Mercurial > hg > js-dsp-test
comparison fft/fftw/fftw-3.3.4/rdft/scalar/r2cf/r2cf_11.c @ 19:26056e866c29
Add FFTW to comparison table
author | Chris Cannam |
---|---|
date | Tue, 06 Oct 2015 13:08:39 +0100 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
18:8db794ca3e0b | 19:26056e866c29 |
---|---|
1 /* | |
2 * Copyright (c) 2003, 2007-14 Matteo Frigo | |
3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology | |
4 * | |
5 * This program is free software; you can redistribute it and/or modify | |
6 * it under the terms of the GNU General Public License as published by | |
7 * the Free Software Foundation; either version 2 of the License, or | |
8 * (at your option) any later version. | |
9 * | |
10 * This program is distributed in the hope that it will be useful, | |
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
13 * GNU General Public License for more details. | |
14 * | |
15 * You should have received a copy of the GNU General Public License | |
16 * along with this program; if not, write to the Free Software | |
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA | |
18 * | |
19 */ | |
20 | |
21 /* This file was automatically generated --- DO NOT EDIT */ | |
22 /* Generated on Tue Mar 4 13:49:07 EST 2014 */ | |
23 | |
24 #include "codelet-rdft.h" | |
25 | |
26 #ifdef HAVE_FMA | |
27 | |
28 /* Generated by: ../../../genfft/gen_r2cf.native -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -n 11 -name r2cf_11 -include r2cf.h */ | |
29 | |
30 /* | |
31 * This function contains 60 FP additions, 50 FP multiplications, | |
32 * (or, 15 additions, 5 multiplications, 45 fused multiply/add), | |
33 * 51 stack variables, 10 constants, and 22 memory accesses | |
34 */ | |
35 #include "r2cf.h" | |
36 | |
37 static void r2cf_11(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs) | |
38 { | |
39 DK(KP959492973, +0.959492973614497389890368057066327699062454848); | |
40 DK(KP876768831, +0.876768831002589333891339807079336796764054852); | |
41 DK(KP918985947, +0.918985947228994779780736114132655398124909697); | |
42 DK(KP989821441, +0.989821441880932732376092037776718787376519372); | |
43 DK(KP778434453, +0.778434453334651800608337670740821884709317477); | |
44 DK(KP830830026, +0.830830026003772851058548298459246407048009821); | |
45 DK(KP715370323, +0.715370323453429719112414662767260662417897278); | |
46 DK(KP634356270, +0.634356270682424498893150776899916060542806975); | |
47 DK(KP342584725, +0.342584725681637509502641509861112333758894680); | |
48 DK(KP521108558, +0.521108558113202722944698153526659300680427422); | |
49 { | |
50 INT i; | |
51 for (i = v; i > 0; i = i - 1, R0 = R0 + ivs, R1 = R1 + ivs, Cr = Cr + ovs, Ci = Ci + ovs, MAKE_VOLATILE_STRIDE(44, rs), MAKE_VOLATILE_STRIDE(44, csr), MAKE_VOLATILE_STRIDE(44, csi)) { | |
52 E T1, Tg, TF, TB, TI, TL, Tz, TA; | |
53 { | |
54 E T4, TC, TE, T7, TD, Ta, TS, TG, TJ, Td, TP, TM, Ty, Tq, Th; | |
55 E Tt, Tl; | |
56 T1 = R0[0]; | |
57 { | |
58 E Tb, Tc, Tx, Tp; | |
59 { | |
60 E T2, T3, Te, Tf; | |
61 T2 = R1[0]; | |
62 T3 = R0[WS(rs, 5)]; | |
63 Te = R1[WS(rs, 2)]; | |
64 Tf = R0[WS(rs, 3)]; | |
65 { | |
66 E T5, T6, T8, T9; | |
67 T5 = R0[WS(rs, 1)]; | |
68 T4 = T2 + T3; | |
69 TC = T3 - T2; | |
70 Tg = Te + Tf; | |
71 TE = Tf - Te; | |
