comparison fft/fftw/fftw-3.3.4/rdft/scalar/r2cf/r2cfII_16.c @ 19:26056e866c29

Add FFTW to comparison table
author Chris Cannam
date Tue, 06 Oct 2015 13:08:39 +0100
parents
children
comparison
equal deleted inserted replaced
18:8db794ca3e0b 19:26056e866c29
1 /*
2 * Copyright (c) 2003, 2007-14 Matteo Frigo
3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
18 *
19 */
20
21 /* This file was automatically generated --- DO NOT EDIT */
22 /* Generated on Tue Mar 4 13:49:19 EST 2014 */
23
24 #include "codelet-rdft.h"
25
26 #ifdef HAVE_FMA
27
28 /* Generated by: ../../../genfft/gen_r2cf.native -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -n 16 -name r2cfII_16 -dft-II -include r2cfII.h */
29
30 /*
31 * This function contains 66 FP additions, 48 FP multiplications,
32 * (or, 18 additions, 0 multiplications, 48 fused multiply/add),
33 * 54 stack variables, 7 constants, and 32 memory accesses
34 */
35 #include "r2cfII.h"
36
37 static void r2cfII_16(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs)
38 {
39 DK(KP980785280, +0.980785280403230449126182236134239036973933731);
40 DK(KP198912367, +0.198912367379658006911597622644676228597850501);
41 DK(KP831469612, +0.831469612302545237078788377617905756738560812);
42 DK(KP923879532, +0.923879532511286756128183189396788286822416626);
43 DK(KP668178637, +0.668178637919298919997757686523080761552472251);
44 DK(KP414213562, +0.414213562373095048801688724209698078569671875);
45 DK(KP707106781, +0.707106781186547524400844362104849039284835938);
46 {
47 INT i;
48 for (i = v; i > 0; i = i - 1, R0 = R0 + ivs, R1 = R1 + ivs, Cr = Cr + ovs, Ci = Ci + ovs, MAKE_VOLATILE_STRIDE(64, rs), MAKE_VOLATILE_STRIDE(64, csr), MAKE_VOLATILE_STRIDE(64, csi)) {
49 E TN, TF, TX, TV, TO, TP, TY, TM, TQ, TW;
50 {
51 E TT, TZ, TB, T5, Tu, TK, TJ, Tr, T9, TC, T8, Tl, TH, TG, Ti;
52 E Ta;
53 {
54 E T1, TR, Tn, Ts, To, TS, T4, Tp, T2, T3;
55 T1 = R0[0];
56 TR = R0[WS(rs, 4)];
57 T2 = R0[WS(rs, 2)];
58 T3 = R0[WS(rs, 6)];
59 Tn = R1[WS(rs, 7)];
60 Ts = R1[WS(rs, 3)];
61 To = R1[WS(rs, 1)];
62 TS = T2 + T3;
63 T4 = T2 - T3;
64 Tp = R1[WS(rs, 5)];
65 {
66 E Te, Tj, Tf, Tg, Tt, Tq;
67 Te = R1[0];
68 TT = FMA(KP707106781, TS, TR);
69 TZ = FNMS(KP707106781, TS, TR);
70 TB = FMA(KP707106781, T4, T1);
71 T5 = FNMS(KP707106781, T4, T1);
72 Tt = To + Tp;
73 Tq = To - Tp;
74 Tj = R1[WS(rs, 4)];
75 Tf = R1[WS(rs, 2)];
76 Tu = FNMS(KP707106781, Tt, Ts);
77 TK = FMA(KP707106781, Tt, Ts);
78 TJ = FMS(KP707106781, Tq, Tn);
79 Tr = FMA(KP707106781, Tq, Tn);
80 Tg = R1[WS(rs, 6)];
81 {
82 E T6, T7, Tk, Th;
83 T6 = R0[WS(rs, 5)];
84 T7 = R0[WS(rs, 1)];
85 T9 = R0[WS(rs, 3)];
86 Tk = Tf + Tg;
87 Th = Tf - Tg;
88 TC = FNMS(KP414213562, T6, T7);
89 T8 = FMA(KP414213562, T7, T6);
90 Tl = FNMS(KP707106781, Tk, Tj);
91 TH = FMA(KP707106781, Tk, Tj);
92 TG = FMA(KP707106781, Th, Te);
93 Ti = FNMS(KP707106781, Th, Te);
94 Ta = R0[WS(rs, 7)];
95 }
96 }
97 }
98 {
99 E TE, TU, Ty, Tv, TI, TL;
100 Ty = FNMS(KP668178637, Tr, Tu);
