Mercurial > hg > js-dsp-test
comparison fft/fftw/fftw-3.3.4/rdft/scalar/r2cf/r2cfII_15.c @ 19:26056e866c29
Add FFTW to comparison table
author | Chris Cannam |
---|---|
date | Tue, 06 Oct 2015 13:08:39 +0100 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
18:8db794ca3e0b | 19:26056e866c29 |
---|---|
1 /* | |
2 * Copyright (c) 2003, 2007-14 Matteo Frigo | |
3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology | |
4 * | |
5 * This program is free software; you can redistribute it and/or modify | |
6 * it under the terms of the GNU General Public License as published by | |
7 * the Free Software Foundation; either version 2 of the License, or | |
8 * (at your option) any later version. | |
9 * | |
10 * This program is distributed in the hope that it will be useful, | |
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
13 * GNU General Public License for more details. | |
14 * | |
15 * You should have received a copy of the GNU General Public License | |
16 * along with this program; if not, write to the Free Software | |
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA | |
18 * | |
19 */ | |
20 | |
21 /* This file was automatically generated --- DO NOT EDIT */ | |
22 /* Generated on Tue Mar 4 13:49:19 EST 2014 */ | |
23 | |
24 #include "codelet-rdft.h" | |
25 | |
26 #ifdef HAVE_FMA | |
27 | |
28 /* Generated by: ../../../genfft/gen_r2cf.native -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -n 15 -name r2cfII_15 -dft-II -include r2cfII.h */ | |
29 | |
30 /* | |
31 * This function contains 72 FP additions, 41 FP multiplications, | |
32 * (or, 38 additions, 7 multiplications, 34 fused multiply/add), | |
33 * 57 stack variables, 12 constants, and 30 memory accesses | |
34 */ | |
35 #include "r2cfII.h" | |
36 | |
37 static void r2cfII_15(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs) | |
38 { | |
39 DK(KP823639103, +0.823639103546331925877420039278190003029660514); | |
40 DK(KP910592997, +0.910592997310029334643087372129977886038870291); | |
41 DK(KP951056516, +0.951056516295153572116439333379382143405698634); | |
42 DK(KP866025403, +0.866025403784438646763723170752936183471402627); | |
43 DK(KP500000000, +0.500000000000000000000000000000000000000000000); | |
44 DK(KP559016994, +0.559016994374947424102293417182819058860154590); | |
45 DK(KP690983005, +0.690983005625052575897706582817180941139845410); | |
46 DK(KP552786404, +0.552786404500042060718165266253744752911876328); | |
47 DK(KP447213595, +0.447213595499957939281834733746255247088123672); | |
48 DK(KP809016994, +0.809016994374947424102293417182819058860154590); | |
49 DK(KP618033988, +0.618033988749894848204586834365638117720309180); | |
50 DK(KP250000000, +0.250000000000000000000000000000000000000000000); | |
51 { | |
