | |
28 /* Generated by: ../../../genfft/gen_r2cf.native -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -n 14 -name r2cf_14 -include r2cf.h */ | |
29 | |
30 /* | |
31 * This function contains 62 FP additions, 36 FP multiplications, | |
32 * (or, 32 additions, 6 multiplications, 30 fused multiply/add), | |
33 * 45 stack variables, 6 constants, and 28 memory accesses | |
34 */ | |
35 #include "r2cf.h" | |
36 | |
37 static void r2cf_14(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs) | |
38 { | |
39 DK(KP900968867, +0.900968867902419126236102319507445051165919162); | |
40 DK(KP692021471, +0.692021471630095869627814897002069140197260599); | |
41 DK(KP801937735, +0.801937735804838252472204639014890102331838324); | |
42 DK(KP974927912, +0.974927912181823607018131682993931217232785801); | |
43 DK(KP356895867, +0.356895867892209443894399510021300583399127187); | |
44 DK(KP554958132, +0.554958132087371191422194871006410481067288862); | |
45 { | |
46 INT i; | |
47 for (i = v; i > 0; i = i - 1, R0 = R0 + ivs, R1 = R1 + ivs, Cr = Cr + ovs, Ci = Ci + ovs, MAKE_VOLATILE_STRIDE(56, rs), MAKE_VOLATILE_STRIDE(56, csr), MAKE_VOLATILE_STRIDE(56, csi)) { | |
48 E TN, T3, TG, TQ, Tx, To, TH, Td, TD, TO, Tw, Ta, TL, Ty, TT; | |
49 E TI, Tg, Tr, Te, Tf, TP, TJ; | |
50 { | |
51 E Tl, TE, Tk, Tm; | |
52 { | |
53 E T1, T2, Ti, Tj; | |
54 T1 = R0[0]; | |
55 T2 = R1[WS(rs, 3)]; | |
56 Ti = R0[WS(rs, 3)]; | |
57 Tj = R1[WS(rs, 6)]; | |
58 Tl = R0[WS(rs, 4)]; | |
59 TN = T1 + T2; | |
60 T3 = T1 - T2; | |
61 TE = Ti + Tj; | |
62 Tk = Ti - Tj; | |
63 Tm = R1[0]; | |
64 } | |
65 { | |
66 E T7, TC, T6, T8; | |
67 { | |
68 E T4, T5, TF, Tn; | |
69 T4 = R0[WS(rs, 1)]; | |
70 T5 = R1[WS(rs, 4)]; | |
71 T7 = R0[WS(rs, 6)]; | |
72 TF = Tl + Tm; | |
73 Tn = Tl - Tm; | |
74 TC = T4 + T5; | |
75 T6 = T4 - T5; | |
76 TG = TE - TF; | |
77 TQ = TE + TF; | |
78 Tx = Tn - Tk; | |
79 To = Tk + Tn; | |
80 T8 = R1[WS(rs, 2)]; | |
81 } | |
82 { | |
83 E Tb, Tc, TB, T9; | |
84 Tb = R0[WS(rs, 2)]; | |
85 Tc = R1[WS(rs, 5)]; | |
86 Te = R0[WS(rs, 5)]; | |
87 TB = T7 + T8; | |
88 T9 = T7 - T8; | |
89 TH = Tb + Tc; | |
90 Td = Tb - Tc; | |
91 TD = TB - TC; | |
92 TO = TC + TB; | |
93 Tw = T6 - T9; | |
94 Ta = T6 + T9; | |
95 Tf = R1[WS(rs, 1)]; | |
96 } | |
97 } | |
98 } | |
99 TL = FNMS(KP554958132, TG, TD); | |
100 Ty = FNMS(KP554958132, Tx, Tw); | |
101 TT = FNMS(KP356895867, TO, TQ); | |
102 TI = Te + Tf; | |
103 Tg = Te - Tf; | |
104 Tr = FNMS(KP356895867, Ta, To); | |
105 TP = TH + TI; | |
106 TJ = TH - TI; | |
107 { | |
108 E Th, Tv, TK, TM; | |
109 Th = Td + Tg; | |
110 Tv = Tg - Td; | |
111 TK = FMA(KP554958132, TJ, TG); | |
112 TM = FMA(KP554958132, TD, TJ); | |
113 Ci[WS(csi, 6)] = KP974927912 * (FNMS(KP801937735, TL, TJ)); | |