101 Tv = FMA(KP668178637, Tu, Tr);
102 {
103 E Tw, T14, T12, TA, T11, T13, Tx, Td;
104 {
105 E Tz, Tm, TD, Tb, T10, Tc;
106 Tz = FNMS(KP668178637, Ti, Tl);
107 Tm = FMA(KP668178637, Tl, Ti);
108 TD = FMS(KP414213562, T9, Ta);
109 Tb = FMA(KP414213562, Ta, T9);
110 Tw = Tm - Tv;
111 T14 = Tm + Tv;
112 T10 = TD - TC;
113 TE = TC + TD;
114 Tc = T8 - Tb;
115 TU = T8 + Tb;
116 T12 = Tz + Ty;
117 TA = Ty - Tz;
118 T11 = FMA(KP923879532, T10, TZ);
119 T13 = FNMS(KP923879532, T10, TZ);
120 Tx = FNMS(KP923879532, Tc, T5);
121 Td = FMA(KP923879532, Tc, T5);
122 }
123 Ci[WS(csi, 2)] = -(FMA(KP831469612, T14, T13));
124 Ci[WS(csi, 5)] = FNMS(KP831469612, T14, T13);
125 Cr[WS(csr, 1)] = FMA(KP831469612, Tw, Td);
126 Cr[WS(csr, 6)] = FNMS(KP831469612, Tw, Td);
127 Cr[WS(csr, 5)] = FNMS(KP831469612, TA, Tx);
128 Ci[WS(csi, 1)] = FMA(KP831469612, T12, T11);
129 Cr[WS(csr, 2)] = FMA(KP831469612, TA, Tx);
130 Ci[WS(csi, 6)] = FMS(KP831469612, T12, T11);
131 }
132 TN = FNMS(KP923879532, TE, TB);
133 TF = FMA(KP923879532, TE, TB);
134 TX = FNMS(KP923879532, TU, TT);
135 TV = FMA(KP923879532, TU, TT);
136 TO = FMA(KP198912367, TG, TH);
137 TI = FNMS(KP198912367, TH, TG);
138 TL = FMA(KP198912367, TK, TJ);
139 TP = FNMS(KP198912367, TJ, TK);
140 TY = TL - TI;
141 TM = TI + TL;
142 }
143 }
144 Ci[WS(csi, 4)] = FMS(KP980785280, TY, TX);
145 Ci[WS(csi, 3)] = FMA(KP980785280, TY, TX);
146 Cr[0] = FMA(KP980785280, TM, TF);
147 Cr[WS(csr, 7)] = FNMS(KP980785280, TM, TF);
148 TQ = TO - TP;
149 TW = TO + TP;
150 Ci[0] = -(FMA(KP980785280, TW, TV));
151 Ci[WS(csi, 7)] = FNMS(KP980785280, TW, TV);
152 Cr[WS(csr, 3)] = FMA(KP980785280, TQ, TN);
153 Cr[WS(csr, 4)] = FNMS(KP980785280, TQ, TN);
154 }
155 }
156 }
157
158 static const kr2c_desc desc = { 16, "r2cfII_16", {18, 0, 48, 0}, &GENUS };
159
160 void X(codelet_r2cfII_16) (planner *p) {
161 X(kr2c_register) (p, r2cfII_16, &desc);
162 }
163
164 #else /* HAVE_FMA */
165
166 /* Generated by: ../../../genfft/gen_r2cf.native -compact -variables 4 -pipeline-latency 4 -n 16 -name r2cfII_16 -dft-II -include r2cfII.h */
167
168 /*
169 * This function contains 66 FP additions, 30 FP multiplications,
170 * (or, 54 additions, 18 multiplications, 12 fused multiply/add),
171 * 32 stack variables, 7 constants, and 32 memory accesses
172 */
173 #include "r2cfII.h"
174
175 static void r2cfII_16(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs)
176 {
177 DK(KP555570233, +0.555570233019602224742830813948532874374937191);
178 DK(KP831469612, +0.831469612302545237078788377617905756738560812);
179 DK(KP980785280, +0.980785280403230449126182236134239036973933731);
180 DK(KP195090322, +0.195090322016128267848284868477022240927691618);
181 DK(KP382683432, +0.382683432365089771728459984030398866761344562);
182 DK(KP923879532, +0.923879532511286756128183189396788286822416626);
183 DK(KP707106781, +0.707106781186547524400844362104849039284835938);
184 {
185 INT i;
