comparison fft/fftw/fftw-3.3.4/rdft/scalar/r2cf/r2cf_14.c @ 19:26056e866c29

Add FFTW to comparison table
author Chris Cannam
date Tue, 06 Oct 2015 13:08:39 +0100
parents
children
comparison
equal deleted inserted replaced
18:8db794ca3e0b 19:26056e866c29
1 /*
2 * Copyright (c) 2003, 2007-14 Matteo Frigo
3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
18 *
19 */
20
21 /* This file was automatically generated --- DO NOT EDIT */
22 /* Generated on Tue Mar 4 13:49:07 EST 2014 */
23
24 #include "codelet-rdft.h"
25
26 #ifdef HAVE_FMA
27
28 /* Generated by: ../../../genfft/gen_r2cf.native -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -n 14 -name r2cf_14 -include r2cf.h */
29
30 /*
31 * This function contains 62 FP additions, 36 FP multiplications,
32 * (or, 32 additions, 6 multiplications, 30 fused multiply/add),
33 * 45 stack variables, 6 constants, and 28 memory accesses
34 */
35 #include "r2cf.h"
36
37 static void r2cf_14(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs)
38 {
39 DK(KP900968867, +0.900968867902419126236102319507445051165919162);
40 DK(KP692021471, +0.692021471630095869627814897002069140197260599);
41 DK(KP801937735, +0.801937735804838252472204639014890102331838324);
42 DK(KP974927912, +0.974927912181823607018131682993931217232785801);
43 DK(KP356895867, +0.356895867892209443894399510021300583399127187);
44 DK(KP554958132, +0.554958132087371191422194871006410481067288862);
45 {
46 INT i;
47 for (i = v; i > 0; i = i - 1, R0 = R0 + ivs, R1 = R1 + ivs, Cr = Cr + ovs, Ci = Ci + ovs, MAKE_VOLATILE_STRIDE(56, rs), MAKE_VOLATILE_STRIDE(56, csr), MAKE_VOLATILE_STRIDE(56, csi)) {
48 E TN, T3, TG, TQ, Tx, To, TH, Td, TD, TO, Tw, Ta, TL, Ty, TT;
49 E TI, Tg, Tr, Te, Tf, TP, TJ;
50 {
51 E Tl, TE, Tk, Tm;
52 {
53 E T1, T2, Ti, Tj;
54 T1 = R0[0];
55 T2 = R1[WS(rs, 3)];
56 Ti = R0[WS(rs, 3)];
57 Tj = R1[WS(rs, 6)];
58 Tl = R0[WS(rs, 4)];
59 TN = T1 + T2;
60 T3 = T1 - T2;
61 TE = Ti + Tj;
62 Tk = Ti - Tj;
63 Tm = R1[0];
64 }
65 {
66 E T7, TC, T6, T8;
67 {
68 E T4, T5, TF, Tn;
69 T4 = R0[WS(rs, 1)];
70 T5 = R1[WS(rs, 4)];
71 T7 = R0[WS(rs, 6)];
72 TF = Tl + Tm;
73 Tn = Tl - Tm;
74 TC = T4 + T5;
75 T6 = T4 - T5;
76 TG = TE - TF;
77 TQ = TE + TF;
78 Tx = Tn - Tk;
79 To = Tk + Tn;
80 T8 = R1[WS(rs, 2)];
81 }
82 {
83 E Tb, Tc, TB, T9;
84 Tb = R0[WS(rs, 2)];
85 Tc = R1[WS(rs, 5)];
86 Te = R0[WS(rs, 5)];
87 TB = T7 + T8;
88 T9 = T7 - T8;
89 TH = Tb + Tc;
90 Td = Tb - Tc;
91 TD = TB - TC;
92 TO = TC + TB;
93 Tw = T6 - T9;
94 Ta = T6 + T9;
95 Tf = R1[WS(rs, 1)];
96 }
97 }
98 }
99 TL = FNMS(KP554958132, TG, TD);
100 Ty = FNMS(KP554958132, Tx, Tw);