52 INT i; | |
53 for (i = v; i > 0; i = i - 1, R0 = R0 + ivs, R1 = R1 + ivs, Cr = Cr + ovs, Ci = Ci + ovs, MAKE_VOLATILE_STRIDE(60, rs), MAKE_VOLATILE_STRIDE(60, csr), MAKE_VOLATILE_STRIDE(60, csi)) { | |
54 E T9, TQ, TV, TW, Tw, TJ; | |
55 { | |
56 E Ta, Tl, Tg, T8, T7, TF, TX, TT, Tm, Th, TM, TZ, Tr, Tn, Tj; | |
57 E Tz, To, TN, TH, Tp, TO; | |
58 Ta = R0[WS(rs, 5)]; | |
59 Tl = R1[WS(rs, 2)]; | |
60 { | |
61 E T1, T2, T5, T3, T4; | |
62 T1 = R0[0]; | |
63 T2 = R0[WS(rs, 3)]; | |
64 T5 = R1[WS(rs, 4)]; | |
65 T3 = R0[WS(rs, 6)]; | |
66 T4 = R1[WS(rs, 1)]; | |
67 { | |
68 E Tb, TL, Te, TK, TR, Tf, Ti, Ty; | |
69 Tb = R1[0]; | |
70 TR = T2 + T5; | |
71 Tg = R0[WS(rs, 2)]; | |
72 { | |
73 E T6, TS, Tc, Td; | |
74 T6 = T2 + T3 - T4 - T5; | |
75 T8 = (T3 + T5 - T2) - T4; | |
76 TS = T3 + T4; | |
77 Tc = R1[WS(rs, 3)]; | |
78 Td = R1[WS(rs, 6)]; | |
79 T7 = FNMS(KP250000000, T6, T1); | |
80 TF = T1 + T6; | |
81 TX = FNMS(KP618033988, TR, TS); | |
82 TT = FMA(KP618033988, TS, TR); | |
83 TL = Tc - Td; | |
84 Te = Tc + Td; | |
85 } | |
86 TK = Tg + Tb; | |
87 Tm = R0[WS(rs, 7)]; | |
88 Tf = Tb - Te; | |
89 Th = Tb + Te; | |
90 TM = FMA(KP618033988, TL, TK); | |
91 TZ = FNMS(KP618033988, TK, TL); | |
92 Ti = FMA(KP809016994, Th, Tg); | |
93 Ty = FMA(KP447213595, Th, Tf); | |
94 Tr = R1[WS(rs, 5)]; | |
95 Tn = R0[WS(rs, 1)]; | |
96 Tj = FNMS(KP552786404, Ti, Tf); | |
97 Tz = FNMS(KP690983005, Ty, Tg); | |
98 To = R0[WS(rs, 4)]; | |
99 TN = Tr + Tm; | |
100 } | |
101 } | |
102 TH = Ta + Tg - Th; | |
103 Tp = Tn + To; | |
104 TO = To - Tn; | |
105 { | |
106 E Tx, TA, TP, T14, T11, Tu, TD; | |
107 { | |
108 E T10, TI, TC, TY; | |
109 T9 = FNMS(KP559016994, T8, T7); | |
110 Tx = FMA(KP559016994, T8, T7); | |
111 TA = FNMS(KP809016994, Tz, Ta); | |
112 TP = FMA(KP618033988, TO, TN); | |
113 TY = FNMS(KP618033988, TN, TO); | |
114 { | |
115 E Tq, Ts, TG, Tt, TB; | |
116 Tq = Tm - Tp; | |
117 Ts = Tm + Tp; | |
118 T14 = TZ - TY; | |
119 T10 = TY + TZ; | |
120 TG = Ts - Tr - Tl; | |
121 Tt = FMA(KP809016994, Ts, Tr); | |
122 TB = FMA(KP447213595, Ts, Tq); | |
123 T11 = FMA(KP500000000, T10, TX); | |
124 Ci[WS(csi, 2)] = KP866025403 * (TH - TG); | |
125 TI = TG + TH; | |
126 Tu = FNMS(KP552786404, Tt, Tq); | |
127 TC = FNMS(KP690983005, TB, Tr); | |
128 } | |
129 Ci[WS(csi, 1)] = KP951056516 * (T10 - TX); | |
130 Cr[WS(csr, 7)] = TF + TI; | |
131 Cr[WS(csr, 2)] = FNMS(KP500000000, TI, TF); | |
132 TD = FNMS(KP809016994, TC, Tl); | |
133 } | |
134 { | |
135 E TU, Tk, T13, Tv, T12, TE; | |
136 TQ = TM - TP; | |
137 TU = TP + TM; | |
138 T12 = TD + TA; | |
139 TE = TA - TD; | |
140 Tk = FNMS(KP559016994, Tj, Ta); | |
141 TV = FMA(KP500000000, TU, TT); | |
142 Ci[WS(csi, 6)] = -(KP951056516 * (FMA(KP910592997, T12, T11))); | |