114 { | |
115 E TR, TV, TU, Tz; | |
116 TR = FNMS(KP356895867, TQ, TP); | |
117 TV = FNMS(KP356895867, TP, TO); | |
118 TU = FNMS(KP692021471, TT, TP); | |
119 Cr[0] = TN + TO + TP + TQ; | |
120 Tz = FMA(KP554958132, Tv, Tx); | |
121 Ci[WS(csi, 1)] = KP974927912 * (FNMS(KP801937735, Ty, Tv)); | |
122 { | |
123 E TA, Ts, Tt, Tp; | |
124 TA = FMA(KP554958132, Tw, Tv); | |
125 Ts = FNMS(KP692021471, Tr, Th); | |
126 Tt = FNMS(KP356895867, Th, Ta); | |
127 Tp = FNMS(KP356895867, To, Th); | |
128 Cr[WS(csr, 7)] = T3 + Ta + Th + To; | |
129 Ci[WS(csi, 2)] = KP974927912 * (FMA(KP801937735, TK, TD)); | |
130 Ci[WS(csi, 4)] = KP974927912 * (FNMS(KP801937735, TM, TG)); | |
131 { | |
132 E TS, TW, Tu, Tq; | |
133 TS = FNMS(KP692021471, TR, TO); | |
134 TW = FNMS(KP692021471, TV, TQ); | |
135 Cr[WS(csr, 2)] = FNMS(KP900968867, TU, TN); | |
136 Ci[WS(csi, 5)] = KP974927912 * (FMA(KP801937735, Tz, Tw)); | |
137 Ci[WS(csi, 3)] = KP974927912 * (FNMS(KP801937735, TA, Tx)); | |
138 Cr[WS(csr, 5)] = FNMS(KP900968867, Ts, T3); | |
139 Tu = FNMS(KP692021471, Tt, To); | |
140 Tq = FNMS(KP692021471, Tp, Ta); | |
141 Cr[WS(csr, 4)] = FNMS(KP900968867, TS, TN); | |
142 Cr[WS(csr, 6)] = FNMS(KP900968867, TW, TN); | |
143 Cr[WS(csr, 1)] = FNMS(KP900968867, Tu, T3); | |
144 Cr[WS(csr, 3)] = FNMS(KP900968867, Tq, T3); | |
145 } | |
146 } | |
147 } | |
148 } | |
149 } | |
150 } | |
151 } | |
152 | |
153 static const kr2c_desc desc = { 14, "r2cf_14", {32, 6, 30, 0}, &GENUS }; | |
154 | |
155 void X(codelet_r2cf_14) (planner *p) { | |
156 X(kr2c_register) (p, r2cf_14, &desc); | |
157 } | |
158 | |
159 #else /* HAVE_FMA */ | |
160 | |
161 /* Generated by: ../../../genfft/gen_r2cf.native -compact -variables 4 -pipeline-latency 4 -n 14 -name r2cf_14 -include r2cf.h */ | |
162 | |
163 /* | |
164 * This function contains 62 FP additions, 36 FP multiplications, | |
165 * (or, 38 additions, 12 multiplications, 24 fused multiply/add), | |
166 * 29 stack variables, 6 constants, and 28 memory accesses | |
167 */ | |
168 #include "r2cf.h" | |
169 | |
170 static void r2cf_14(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs) | |
171 { | |
172 DK(KP900968867, +0.900968867902419126236102319507445051165919162); | |
173 DK(KP222520933, +0.222520933956314404288902564496794759466355569); | |
174 DK(KP623489801, +0.623489801858733530525004884004239810632274731); | |
175 DK(KP433883739, +0.433883739117558120475768332848358754609990728); | |
176 DK(KP974927912, +0.974927912181823607018131682993931217232785801); | |
177 DK(KP781831482, +0.781831482468029808708444526674057750232334519); | |
178 { | |
179 INT i; | |
180 for (i = v; i > 0; i = i - 1, R0 = R0 + ivs, R1 = R1 + ivs, Cr = Cr + ovs, Ci = Ci + ovs, MAKE_VOLATILE_STRIDE(56, rs), MAKE_VOLATILE_STRIDE(56, csr), MAKE_VOLATILE_STRIDE(56, csi)) { | |
