Mercurial > hg > js-dsp-test
comparison fft/fftw/fftw-3.3.4/rdft/scalar/r2cf/hf_7.c @ 19:26056e866c29
Add FFTW to comparison table
author | Chris Cannam |
---|---|
date | Tue, 06 Oct 2015 13:08:39 +0100 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
18:8db794ca3e0b | 19:26056e866c29 |
---|---|
1 /* | |
2 * Copyright (c) 2003, 2007-14 Matteo Frigo | |
3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology | |
4 * | |
5 * This program is free software; you can redistribute it and/or modify | |
6 * it under the terms of the GNU General Public License as published by | |
7 * the Free Software Foundation; either version 2 of the License, or | |
8 * (at your option) any later version. | |
9 * | |
10 * This program is distributed in the hope that it will be useful, | |
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
13 * GNU General Public License for more details. | |
14 * | |
15 * You should have received a copy of the GNU General Public License | |
16 * along with this program; if not, write to the Free Software | |
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA | |
18 * | |
19 */ | |
20 | |
21 /* This file was automatically generated --- DO NOT EDIT */ | |
22 /* Generated on Tue Mar 4 13:49:09 EST 2014 */ | |
23 | |
24 #include "codelet-rdft.h" | |
25 | |
26 #ifdef HAVE_FMA | |
27 | |
28 /* Generated by: ../../../genfft/gen_hc2hc.native -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -n 7 -dit -name hf_7 -include hf.h */ | |
29 | |
30 /* | |
31 * This function contains 72 FP additions, 66 FP multiplications, | |
32 * (or, 18 additions, 12 multiplications, 54 fused multiply/add), | |
33 * 62 stack variables, 6 constants, and 28 memory accesses | |
34 */ | |
35 #include "hf.h" | |
36 | |
37 static void hf_7(R *cr, R *ci, const R *W, stride rs, INT mb, INT me, INT ms) | |
38 { | |
39 DK(KP974927912, +0.974927912181823607018131682993931217232785801); | |
40 DK(KP801937735, +0.801937735804838252472204639014890102331838324); | |
41 DK(KP900968867, +0.900968867902419126236102319507445051165919162); | |
42 DK(KP692021471, +0.692021471630095869627814897002069140197260599); | |
43 DK(KP554958132, +0.554958132087371191422194871006410481067288862); | |
44 DK(KP356895867, +0.356895867892209443894399510021300583399127187); | |
45 { | |
46 INT m; | |
47 for (m = mb, W = W + ((mb - 1) * 12); m < me; m = m + 1, cr = cr + ms, ci = ci - ms, W = W + 12, MAKE_VOLATILE_STRIDE(14, rs)) { | |
48 E T1, TR, T18, T10, T12, T16, T11, T13; | |
49 { | |
50 E T19, T1a, T1i, Te, Tt, Tw, T1b, TM, T1h, Tr, Tu, TS, Tz, TC, Ty; | |
51 E Tv, TB; | |
52 T1 = cr[0]; | |
53 T19 = ci[0]; | |
54 { | |
55 E T9, Tc, TP, Ta, Tb, TO, T7; | |
56 { | |
57 E T3, T6, T8, TN, T4, T2, T5; | |
58 T3 = cr[WS(rs, 1)]; | |
59 T6 = ci[WS(rs, 1)]; | |
