Mercurial > hg > js-dsp-test
comparison fft/fftw/fftw-3.3.4/rdft/scalar/r2cf/r2cf_13.c @ 19:26056e866c29
Add FFTW to comparison table
author | Chris Cannam |
---|---|
date | Tue, 06 Oct 2015 13:08:39 +0100 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
18:8db794ca3e0b | 19:26056e866c29 |
---|---|
1 /* | |
2 * Copyright (c) 2003, 2007-14 Matteo Frigo | |
3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology | |
4 * | |
5 * This program is free software; you can redistribute it and/or modify | |
6 * it under the terms of the GNU General Public License as published by | |
7 * the Free Software Foundation; either version 2 of the License, or | |
8 * (at your option) any later version. | |
9 * | |
10 * This program is distributed in the hope that it will be useful, | |
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
13 * GNU General Public License for more details. | |
14 * | |
15 * You should have received a copy of the GNU General Public License | |
16 * along with this program; if not, write to the Free Software | |
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA | |
18 * | |
19 */ | |
20 | |
21 /* This file was automatically generated --- DO NOT EDIT */ | |
22 /* Generated on Tue Mar 4 13:49:07 EST 2014 */ | |
23 | |
24 #include "codelet-rdft.h" | |
25 | |
26 #ifdef HAVE_FMA | |
27 | |
28 /* Generated by: ../../../genfft/gen_r2cf.native -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -n 13 -name r2cf_13 -include r2cf.h */ | |
29 | |
30 /* | |
31 * This function contains 76 FP additions, 51 FP multiplications, | |
32 * (or, 31 additions, 6 multiplications, 45 fused multiply/add), | |
33 * 68 stack variables, 23 constants, and 26 memory accesses | |
34 */ | |
35 #include "r2cf.h" | |
36 | |
37 static void r2cf_13(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs) | |
38 { | |
39 DK(KP516520780, +0.516520780623489722840901288569017135705033622); | |
40 DK(KP300462606, +0.300462606288665774426601772289207995520941381); | |
41 DK(KP581704778, +0.581704778510515730456870384989698884939833902); | |
42 DK(KP859542535, +0.859542535098774820163672132761689612766401925); | |
43 DK(KP769338817, +0.769338817572980603471413688209101117038278899); | |
44 DK(KP686558370, +0.686558370781754340655719594850823015421401653); | |
45 DK(KP514918778, +0.514918778086315755491789696138117261566051239); | |
46 DK(KP251768516, +0.251768516431883313623436926934233488546674281); | |
47 DK(KP503537032, +0.503537032863766627246873853868466977093348562); | |
48 DK(KP904176221, +0.904176221990848204433795481776887926501523162); | |
49 DK(KP575140729, +0.575140729474003121368385547455453388461001608); | |
50 DK(KP957805992, +0.957805992594665126462521754605754580515587217); | |