72 T6 = R1[WS(rs, 4)]; | |
73 T8 = R1[WS(rs, 1)]; | |
74 T9 = R0[WS(rs, 4)]; | |
75 Tb = R0[WS(rs, 2)]; | |
76 T7 = T5 + T6; | |
77 TD = T5 - T6; | |
78 Ta = T8 + T9; | |
79 TF = T9 - T8; | |
80 Tc = R1[WS(rs, 3)]; | |
81 } | |
82 } | |
83 TS = FMA(KP521108558, TC, TD); | |
84 TG = FMA(KP521108558, TF, TE); | |
85 TJ = FMA(KP521108558, TE, TC); | |
86 Td = Tb + Tc; | |
87 TB = Tb - Tc; | |
88 Tx = FNMS(KP342584725, Ta, T7); | |
89 Tp = FNMS(KP342584725, T4, Ta); | |
90 TP = FNMS(KP521108558, TB, TF); | |
91 TM = FNMS(KP521108558, TD, TB); | |
92 Ty = FNMS(KP634356270, Tx, Td); | |
93 Tq = FNMS(KP634356270, Tp, Tg); | |
94 Th = FNMS(KP342584725, Tg, Td); | |
95 Tt = FNMS(KP342584725, Td, T4); | |
96 Tl = FNMS(KP342584725, T7, Tg); | |
97 } | |
98 { | |
99 E Tu, Ts, TN, Tv; | |
100 { | |
101 E Tm, TU, Tj, Ti, TT; | |
102 TT = FMA(KP715370323, TS, TF); | |
103 Ti = FNMS(KP634356270, Th, Ta); | |
104 Tu = FNMS(KP634356270, Tt, T7); | |
105 Tm = FNMS(KP634356270, Tl, T4); | |
106 TU = FMA(KP830830026, TT, TB); | |
107 Tj = FNMS(KP778434453, Ti, T7); | |
108 { | |
109 E Tk, TR, To, Tn, TQ, Tr; | |
110 TQ = FMA(KP715370323, TP, TC); | |
111 Tn = FNMS(KP778434453, Tm, Ta); | |
112 Ci[WS(csi, 5)] = KP989821441 * (FMA(KP918985947, TU, TE)); | |
113 Tk = FNMS(KP876768831, Tj, T4); | |
114 TR = FNMS(KP830830026, TQ, TE); | |
115 To = FNMS(KP876768831, Tn, Td); | |
116 Tr = FNMS(KP778434453, Tq, Td); | |
117 Cr[WS(csr, 5)] = FNMS(KP959492973, Tk, T1); | |
118 Ci[WS(csi, 4)] = KP989821441 * (FNMS(KP918985947, TR, TD)); | |
119 Cr[WS(csr, 4)] = FNMS(KP959492973, To, T1); | |
120 Ts = FNMS(KP876768831, Tr, T7); | |
121 } | |
122 } | |
123 TN = FNMS(KP715370323, TM, TE); | |
124 Tv = FNMS(KP778434453, Tu, Tg); | |
125 Cr[0] = T1 + T4 + T7 + Ta + Td + Tg; | |
126 Cr[WS(csr, 3)] = FNMS(KP959492973, Ts, T1); | |
127 { | |
128 E TO, Tw, TH, TK; | |
129 TO = FNMS(KP830830026, TN, TF); | |
130 Tw = FNMS(KP876768831, Tv, Ta); | |
131 TH = FMA(KP715370323, TG, TD); | |
132 TK = FNMS(KP715370323, TJ, TB); | |
133 Ci[WS(csi, 3)] = KP989821441 * (FNMS(KP918985947, TO, TC)); | |
134 Cr[WS(csr, 2)] = FNMS(KP959492973, Tw, T1); | |
135 TI = FNMS(KP830830026, TH, TC); | |
136 TL = FMA(KP830830026, TK, TD); | |
137 Tz = FNMS(KP778434453, Ty, T4); | |
138 } | |
139 } | |
140 } | |
141 Ci[WS(csi, 2)] = KP989821441 * (FMA(KP918985947, TI, TB)); | |
142 Ci[WS(csi, 1)] = KP989821441 * (FNMS(KP918985947, TL, TF)); | |
143 TA = FNMS(KP876768831, Tz, Tg); | |
144 Cr[WS(csr, 1)] = FNMS(KP959492973, TA, T1); | |
145 } | |
146 } | |
147 } | |
148 | |
149 static const kr2c_desc desc = { 11, "r2cf_11", {15, 5, 45, 0}, &GENUS }; | |
150 | |
151 void X(codelet_r2cf_11) (planner *p) { | |
152 X(kr2c_register) (p, r2cf_11, &desc); | |
153 } | |
154 | |
155 #else /* HAVE_FMA */ | |
156 | |
157 /* Generated by: ../../../genfft/gen_r2cf.native -compact -variables 4 -pipeline-latency 4 -n 11 -name r2cf_11 -include r2cf.h */ | |
158 | |
159 /* | |
160 * This function contains 60 FP additions, 50 FP multiplications, | |
161 * (or, 20 additions, 10 multiplications, 40 fused multiply/add), | |
162 * 28 stack variables, 10 constants, and 22 memory accesses | |
163 */ | |
164 #include "r2cf.h" | |
165 | |
166 static void r2cf_11(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs) | |