60 T2 = W[0]; | |
61 T9 = cr[WS(rs, 6)]; | |
62 Tc = ci[WS(rs, 6)]; | |
63 T8 = W[10]; | |
64 TN = T2 * T6; | |
65 T4 = T2 * T3; | |
66 T5 = W[1]; | |
67 TP = T8 * Tc; | |
68 Ta = T8 * T9; | |
69 Tb = W[11]; | |
70 TO = FNMS(T5, T3, TN); | |
71 T7 = FMA(T5, T6, T4); | |
72 } | |
73 { | |
74 E Tg, Tj, Th, TI, Tm, Tp, Tl, Ti, To, TQ, Td, Tf; | |
75 Tg = cr[WS(rs, 2)]; | |
76 TQ = FNMS(Tb, T9, TP); | |
77 Td = FMA(Tb, Tc, Ta); | |
78 Tj = ci[WS(rs, 2)]; | |
79 Tf = W[2]; | |
80 T1a = TO + TQ; | |
81 TR = TO - TQ; | |
82 T1i = Td - T7; | |
83 Te = T7 + Td; | |
84 Th = Tf * Tg; | |
85 TI = Tf * Tj; | |
86 Tm = cr[WS(rs, 5)]; | |
87 Tp = ci[WS(rs, 5)]; | |
88 Tl = W[8]; | |
89 Ti = W[3]; | |
90 To = W[9]; | |
91 { | |
92 E TJ, Tk, TL, Tq, TK, Tn, Ts; | |
93 Tt = cr[WS(rs, 3)]; | |
94 TK = Tl * Tp; | |
95 Tn = Tl * Tm; | |
96 TJ = FNMS(Ti, Tg, TI); | |
97 Tk = FMA(Ti, Tj, Th); | |
98 TL = FNMS(To, Tm, TK); | |
99 Tq = FMA(To, Tp, Tn); | |
100 Tw = ci[WS(rs, 3)]; | |
101 Ts = W[4]; | |
102 T1b = TJ + TL; | |
103 TM = TJ - TL; | |
104 T1h = Tq - Tk; | |
105 Tr = Tk + Tq; | |
106 Tu = Ts * Tt; | |
107 TS = Ts * Tw; | |
108 } | |
109 Tz = cr[WS(rs, 4)]; | |
110 TC = ci[WS(rs, 4)]; | |
111 Ty = W[6]; | |
112 Tv = W[5]; | |
113 TB = W[7]; | |
114 } | |
115 } | |
116 { | |
117 E TF, TT, Tx, TV, TD, T1q, TU, TA; | |
118 TF = FNMS(KP356895867, Tr, Te); | |
119 TU = Ty * TC; | |
120 TA = Ty * Tz; | |
121 TT = FNMS(Tv, Tt, TS); | |
122 Tx = FMA(Tv, Tw, Tu); | |
123 TV = FNMS(TB, Tz, TU); | |
124 TD = FMA(TB, TC, TA); | |
125 T1q = FNMS(KP356895867, T1b, T1a); | |
126 { | |
127 E TW, TE, T1k, T1f; | |
128 { | |
129 E T1e, T1s, TY, T1p, T1u, TH, T1n, T1j, T1c, T1g; | |
130 T1j = FNMS(KP554958132, T1i, T1h); | |
131 T1c = TT + TV; | |
132 TW = TT - TV; | |
133 T1g = TD - Tx; | |
134 TE = Tx + TD; | |
135 { | |
136 E T1d, T1l, T1r, TX; | |
137 T1d = FNMS(KP356895867, T1c, T1b); | |
138 T1l = FNMS(KP356895867, T1a, T1c); | |
139 T1r = FNMS(KP692021471, T1q, T1c); | |
140 ci[WS(rs, 6)] = T1a + T1b + T1c + T19; | |
141 TX = FMA(KP554958132, TW, TR); | |
142 { | |
143 E T1o, T1t, TG, T1m; | |
144 T1o = FMA(KP554958132, T1h, T1g); | |
145 T1t = FMA(KP554958132, T1g, T1i); | |
146 TG = FNMS(KP692021471, TF, TE); | |
147 cr[0] = T1 + Te + Tr + TE; | |
148 T1e = FNMS(KP692021471, T1d, T1a); | |
149 T1m = FNMS(KP692021471, T1l, T1b); | |
150 T1s = FNMS(KP900968867, T1r, T19); | |
151 TY = FMA(KP801937735, TX, TM); | |
152 T1p = FNMS(KP801937735, T1o, T1i); | |
153 T1u = FMA(KP801937735, T1t, T1h); | |
154 TH = FNMS(KP900968867, TG, T1); | |
155 T1n = FNMS(KP900968867, T1m, T19); | |
156 T1k = FNMS(KP801937735, T1j, T1g); | |
157 } | |
158 } | |
159 ci[WS(rs, 5)] = FMA(KP974927912, T1u, T1s); | |
160 cr[WS(rs, 6)] = FMS(KP974927912, T1u, T1s); | |