143 Ci[WS(csi, 3)] = KP951056516 * (FNMS(KP910592997, T12, T11)); | |
144 T13 = FNMS(KP500000000, TE, Tx); | |
145 Cr[WS(csr, 1)] = Tx + TE; | |
146 Tv = FNMS(KP559016994, Tu, Tl); | |
147 Ci[WS(csi, 4)] = KP951056516 * (TT - TU); | |
148 Cr[WS(csr, 6)] = FMA(KP823639103, T14, T13); | |
149 Cr[WS(csr, 3)] = FNMS(KP823639103, T14, T13); | |
150 TW = Tv + Tk; | |
151 Tw = Tk - Tv; | |
152 } | |
153 } | |
154 } | |
155 Ci[WS(csi, 5)] = -(KP951056516 * (FNMS(KP910592997, TW, TV))); | |
156 Ci[0] = -(KP951056516 * (FMA(KP910592997, TW, TV))); | |
157 TJ = FNMS(KP500000000, Tw, T9); | |
158 Cr[WS(csr, 4)] = T9 + Tw; | |
159 Cr[0] = FMA(KP823639103, TQ, TJ); | |
160 Cr[WS(csr, 5)] = FNMS(KP823639103, TQ, TJ); | |
161 } | |
162 } | |
163 } | |
164 | |
165 static const kr2c_desc desc = { 15, "r2cfII_15", {38, 7, 34, 0}, &GENUS }; | |
166 | |
167 void X(codelet_r2cfII_15) (planner *p) { | |
168 X(kr2c_register) (p, r2cfII_15, &desc); | |
169 } | |
170 | |
171 #else /* HAVE_FMA */ | |
172 | |
173 /* Generated by: ../../../genfft/gen_r2cf.native -compact -variables 4 -pipeline-latency 4 -n 15 -name r2cfII_15 -dft-II -include r2cfII.h */ | |
174 | |
175 /* | |
176 * This function contains 72 FP additions, 33 FP multiplications, | |
177 * (or, 54 additions, 15 multiplications, 18 fused multiply/add), | |
178 * 37 stack variables, 8 constants, and 30 memory accesses | |
179 */ | |
180 #include "r2cfII.h" | |
181 | |
182 static void r2cfII_15(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs) | |
183 { | |
184 DK(KP500000000, +0.500000000000000000000000000000000000000000000); | |
185 DK(KP866025403, +0.866025403784438646763723170752936183471402627); | |
186 DK(KP809016994, +0.809016994374947424102293417182819058860154590); | |
187 DK(KP309016994, +0.309016994374947424102293417182819058860154590); | |
188 DK(KP250000000, +0.250000000000000000000000000000000000000000000); | |
189 DK(KP559016994, +0.559016994374947424102293417182819058860154590); | |
190 DK(KP587785252, +0.587785252292473129168705954639072768597652438); | |
191 DK(KP951056516, +0.951056516295153572116439333379382143405698634); | |
192 { | |
193 INT i; | |
194 for (i = v; i > 0; i = i - 1, R0 = R0 + ivs, R1 = R1 + ivs, Cr = Cr + ovs, Ci = Ci + ovs, MAKE_VOLATILE_STRIDE(60, rs), MAKE_VOLATILE_STRIDE(60, csr), MAKE_VOLATILE_STRIDE(60, csi)) { | |
195 E T1, T2, Tx, TR, TE, T7, TD, Th, Tm, Tr, TQ, TA, TB, Tf, Te; | |
196 E Tu, TS, Td, TH, TO; | |
197 T1 = R0[WS(rs, 5)]; | |
198 { | |
199 E T3, Tv, T6, Tw, T4, T5; | |
200 T2 = R0[WS(rs, 2)]; | |
201 T3 = R1[0]; | |
202 Tv = T2 + T3; | |
203 T4 = R1[WS(rs, 3)]; | |
204 T5 = R1[WS(rs, 6)]; | |
205 T6 = T4 + T5; | |
206 Tw = T4 - T5; | |
207 Tx = FMA(KP951056516, Tv, KP587785252 * Tw); | |
208 TR = FNMS(KP587785252, Tv, KP951056516 * Tw); | |