51 DK(KP600477271, +0.600477271932665282925769253334763009352012849); | |
52 DK(KP522026385, +0.522026385161275033714027226654165028300441940); | |
53 DK(KP301479260, +0.301479260047709873958013540496673347309208464); | |
54 DK(KP226109445, +0.226109445035782405468510155372505010481906348); | |
55 DK(KP853480001, +0.853480001859823990758994934970528322872359049); | |
56 DK(KP083333333, +0.083333333333333333333333333333333333333333333); | |
57 DK(KP612264650, +0.612264650376756543746494474777125408779395514); | |
58 DK(KP038632954, +0.038632954644348171955506895830342264440241080); | |
59 DK(KP302775637, +0.302775637731994646559610633735247973125648287); | |
60 DK(KP866025403, +0.866025403784438646763723170752936183471402627); | |
61 DK(KP500000000, +0.500000000000000000000000000000000000000000000); | |
62 { | |
63 INT i; | |
64 for (i = v; i > 0; i = i - 1, R0 = R0 + ivs, R1 = R1 + ivs, Cr = Cr + ovs, Ci = Ci + ovs, MAKE_VOLATILE_STRIDE(52, rs), MAKE_VOLATILE_STRIDE(52, csr), MAKE_VOLATILE_STRIDE(52, csi)) { | |
65 E T15, T1a, T11, T17, T14, T1b; | |
66 { | |
67 E TN, TD, TV, TA, Tb, TZ, T12, TS, Tx, Tu, Ti, TU; | |
68 TN = R0[0]; | |
69 { | |
70 E T3, TP, Th, TB, Tp, Te, Tm, TC, Tr, T6, T9, Ts; | |
71 { | |
72 E Tn, Tf, Tg, T1, T2; | |
73 T1 = R0[WS(rs, 4)]; | |
74 T2 = R1[WS(rs, 2)]; | |
75 Tn = R0[WS(rs, 6)]; | |
76 Tf = R0[WS(rs, 5)]; | |
77 Tg = R0[WS(rs, 2)]; | |
78 T3 = T1 - T2; | |
79 TP = T1 + T2; | |
80 { | |
81 E Tk, To, Tc, Td; | |
82 Tk = R1[0]; | |
83 Th = Tf - Tg; | |
84 To = Tf + Tg; | |
85 Tc = R1[WS(rs, 4)]; | |
86 Td = R1[WS(rs, 1)]; | |
87 { | |
88 E T4, Tl, T5, T7, T8; | |
89 T4 = R1[WS(rs, 5)]; | |
90 TB = Tn + To; | |
91 Tp = FMS(KP500000000, To, Tn); | |
92 Tl = Td + Tc; | |
93 Te = Tc - Td; | |
94 T5 = R0[WS(rs, 3)]; | |
95 T7 = R1[WS(rs, 3)]; | |
96 T8 = R0[WS(rs, 1)]; | |
97 Tm = FNMS(KP500000000, Tl, Tk); | |
98 TC = Tk + Tl; | |
99 Tr = T4 + T5; | |
100 T6 = T4 - T5; | |
101 T9 = T7 - T8; | |
102 Ts = T7 + T8; | |
103 } | |
104 } | |
105 } | |
106 { | |
107 E TO, Ta, Tt, TQ; | |
108 TD = TB - TC; | |
109 TO = TC + TB; | |
110 Ta = T6 + T9; | |
111 TV = T6 - T9; | |
112 Tt = Tr - Ts; | |
113 TQ = Tr + Ts; | |
114 { | |
115 E TX, Tq, TR, TY; | |
116 TX = Tm - Tp; | |
117 Tq = Tm + Tp; | |
118 TA = T3 + Ta; | |
119 Tb = FNMS(KP500000000, Ta, T3); | |
120 TR = TP + TQ; | |
121 TY = FNMS(KP500000000, TQ, TP); | |
122 TZ = TX + TY; | |
123 T12 = TX - TY; | |
124 T15 = TO - TR; | |
125 TS = TO + TR; | |
126 Tx = FNMS(KP866025403, Tt, Tq); | |
127 Tu = FMA(KP866025403, Tt, Tq); | |
128 Ti = Te + Th; | |
129 TU = Th - Te; | |
130 } | |
131 } | |
132 } | |
133 Cr[0] = TN + TS; | |
134 { | |
135 E Tw, Tj, T13, TW; | |
136 Tw = FNMS(KP866025403, Ti, Tb); | |