186 for (i = v; i > 0; i = i - 1, R0 = R0 + ivs, R1 = R1 + ivs, Cr = Cr + ovs, Ci = Ci + ovs, MAKE_VOLATILE_STRIDE(64, rs), MAKE_VOLATILE_STRIDE(64, csr), MAKE_VOLATILE_STRIDE(64, csi)) {
187 E T5, T11, TB, TV, Tr, TK, Tu, TJ, Ti, TH, Tl, TG, Tc, T10, TE;
188 E TS;
189 {
190 E T1, TU, T4, TT, T2, T3;
191 T1 = R0[0];
192 TU = R0[WS(rs, 4)];
193 T2 = R0[WS(rs, 2)];
194 T3 = R0[WS(rs, 6)];
195 T4 = KP707106781 * (T2 - T3);
196 TT = KP707106781 * (T2 + T3);
197 T5 = T1 + T4;
198 T11 = TU - TT;
199 TB = T1 - T4;
200 TV = TT + TU;
201 }
202 {
203 E Tq, Tt, Tp, Ts, Tn, To;
204 Tq = R1[WS(rs, 7)];
205 Tt = R1[WS(rs, 3)];
206 Tn = R1[WS(rs, 1)];
207 To = R1[WS(rs, 5)];
208 Tp = KP707106781 * (Tn - To);
209 Ts = KP707106781 * (Tn + To);
210 Tr = Tp - Tq;
211 TK = Tt - Ts;
212 Tu = Ts + Tt;
213 TJ = Tp + Tq;
214 }
215 {
216 E Te, Tk, Th, Tj, Tf, Tg;
217 Te = R1[0];
218 Tk = R1[WS(rs, 4)];
219 Tf = R1[WS(rs, 2)];
220 Tg = R1[WS(rs, 6)];
221 Th = KP707106781 * (Tf - Tg);
222 Tj = KP707106781 * (Tf + Tg);
223 Ti = Te + Th;
224 TH = Tk - Tj;
225 Tl = Tj + Tk;
226 TG = Te - Th;
227 }
228 {
229 E T8, TC, Tb, TD;
230 {
231 E T6, T7, T9, Ta;
232 T6 = R0[WS(rs, 1)];
233 T7 = R0[WS(rs, 5)];
234 T8 = FNMS(KP382683432, T7, KP923879532 * T6);
235 TC = FMA(KP382683432, T6, KP923879532 * T7);
236 T9 = R0[WS(rs, 3)];
237 Ta = R0[WS(rs, 7)];
238 Tb = FNMS(KP923879532, Ta, KP382683432 * T9);
239 TD = FMA(KP923879532, T9, KP382683432 * Ta);
240 }
241 Tc = T8 + Tb;
242 T10 = Tb - T8;
243 TE = TC - TD;
244 TS = TC + TD;
245 }
246 {
247 E Td, TW, Tw, TR, Tm, Tv;
248 Td = T5 - Tc;
249 TW = TS + TV;
250 Tm = FMA(KP195090322, Ti, KP980785280 * Tl);
251 Tv = FNMS(KP980785280, Tu, KP195090322 * Tr);
252 Tw = Tm + Tv;
253 TR = Tv - Tm;
254 Cr[WS(csr, 4)] = Td - Tw;
255 Ci[WS(csi, 7)] = TR + TW;
256 Cr[WS(csr, 3)] = Td + Tw;
257 Ci[0] = TR - TW;
258 }
259 {
260 E Tx, TY, TA, TX, Ty, Tz;
261 Tx = T5 + Tc;
262 TY = TV - TS;
263 Ty = FNMS(KP195090322, Tl, KP980785280 * Ti);
264 Tz = FMA(KP980785280, Tr, KP195090322 * Tu);
265 TA = Ty + Tz;
266 TX = Tz - Ty;
267 Cr[WS(csr, 7)] = Tx - TA;
268 Ci[WS(csi, 3)] = TX + TY;
269 Cr[0] = Tx + TA;
270 Ci[WS(csi, 4)] = TX - TY;
271 }
272 {
273 E TF, T12, TM, TZ, TI, TL;
274 TF = TB + TE;
275 T12 = T10 - T11;
276 TI = FMA(KP831469612, TG, KP555570233 * TH);
277 TL = FMA(KP831469612, TJ, KP555570233 * TK);
278 TM = TI - TL;
279 TZ = TI + TL;
280 Cr[WS(csr, 6)] = TF - TM;
281 Ci[WS(csi, 2)] = T12 - TZ;
282 Cr[WS(csr, 1)] = TF + TM;
283 Ci[WS(csi, 5)] = -(TZ + T12);
284 }
285 {
286 E TN, T14, TQ, T13, TO, TP;
287 TN = TB - TE;
288 T14 = T10 + T11;
289 TO = FNMS(KP555570233, TJ, KP831469612 * TK);
290 TP = FNMS(KP555570233, TG, KP831469612 * TH);
291 TQ = TO - TP;
292 T13 = TP + TO;
293 Cr[WS(csr, 5)] = TN - TQ;
294 Ci[WS(csi, 1)] = T13 + T14;
295 Cr[WS(csr, 2)] = TN + TQ;
296 Ci[WS(csi, 6)] = T13 - T14;
297 }
298 }
299 }
300 }
301
302 static const kr2c_desc desc = { 16, "r2cfII_16", {54, 18, 12, 0}, &GENUS };
303
304 void X(codelet_r2cfII_16) (planner *p) {
305 X(kr2c_register) (p, r2cfII_16, &desc);
306 }
307
308 #endif /* HAVE_FMA */