209 TE = KP559016994 * (T3 - T6); | |
210 T7 = T3 + T6; | |
211 TD = KP250000000 * T7; | |
212 } | |
213 { | |
214 E Ti, Tl, Tj, Tk, Tp, Tq; | |
215 Th = R0[0]; | |
216 Ti = R1[WS(rs, 4)]; | |
217 Tl = R0[WS(rs, 6)]; | |
218 Tj = R1[WS(rs, 1)]; | |
219 Tk = R0[WS(rs, 3)]; | |
220 Tp = Tk + Ti; | |
221 Tq = Tl + Tj; | |
222 Tm = Ti + Tj - (Tk + Tl); | |
223 Tr = FMA(KP951056516, Tp, KP587785252 * Tq); | |
224 TQ = FNMS(KP951056516, Tq, KP587785252 * Tp); | |
225 TA = FMA(KP250000000, Tm, Th); | |
226 TB = KP559016994 * (Tl + Ti - (Tk + Tj)); | |
227 } | |
228 { | |
229 E T9, Tt, Tc, Ts, Ta, Tb, TG; | |
230 Tf = R1[WS(rs, 2)]; | |
231 T9 = R0[WS(rs, 7)]; | |
232 Te = R1[WS(rs, 5)]; | |
233 Tt = T9 + Te; | |
234 Ta = R0[WS(rs, 1)]; | |
235 Tb = R0[WS(rs, 4)]; | |
236 Tc = Ta + Tb; | |
237 Ts = Ta - Tb; | |
238 Tu = FNMS(KP951056516, Tt, KP587785252 * Ts); | |
239 TS = FMA(KP951056516, Ts, KP587785252 * Tt); | |
240 Td = T9 + Tc; | |
241 TG = KP559016994 * (T9 - Tc); | |
242 TH = FNMS(KP309016994, Te, TG) + FNMA(KP250000000, Td, Tf); | |
243 TO = FMS(KP809016994, Te, Tf) + FNMA(KP250000000, Td, TG); | |
244 } | |
245 { | |
246 E Tn, T8, Tg, To; | |
247 Tn = Th - Tm; | |
248 T8 = T1 + T2 - T7; | |
249 Tg = Td - Te - Tf; | |
250 To = T8 + Tg; | |
251 Ci[WS(csi, 2)] = KP866025403 * (T8 - Tg); | |
252 Cr[WS(csr, 2)] = FNMS(KP500000000, To, Tn); | |
253 Cr[WS(csr, 7)] = Tn + To; | |
254 } | |
255 { | |
256 E TM, TX, TT, TV, TP, TU, TN, TW; | |
257 TM = TB + TA; | |
258 TX = KP866025403 * (TR + TS); | |
259 TT = TR - TS; | |
260 TV = FMS(KP500000000, TT, TQ); | |
261 TN = T1 + TE + FNMS(KP809016994, T2, TD); | |
262 TP = TN + TO; | |
263 TU = KP866025403 * (TO - TN); | |
264 Cr[WS(csr, 1)] = TM + TP; | |
265 Ci[WS(csi, 1)] = TQ + TT; | |
266 Ci[WS(csi, 6)] = TU - TV; | |
267 Ci[WS(csi, 3)] = TU + TV; | |
268 TW = FNMS(KP500000000, TP, TM); | |
269 Cr[WS(csr, 3)] = TW - TX; | |
270 Cr[WS(csr, 6)] = TW + TX; | |
271 } | |
272 { | |
273 E Tz, TC, Ty, TK, TI, TL, TF, TJ; | |
274 Tz = KP866025403 * (Tx + Tu); | |
275 TC = TA - TB; | |
276 Ty = Tu - Tx; | |
277 TK = FMS(KP500000000, Ty, Tr); | |
278 TF = FMA(KP309016994, T2, T1) + TD - TE; | |
279 TI = TF + TH; | |
280 TL = KP866025403 * (TH - TF); | |
281 Ci[WS(csi, 4)] = Tr + Ty; | |
282 Cr[WS(csr, 4)] = TC + TI; | |
283 Ci[WS(csi, 5)] = TK - TL; | |
284 Ci[0] = TK + TL; | |
285 TJ = FNMS(KP500000000, TI, TC); | |
286 Cr[0] = Tz + TJ; | |
287 Cr[WS(csr, 5)] = TJ - Tz; | |
288 } | |
289 } | |
290 } | |
291 } | |
292 | |
293 static const kr2c_desc desc = { 15, "r2cfII_15", {54, 15, 18, 0}, &GENUS }; | |
294 | |
295 void X(codelet_r2cfII_15) (planner *p) { | |
296 X(kr2c_register) (p, r2cfII_15, &desc); | |
297 } | |
298 | |
299 #endif /* HAVE_FMA */ |