181 E T3, TB, T6, Tv, Tn, Ts, Tk, Tt, Td, Ty, T9, Tw, Tg, Tz, T1; | |
182 E T2; | |
183 T1 = R0[0]; | |
184 T2 = R1[WS(rs, 3)]; | |
185 T3 = T1 - T2; | |
186 TB = T1 + T2; | |
187 { | |
188 E T4, T5, Tl, Tm; | |
189 T4 = R0[WS(rs, 2)]; | |
190 T5 = R1[WS(rs, 5)]; | |
191 T6 = T4 - T5; | |
192 Tv = T4 + T5; | |
193 Tl = R0[WS(rs, 6)]; | |
194 Tm = R1[WS(rs, 2)]; | |
195 Tn = Tl - Tm; | |
196 Ts = Tl + Tm; | |
197 } | |
198 { | |
199 E Ti, Tj, Tb, Tc; | |
200 Ti = R0[WS(rs, 1)]; | |
201 Tj = R1[WS(rs, 4)]; | |
202 Tk = Ti - Tj; | |
203 Tt = Ti + Tj; | |
204 Tb = R0[WS(rs, 3)]; | |
205 Tc = R1[WS(rs, 6)]; | |
206 Td = Tb - Tc; | |
207 Ty = Tb + Tc; | |
208 } | |
209 { | |
210 E T7, T8, Te, Tf; | |
211 T7 = R0[WS(rs, 5)]; | |
212 T8 = R1[WS(rs, 1)]; | |
213 T9 = T7 - T8; | |
214 Tw = T7 + T8; | |
215 Te = R0[WS(rs, 4)]; | |
216 Tf = R1[0]; | |
217 Tg = Te - Tf; | |
218 Tz = Te + Tf; | |
219 } | |
220 { | |
221 E Tp, Tr, Tq, Ta, To, Th; | |
222 Tp = Tn - Tk; | |
223 Tr = Tg - Td; | |
224 Tq = T9 - T6; | |
225 Ci[WS(csi, 1)] = FMA(KP781831482, Tp, KP974927912 * Tq) + (KP433883739 * Tr); | |
226 Ci[WS(csi, 5)] = FMA(KP433883739, Tq, KP781831482 * Tr) - (KP974927912 * Tp); | |
227 Ci[WS(csi, 3)] = FMA(KP433883739, Tp, KP974927912 * Tr) - (KP781831482 * Tq); | |
228 Ta = T6 + T9; | |
229 To = Tk + Tn; | |
230 Th = Td + Tg; | |
231 Cr[WS(csr, 3)] = FMA(KP623489801, Ta, T3) + FNMA(KP222520933, Th, KP900968867 * To); | |
232 Cr[WS(csr, 7)] = T3 + To + Ta + Th; | |
233 Cr[WS(csr, 1)] = FMA(KP623489801, To, T3) + FNMA(KP900968867, Th, KP222520933 * Ta); | |
234 Cr[WS(csr, 5)] = FMA(KP623489801, Th, T3) + FNMA(KP900968867, Ta, KP222520933 * To); | |
235 } | |
236 { | |
237 E Tu, TA, Tx, TC, TE, TD; | |
238 Tu = Ts - Tt; | |
239 TA = Ty - Tz; | |
240 Tx = Tv - Tw; | |
241 Ci[WS(csi, 2)] = FMA(KP974927912, Tu, KP433883739 * Tx) + (KP781831482 * TA); | |
242 Ci[WS(csi, 6)] = FMA(KP974927912, Tx, KP433883739 * TA) - (KP781831482 * Tu); | |
243 Ci[WS(csi, 4)] = FNMS(KP781831482, Tx, KP974927912 * TA) - (KP433883739 * Tu); | |
244 TC = Tt + Ts; | |
245 TE = Tv + Tw; | |
246 TD = Ty + Tz; | |
247 Cr[WS(csr, 6)] = FMA(KP623489801, TC, TB) + FNMA(KP900968867, TD, KP222520933 * TE); | |
248 Cr[WS(csr, 2)] = FMA(KP623489801, TD, TB) + FNMA(KP900968867, TE, KP222520933 * TC); | |
249 Cr[WS(csr, 4)] = FMA(KP623489801, TE, TB) + FNMA(KP222520933, TD, KP900968867 * TC); | |
250 Cr[0] = TB + TC + TE + TD; | |
251 } | |
252 } | |
253 } | |
254 } | |
255 | |
256 static const kr2c_desc desc = { 14, "r2cf_14", {38, 12, 24, 0}, &GENUS }; | |
257 | |
258 void X(codelet_r2cf_14) (planner *p) { | |
259 X(kr2c_register) (p, r2cf_14, &desc); | |
260 } | |
261 | |
262 #endif /* HAVE_FMA */ |