137 Tj = FMA(KP866025403, Ti, Tb); | |
138 T13 = TU - TV; | |
139 TW = TU + TV; | |
140 { | |
141 E TE, TI, Tv, TF, TG, Ty; | |
142 TE = FMA(KP302775637, TD, TA); | |
143 TI = FNMS(KP302775637, TA, TD); | |
144 Tv = FMA(KP038632954, Tu, Tj); | |
145 TF = FNMS(KP038632954, Tj, Tu); | |
146 TG = FNMS(KP612264650, Tw, Tx); | |
147 Ty = FMA(KP612264650, Tx, Tw); | |
148 { | |
149 E TT, Tz, TK, TH, TM, T10, TL, TJ; | |
150 TT = FNMS(KP083333333, TS, TN); | |
151 Tz = FNMS(KP853480001, Ty, Tv); | |
152 TK = FMA(KP853480001, Ty, Tv); | |
153 TH = FNMS(KP853480001, TG, TF); | |
154 TM = FMA(KP853480001, TG, TF); | |
155 T1a = FNMS(KP226109445, TW, TZ); | |
156 T10 = FMA(KP301479260, TZ, TW); | |
157 TL = FNMS(KP522026385, Tz, TE); | |
158 Ci[WS(csi, 1)] = KP600477271 * (FMA(KP957805992, TE, Tz)); | |
159 TJ = FMA(KP522026385, TH, TI); | |
160 Ci[WS(csi, 5)] = -(KP600477271 * (FNMS(KP957805992, TI, TH))); | |
161 Ci[WS(csi, 4)] = -(KP575140729 * (FMA(KP904176221, TM, TL))); | |
162 Ci[WS(csi, 3)] = KP575140729 * (FNMS(KP904176221, TM, TL)); | |
163 Ci[WS(csi, 6)] = KP575140729 * (FMA(KP904176221, TK, TJ)); | |
164 Ci[WS(csi, 2)] = KP575140729 * (FNMS(KP904176221, TK, TJ)); | |
165 T11 = FMA(KP503537032, T10, TT); | |
166 T17 = FNMS(KP251768516, T10, TT); | |
167 } | |
168 T14 = FNMS(KP514918778, T13, T12); | |
169 T1b = FMA(KP686558370, T12, T13); | |
170 } | |
171 } | |
172 } | |
173 { | |
174 E T1e, T1c, T18, T16, T1d, T19; | |
175 T1e = FMA(KP769338817, T1b, T1a); | |
176 T1c = FNMS(KP769338817, T1b, T1a); | |
177 T18 = FNMS(KP859542535, T14, T15); | |
178 T16 = FMA(KP581704778, T15, T14); | |
179 T1d = FNMS(KP300462606, T18, T17); | |
180 T19 = FMA(KP300462606, T18, T17); | |
181 Cr[WS(csr, 1)] = FMA(KP516520780, T16, T11); | |
182 Cr[WS(csr, 5)] = FNMS(KP516520780, T16, T11); | |
183 Cr[WS(csr, 2)] = FMA(KP503537032, T1e, T1d); | |
184 Cr[WS(csr, 6)] = FNMS(KP503537032, T1e, T1d); | |
185 Cr[WS(csr, 3)] = FMA(KP503537032, T1c, T19); | |
186 Cr[WS(csr, 4)] = FNMS(KP503537032, T1c, T19); | |
187 } | |
188 } | |
189 } | |
190 } | |
191 | |
192 static const kr2c_desc desc = { 13, "r2cf_13", {31, 6, 45, 0}, &GENUS }; | |
193 | |
194 void X(codelet_r2cf_13) (planner *p) { | |
195 X(kr2c_register) (p, r2cf_13, &desc); | |
196 } | |
197 | |
198 #else /* HAVE_FMA */ | |
199 | |
200 /* Generated by: ../../../genfft/gen_r2cf.native -compact -variables 4 -pipeline-latency 4 -n 13 -name r2cf_13 -include r2cf.h */ | |
201 | |
202 /* | |
203 * This function contains 76 FP additions, 34 FP multiplications, | |
204 * (or, 57 additions, 15 multiplications, 19 fused multiply/add), | |
205 * 55 stack variables, 20 constants, and 26 memory accesses | |
206 */ | |
207 #include "r2cf.h" | |
208 | |