101 TT = FNMS(KP356895867, TO, TQ);
102 TI = Te + Tf;
103 Tg = Te - Tf;
104 Tr = FNMS(KP356895867, Ta, To);
105 TP = TH + TI;
106 TJ = TH - TI;
107 {
108 E Th, Tv, TK, TM;
109 Th = Td + Tg;
110 Tv = Tg - Td;
111 TK = FMA(KP554958132, TJ, TG);
112 TM = FMA(KP554958132, TD, TJ);
113 Ci[WS(csi, 6)] = KP974927912 * (FNMS(KP801937735, TL, TJ));
114 {
115 E TR, TV, TU, Tz;
116 TR = FNMS(KP356895867, TQ, TP);
117 TV = FNMS(KP356895867, TP, TO);
118 TU = FNMS(KP692021471, TT, TP);
119 Cr[0] = TN + TO + TP + TQ;
120 Tz = FMA(KP554958132, Tv, Tx);
121 Ci[WS(csi, 1)] = KP974927912 * (FNMS(KP801937735, Ty, Tv));
122 {
123 E TA, Ts, Tt, Tp;
124 TA = FMA(KP554958132, Tw, Tv);
125 Ts = FNMS(KP692021471, Tr, Th);
126 Tt = FNMS(KP356895867, Th, Ta);
127 Tp = FNMS(KP356895867, To, Th);
128 Cr[WS(csr, 7)] = T3 + Ta + Th + To;
129 Ci[WS(csi, 2)] = KP974927912 * (FMA(KP801937735, TK, TD));
130 Ci[WS(csi, 4)] = KP974927912 * (FNMS(KP801937735, TM, TG));
131 {
132 E TS, TW, Tu, Tq;
133 TS = FNMS(KP692021471, TR, TO);
134 TW = FNMS(KP692021471, TV, TQ);
135 Cr[WS(csr, 2)] = FNMS(KP900968867, TU, TN);
136 Ci[WS(csi, 5)] = KP974927912 * (FMA(KP801937735, Tz, Tw));
137 Ci[WS(csi, 3)] = KP974927912 * (FNMS(KP801937735, TA, Tx));
138 Cr[WS(csr, 5)] = FNMS(KP900968867, Ts, T3);
139 Tu = FNMS(KP692021471, Tt, To);
140 Tq = FNMS(KP692021471, Tp, Ta);
141 Cr[WS(csr, 4)] = FNMS(KP900968867, TS, TN);
142 Cr[WS(csr, 6)] = FNMS(KP900968867, TW, TN);
143 Cr[WS(csr, 1)] = FNMS(KP900968867, Tu, T3);
144 Cr[WS(csr, 3)] = FNMS(KP900968867, Tq, T3);
145 }
146 }
147 }
148 }
149 }
150 }
151 }
152
153 static const kr2c_desc desc = { 14, "r2cf_14", {32, 6, 30, 0}, &GENUS };
154
155 void X(codelet_r2cf_14) (planner *p) {
156 X(kr2c_register) (p, r2cf_14, &desc);
157 }
158
159 #else /* HAVE_FMA */
160
161 /* Generated by: ../../../genfft/gen_r2cf.native -compact -variables 4 -pipeline-latency 4 -n 14 -name r2cf_14 -include r2cf.h */
162
163 /*
164 * This function contains 62 FP additions, 36 FP multiplications,
165 * (or, 38 additions, 12 multiplications, 24 fused multiply/add),
166 * 29 stack variables, 6 constants, and 28 memory accesses
167 */
168 #include "r2cf.h"
169
170 static void r2cf_14(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs)
171 {
172 DK(KP900968867, +0.900968867902419126236102319507445051165919162);
173 DK(KP222520933, +0.222520933956314404288902564496794759466355569);
174 DK(KP623489801, +0.623489801858733530525004884004239810632274731);
175 DK(KP433883739, +0.433883739117558120475768332848358754609990728);
176 DK(KP974927912, +0.974927912181823607018131682993931217232785801);