161 cr[WS(rs, 1)] = FMA(KP974927912, TY, TH); | |
162 ci[0] = FNMS(KP974927912, TY, TH); | |
163 ci[WS(rs, 4)] = FMA(KP974927912, T1p, T1n); | |
164 cr[WS(rs, 5)] = FMS(KP974927912, T1p, T1n); | |
165 T1f = FNMS(KP900968867, T1e, T19); | |
166 } | |
167 { | |
168 E T14, T17, T15, TZ; | |
169 T14 = FNMS(KP356895867, TE, Tr); | |
170 T17 = FNMS(KP554958132, TR, TM); | |
171 TZ = FNMS(KP356895867, Te, TE); | |
172 ci[WS(rs, 3)] = FMA(KP974927912, T1k, T1f); | |
173 cr[WS(rs, 4)] = FMS(KP974927912, T1k, T1f); | |
174 T15 = FNMS(KP692021471, T14, Te); | |
175 T18 = FNMS(KP801937735, T17, TW); | |
176 T10 = FNMS(KP692021471, TZ, Tr); | |
177 T12 = FMA(KP554958132, TM, TW); | |
178 T16 = FNMS(KP900968867, T15, T1); | |
179 } | |
180 } | |
181 } | |
182 } | |
183 T11 = FNMS(KP900968867, T10, T1); | |
184 T13 = FNMS(KP801937735, T12, TR); | |
185 cr[WS(rs, 3)] = FMA(KP974927912, T18, T16); | |
186 ci[WS(rs, 2)] = FNMS(KP974927912, T18, T16); | |
187 cr[WS(rs, 2)] = FMA(KP974927912, T13, T11); | |
188 ci[WS(rs, 1)] = FNMS(KP974927912, T13, T11); | |
189 } | |
190 } | |
191 } | |
192 | |
193 static const tw_instr twinstr[] = { | |
194 {TW_FULL, 1, 7}, | |
195 {TW_NEXT, 1, 0} | |
196 }; | |
197 | |
198 static const hc2hc_desc desc = { 7, "hf_7", twinstr, &GENUS, {18, 12, 54, 0} }; | |
199 | |
200 void X(codelet_hf_7) (planner *p) { | |
201 X(khc2hc_register) (p, hf_7, &desc); | |
202 } | |
203 #else /* HAVE_FMA */ | |
204 | |
205 /* Generated by: ../../../genfft/gen_hc2hc.native -compact -variables 4 -pipeline-latency 4 -n 7 -dit -name hf_7 -include hf.h */ | |
206 | |
207 /* | |
208 * This function contains 72 FP additions, 60 FP multiplications, | |
209 * (or, 36 additions, 24 multiplications, 36 fused multiply/add), | |
210 * 29 stack variables, 6 constants, and 28 memory accesses | |
211 */ | |
212 #include "hf.h" | |
213 | |
214 static void hf_7(R *cr, R *ci, const R *W, stride rs, INT mb, INT me, INT ms) | |
215 { | |
216 DK(KP222520933, +0.222520933956314404288902564496794759466355569); | |
217 DK(KP900968867, +0.900968867902419126236102319507445051165919162); | |
218 DK(KP623489801, +0.623489801858733530525004884004239810632274731); | |
219 DK(KP433883739, +0.433883739117558120475768332848358754609990728); | |
220 DK(KP974927912, +0.974927912181823607018131682993931217232785801); | |
221 DK(KP781831482, +0.781831482468029808708444526674057750232334519); | |
222 { | |
223 INT m; | |
224 for (m = mb, W = W + ((mb - 1) * 12); m < me; m = m + 1, cr = cr + ms, ci = ci - ms, W = W + 12, MAKE_VOLATILE_STRIDE(14, rs)) { | |
225 E T1, TT, Tc, TV, TC, TO, Tn, TS, TI, TP, Ty, TU, TF, TQ; | |
226 T1 = cr[0]; | |
227 TT = ci[0]; | |
228 { | |
229 E T6, TA, Tb, TB; | |
230 { | |
231 E T3, T5, T2, T4; | |
232 T3 = cr[WS(rs, 1)]; | |
233 T5 = ci[WS(rs, 1)]; | |