209 static void r2cf_13(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs) | |
210 { | |
211 DK(KP083333333, +0.083333333333333333333333333333333333333333333); | |
212 DK(KP075902986, +0.075902986037193865983102897245103540356428373); | |
213 DK(KP251768516, +0.251768516431883313623436926934233488546674281); | |
214 DK(KP503537032, +0.503537032863766627246873853868466977093348562); | |
215 DK(KP113854479, +0.113854479055790798974654345867655310534642560); | |
216 DK(KP265966249, +0.265966249214837287587521063842185948798330267); | |
217 DK(KP387390585, +0.387390585467617292130675966426762851778775217); | |
218 DK(KP300462606, +0.300462606288665774426601772289207995520941381); | |
219 DK(KP132983124, +0.132983124607418643793760531921092974399165133); | |
220 DK(KP258260390, +0.258260390311744861420450644284508567852516811); | |
221 DK(KP2_000000000, +2.000000000000000000000000000000000000000000000); | |
222 DK(KP1_732050807, +1.732050807568877293527446341505872366942805254); | |
223 DK(KP300238635, +0.300238635966332641462884626667381504676006424); | |
224 DK(KP011599105, +0.011599105605768290721655456654083252189827041); | |
225 DK(KP156891391, +0.156891391051584611046832726756003269660212636); | |
226 DK(KP256247671, +0.256247671582936600958684654061725059144125175); | |
227 DK(KP174138601, +0.174138601152135905005660794929264742616964676); | |
228 DK(KP575140729, +0.575140729474003121368385547455453388461001608); | |
229 DK(KP866025403, +0.866025403784438646763723170752936183471402627); | |
230 DK(KP500000000, +0.500000000000000000000000000000000000000000000); | |
231 { | |
232 INT i; | |
233 for (i = v; i > 0; i = i - 1, R0 = R0 + ivs, R1 = R1 + ivs, Cr = Cr + ovs, Ci = Ci + ovs, MAKE_VOLATILE_STRIDE(52, rs), MAKE_VOLATILE_STRIDE(52, csr), MAKE_VOLATILE_STRIDE(52, csi)) { | |
234 E T13, Tb, Tm, TW, TX, T14, TU, T10, Tz, TB, Tu, TC, TR, T11; | |
235 T13 = R0[0]; | |
236 { | |
237 E Te, TO, Ta, Tv, To, T5, Tw, Tp, Th, Tr, Tk, Ts, Tl, TP, Tc; | |
238 E Td; | |
239 Tc = R0[WS(rs, 4)]; | |
240 Td = R1[WS(rs, 2)]; | |
241 Te = Tc - Td; | |
242 TO = Tc + Td; | |
243 { | |
244 E T6, T7, T8, T9; | |
245 T6 = R1[0]; | |
246 T7 = R1[WS(rs, 1)]; | |
247 T8 = R1[WS(rs, 4)]; | |
248 T9 = T7 + T8; | |
249 Ta = T6 + T9; | |
250 Tv = T7 - T8; | |
251 To = FNMS(KP500000000, T9, T6); | |
252 } | |
253 { | |
254 E T1, T2, T3, T4; | |
255 T1 = R0[WS(rs, 6)]; | |
256 T2 = R0[WS(rs, 5)]; | |
257 T3 = R0[WS(rs, 2)]; | |
258 T4 = T2 + T3; | |
259 T5 = T1 + T4; | |
260 Tw = T2 - T3; | |
261 Tp = FNMS(KP500000000, T4, T1); | |
262 } | |
263 { | |
264 E Tf, Tg, Ti, Tj; | |
265 Tf = R1[WS(rs, 5)]; | |
266 Tg = R0[WS(rs, 3)]; | |
267 Th = Tf - Tg; | |
268 Tr = Tf + Tg; | |
269 Ti = R1[WS(rs, 3)]; | |
270 Tj = R0[WS(rs, 1)]; | |