177 DK(KP781831482, +0.781831482468029808708444526674057750232334519);
178 {
179 INT i;
180 for (i = v; i > 0; i = i - 1, R0 = R0 + ivs, R1 = R1 + ivs, Cr = Cr + ovs, Ci = Ci + ovs, MAKE_VOLATILE_STRIDE(56, rs), MAKE_VOLATILE_STRIDE(56, csr), MAKE_VOLATILE_STRIDE(56, csi)) {
181 E T3, TB, T6, Tv, Tn, Ts, Tk, Tt, Td, Ty, T9, Tw, Tg, Tz, T1;
182 E T2;
183 T1 = R0[0];
184 T2 = R1[WS(rs, 3)];
185 T3 = T1 - T2;
186 TB = T1 + T2;
187 {
188 E T4, T5, Tl, Tm;
189 T4 = R0[WS(rs, 2)];
190 T5 = R1[WS(rs, 5)];
191 T6 = T4 - T5;
192 Tv = T4 + T5;
193 Tl = R0[WS(rs, 6)];
194 Tm = R1[WS(rs, 2)];
195 Tn = Tl - Tm;
196 Ts = Tl + Tm;
197 }
198 {
199 E Ti, Tj, Tb, Tc;
200 Ti = R0[WS(rs, 1)];
201 Tj = R1[WS(rs, 4)];
202 Tk = Ti - Tj;
203 Tt = Ti + Tj;
204 Tb = R0[WS(rs, 3)];
205 Tc = R1[WS(rs, 6)];
206 Td = Tb - Tc;
207 Ty = Tb + Tc;
208 }
209 {
210 E T7, T8, Te, Tf;
211 T7 = R0[WS(rs, 5)];
212 T8 = R1[WS(rs, 1)];
213 T9 = T7 - T8;
214 Tw = T7 + T8;
215 Te = R0[WS(rs, 4)];
216 Tf = R1[0];
217 Tg = Te - Tf;
218 Tz = Te + Tf;
219 }
220 {
221 E Tp, Tr, Tq, Ta, To, Th;
222 Tp = Tn - Tk;
223 Tr = Tg - Td;
224 Tq = T9 - T6;
225 Ci[WS(csi, 1)] = FMA(KP781831482, Tp, KP974927912 * Tq) + (KP433883739 * Tr);
226 Ci[WS(csi, 5)] = FMA(KP433883739, Tq, KP781831482 * Tr) - (KP974927912 * Tp);
227 Ci[WS(csi, 3)] = FMA(KP433883739, Tp, KP974927912 * Tr) - (KP781831482 * Tq);
228 Ta = T6 + T9;
229 To = Tk + Tn;
230 Th = Td + Tg;
231 Cr[WS(csr, 3)] = FMA(KP623489801, Ta, T3) + FNMA(KP222520933, Th, KP900968867 * To);
232 Cr[WS(csr, 7)] = T3 + To + Ta + Th;
233 Cr[WS(csr, 1)] = FMA(KP623489801, To, T3) + FNMA(KP900968867, Th, KP222520933 * Ta);
234 Cr[WS(csr, 5)] = FMA(KP623489801, Th, T3) + FNMA(KP900968867, Ta, KP222520933 * To);
235 }
236 {
237 E Tu, TA, Tx, TC, TE, TD;
238 Tu = Ts - Tt;
239 TA = Ty - Tz;
240 Tx = Tv - Tw;
241 Ci[WS(csi, 2)] = FMA(KP974927912, Tu, KP433883739 * Tx) + (KP781831482 * TA);
242 Ci[WS(csi, 6)] = FMA(KP974927912, Tx, KP433883739 * TA) - (KP781831482 * Tu);
243 Ci[WS(csi, 4)] = FNMS(KP781831482, Tx, KP974927912 * TA) - (KP433883739 * Tu);
244 TC = Tt + Ts;
245 TE = Tv + Tw;
246 TD = Ty + Tz;
247 Cr[WS(csr, 6)] = FMA(KP623489801, TC, TB) + FNMA(KP900968867, TD, KP222520933 * TE);
248 Cr[WS(csr, 2)] = FMA(KP623489801, TD, TB) + FNMA(KP900968867, TE, KP222520933 * TC);
249 Cr[WS(csr, 4)] = FMA(KP623489801, TE, TB) + FNMA(KP222520933, TD, KP900968867 * TC);
250 Cr[0] = TB + TC + TE + TD;
251 }
252 }
253 }
254 }
255
256 static const kr2c_desc desc = { 14, "r2cf_14", {38, 12, 24, 0}, &GENUS };
257
258 void X(codelet_r2cf_14) (planner *p) {
259 X(kr2c_register) (p, r2cf_14, &desc);
260 }
261
262 #endif /* HAVE_FMA */