167 { | |
168 DK(KP654860733, +0.654860733945285064056925072466293553183791199); | |
169 DK(KP142314838, +0.142314838273285140443792668616369668791051361); | |
170 DK(KP959492973, +0.959492973614497389890368057066327699062454848); | |
171 DK(KP415415013, +0.415415013001886425529274149229623203524004910); | |
172 DK(KP841253532, +0.841253532831181168861811648919367717513292498); | |
173 DK(KP989821441, +0.989821441880932732376092037776718787376519372); | |
174 DK(KP909631995, +0.909631995354518371411715383079028460060241051); | |
175 DK(KP281732556, +0.281732556841429697711417915346616899035777899); | |
176 DK(KP540640817, +0.540640817455597582107635954318691695431770608); | |
177 DK(KP755749574, +0.755749574354258283774035843972344420179717445); | |
178 { | |
179 INT i; | |
180 for (i = v; i > 0; i = i - 1, R0 = R0 + ivs, R1 = R1 + ivs, Cr = Cr + ovs, Ci = Ci + ovs, MAKE_VOLATILE_STRIDE(44, rs), MAKE_VOLATILE_STRIDE(44, csr), MAKE_VOLATILE_STRIDE(44, csi)) { | |
181 E T1, T4, Tl, Tg, Th, Td, Ti, Ta, Tk, T7, Tj, Tb, Tc; | |
182 T1 = R0[0]; | |
183 { | |
184 E T2, T3, Te, Tf; | |
185 T2 = R0[WS(rs, 1)]; | |
186 T3 = R1[WS(rs, 4)]; | |
187 T4 = T2 + T3; | |
188 Tl = T3 - T2; | |
189 Te = R1[0]; | |
190 Tf = R0[WS(rs, 5)]; | |
191 Tg = Te + Tf; | |
192 Th = Tf - Te; | |
193 } | |
194 Tb = R1[WS(rs, 1)]; | |
195 Tc = R0[WS(rs, 4)]; | |
196 Td = Tb + Tc; | |
197 Ti = Tc - Tb; | |
198 { | |
199 E T8, T9, T5, T6; | |
200 T8 = R1[WS(rs, 2)]; | |
201 T9 = R0[WS(rs, 3)]; | |
202 Ta = T8 + T9; | |
203 Tk = T9 - T8; | |
204 T5 = R0[WS(rs, 2)]; | |
205 T6 = R1[WS(rs, 3)]; | |
206 T7 = T5 + T6; | |
207 Tj = T6 - T5; | |
208 } | |
209 Ci[WS(csi, 4)] = FMA(KP755749574, Th, KP540640817 * Ti) + FNMS(KP909631995, Tk, KP281732556 * Tj) - (KP989821441 * Tl); | |
210 Cr[WS(csr, 4)] = FMA(KP841253532, Td, T1) + FNMS(KP959492973, T7, KP415415013 * Ta) + FNMA(KP142314838, T4, KP654860733 * Tg); | |
211 Ci[WS(csi, 2)] = FMA(KP909631995, Th, KP755749574 * Tl) + FNMA(KP540640817, Tk, KP989821441 * Tj) - (KP281732556 * Ti); | |
212 Ci[WS(csi, 5)] = FMA(KP281732556, Th, KP755749574 * Ti) + FNMS(KP909631995, Tj, KP989821441 * Tk) - (KP540640817 * Tl); | |
213 Ci[WS(csi, 1)] = FMA(KP540640817, Th, KP909631995 * Tl) + FMA(KP989821441, Ti, KP755749574 * Tj) + (KP281732556 * Tk); | |
214 Ci[WS(csi, 3)] = FMA(KP989821441, Th, KP540640817 * Tj) + FNMS(KP909631995, Ti, KP755749574 * Tk) - (KP281732556 * Tl); | |
215 Cr[WS(csr, 3)] = FMA(KP415415013, Td, T1) + FNMS(KP654860733, Ta, KP841253532 * T7) + FNMA(KP959492973, T4, KP142314838 * Tg); | |
216 Cr[WS(csr, 1)] = FMA(KP841253532, Tg, T1) + FNMS(KP959492973, Ta, KP415415013 * T4) + FNMA(KP654860733, T7, KP142314838 * Td); | |
217 Cr[0] = T1 + Tg + T4 + Td + T7 + Ta; | |
218 Cr[WS(csr, 2)] = FMA(KP415415013, Tg, T1) + FNMS(KP142314838, T7, KP841253532 * Ta) + FNMA(KP959492973, Td, KP654860733 * T4); | |
219 Cr[WS(csr, 5)] = FMA(KP841253532, T4, T1) + FNMS(KP142314838, Ta, KP415415013 * T7) + FNMA(KP654860733, Td, KP959492973 * Tg); | |
220 } | |
221 } | |
222 } | |
223 | |
224 static const kr2c_desc desc = { 11, "r2cf_11", {20, 10, 40, 0}, &GENUS }; | |
225 | |
226 void X(codelet_r2cf_11) (planner *p) { | |
227 X(kr2c_register) (p, r2cf_11, &desc); | |
228 } | |
229 | |
230 #endif /* HAVE_FMA */ |