271 Tk = Ti - Tj; | |
272 Ts = Ti + Tj; | |
273 } | |
274 Tl = Th + Tk; | |
275 TP = Tr + Ts; | |
276 Tb = T5 - Ta; | |
277 Tm = Te + Tl; | |
278 TW = Ta + T5; | |
279 TX = TO + TP; | |
280 T14 = TW + TX; | |
281 { | |
282 E TS, TT, Tx, Ty; | |
283 TS = Tv + Tw; | |
284 TT = Th - Tk; | |
285 TU = TS - TT; | |
286 T10 = TS + TT; | |
287 Tx = KP866025403 * (Tv - Tw); | |
288 Ty = FNMS(KP500000000, Tl, Te); | |
289 Tz = Tx + Ty; | |
290 TB = Ty - Tx; | |
291 } | |
292 { | |
293 E Tq, Tt, TN, TQ; | |
294 Tq = To - Tp; | |
295 Tt = KP866025403 * (Tr - Ts); | |
296 Tu = Tq - Tt; | |
297 TC = Tq + Tt; | |
298 TN = To + Tp; | |
299 TQ = FNMS(KP500000000, TP, TO); | |
300 TR = TN - TQ; | |
301 T11 = TN + TQ; | |
302 } | |
303 } | |
304 Cr[0] = T13 + T14; | |
305 { | |
306 E Tn, TG, TE, TF, TJ, TM, TK, TL; | |
307 Tn = FNMS(KP174138601, Tm, KP575140729 * Tb); | |
308 TG = FMA(KP174138601, Tb, KP575140729 * Tm); | |
309 { | |
310 E TA, TD, TH, TI; | |
311 TA = FNMS(KP156891391, Tz, KP256247671 * Tu); | |
312 TD = FNMS(KP300238635, TC, KP011599105 * TB); | |
313 TE = TA + TD; | |
314 TF = KP1_732050807 * (TD - TA); | |
315 TH = FMA(KP300238635, TB, KP011599105 * TC); | |
316 TI = FMA(KP256247671, Tz, KP156891391 * Tu); | |
317 TJ = TH - TI; | |
318 TM = KP1_732050807 * (TI + TH); | |
319 } | |
320 Ci[WS(csi, 5)] = FMA(KP2_000000000, TE, Tn); | |
321 Ci[WS(csi, 1)] = FMA(KP2_000000000, TJ, TG); | |
322 TK = TG - TJ; | |
323 Ci[WS(csi, 4)] = TF - TK; | |
324 Ci[WS(csi, 3)] = TF + TK; | |
325 TL = Tn - TE; | |
326 Ci[WS(csi, 2)] = TL - TM; | |
327 Ci[WS(csi, 6)] = TL + TM; | |
328 } | |
329 { | |
330 E TZ, T1b, T19, T1e, T16, T1a, TV, TY, T1c, T1d; | |
331 TV = FNMS(KP132983124, TU, KP258260390 * TR); | |
332 TY = KP300462606 * (TW - TX); | |
333 TZ = FMA(KP2_000000000, TV, TY); | |
334 T1b = TY - TV; | |
335 { | |
336 E T17, T18, T12, T15; | |
337 T17 = FMA(KP387390585, TU, KP265966249 * TR); | |
338 T18 = FNMS(KP503537032, T11, KP113854479 * T10); | |
339 T19 = T17 - T18; | |
340 T1e = T17 + T18; | |
341 T12 = FMA(KP251768516, T10, KP075902986 * T11); | |
342 T15 = FNMS(KP083333333, T14, T13); | |
343 T16 = FMA(KP2_000000000, T12, T15); | |
344 T1a = T15 - T12; | |
345 } | |
346 Cr[WS(csr, 1)] = TZ + T16; | |
347 Cr[WS(csr, 5)] = T16 - TZ; | |
348 T1c = T1a - T1b; | |
349 Cr[WS(csr, 2)] = T19 + T1c; | |
350 Cr[WS(csr, 6)] = T1c - T19; | |
351 T1d = T1b + T1a; | |
352 Cr[WS(csr, 3)] = T1d - T1e; | |
353 Cr[WS(csr, 4)] = T1e + T1d; | |
354 } | |
355 } | |
356 } | |
357 } | |
358 | |
359 static const kr2c_desc desc = { 13, "r2cf_13", {57, 15, 19, 0}, &GENUS }; | |
360 | |
361 void X(codelet_r2cf_13) (planner *p) { | |
362 X(kr2c_register) (p, r2cf_13, &desc); | |
363 } | |
364 | |
365 #endif /* HAVE_FMA */ |