234 T2 = W[0]; | |
235 T4 = W[1]; | |
236 T6 = FMA(T2, T3, T4 * T5); | |
237 TA = FNMS(T4, T3, T2 * T5); | |
238 } | |
239 { | |
240 E T8, Ta, T7, T9; | |
241 T8 = cr[WS(rs, 6)]; | |
242 Ta = ci[WS(rs, 6)]; | |
243 T7 = W[10]; | |
244 T9 = W[11]; | |
245 Tb = FMA(T7, T8, T9 * Ta); | |
246 TB = FNMS(T9, T8, T7 * Ta); | |
247 } | |
248 Tc = T6 + Tb; | |
249 TV = TA + TB; | |
250 TC = TA - TB; | |
251 TO = Tb - T6; | |
252 } | |
253 { | |
254 E Th, TG, Tm, TH; | |
255 { | |
256 E Te, Tg, Td, Tf; | |
257 Te = cr[WS(rs, 2)]; | |
258 Tg = ci[WS(rs, 2)]; | |
259 Td = W[2]; | |
260 Tf = W[3]; | |
261 Th = FMA(Td, Te, Tf * Tg); | |
262 TG = FNMS(Tf, Te, Td * Tg); | |
263 } | |
264 { | |
265 E Tj, Tl, Ti, Tk; | |
266 Tj = cr[WS(rs, 5)]; | |
267 Tl = ci[WS(rs, 5)]; | |
268 Ti = W[8]; | |
269 Tk = W[9]; | |
270 Tm = FMA(Ti, Tj, Tk * Tl); | |
271 TH = FNMS(Tk, Tj, Ti * Tl); | |
272 } | |
273 Tn = Th + Tm; | |
274 TS = TG + TH; | |
275 TI = TG - TH; | |
276 TP = Th - Tm; | |
277 } | |
278 { | |
279 E Ts, TD, Tx, TE; | |
280 { | |
281 E Tp, Tr, To, Tq; | |
282 Tp = cr[WS(rs, 3)]; | |
283 Tr = ci[WS(rs, 3)]; | |
284 To = W[4]; | |
285 Tq = W[5]; | |
286 Ts = FMA(To, Tp, Tq * Tr); | |
287 TD = FNMS(Tq, Tp, To * Tr); | |
288 } | |
289 { | |
290 E Tu, Tw, Tt, Tv; | |
291 Tu = cr[WS(rs, 4)]; | |
292 Tw = ci[WS(rs, 4)]; | |
293 Tt = W[6]; | |
294 Tv = W[7]; | |
295 Tx = FMA(Tt, Tu, Tv * Tw); | |
296 TE = FNMS(Tv, Tu, Tt * Tw); | |
297 } | |
298 Ty = Ts + Tx; | |
299 TU = TD + TE; | |
300 TF = TD - TE; | |
301 TQ = Tx - Ts; | |
302 } | |
303 { | |
304 E TL, TK, TZ, T10; | |
305 cr[0] = T1 + Tc + Tn + Ty; | |
306 TL = FMA(KP781831482, TC, KP974927912 * TI) + (KP433883739 * TF); | |
307 TK = FMA(KP623489801, Tc, T1) + FNMA(KP900968867, Ty, KP222520933 * Tn); | |
308 ci[0] = TK - TL; | |
309 cr[WS(rs, 1)] = TK + TL; | |
310 ci[WS(rs, 6)] = TV + TS + TU + TT; | |
311 TZ = FMA(KP781831482, TO, KP433883739 * TQ) - (KP974927912 * TP); | |
312 T10 = FMA(KP623489801, TV, TT) + FNMA(KP900968867, TU, KP222520933 * TS); | |
313 cr[WS(rs, 6)] = TZ - T10; | |
314 ci[WS(rs, 5)] = TZ + T10; | |
315 } | |
316 { | |
317 E TX, TY, TR, TW; | |
318 TX = FMA(KP974927912, TO, KP433883739 * TP) - (KP781831482 * TQ); | |
319 TY = FMA(KP623489801, TU, TT) + FNMA(KP900968867, TS, KP222520933 * TV); | |
320 cr[WS(rs, 5)] = TX - TY; | |
321 ci[WS(rs, 4)] = TX + TY; | |
322 TR = FMA(KP433883739, TO, KP781831482 * TP) + (KP974927912 * TQ); | |
323 TW = FMA(KP623489801, TS, TT) + FNMA(KP222520933, TU, KP900968867 * TV); | |
324 cr[WS(rs, 4)] = TR - TW; | |
325 ci[WS(rs, 3)] = TR + TW; | |
326 } | |
327 { | |
328 E TN, TM, TJ, Tz; | |
329 TN = FMA(KP433883739, TC, KP974927912 * TF) - (KP781831482 * TI); | |
330 TM = FMA(KP623489801, Tn, T1) + FNMA(KP222520933, Ty, KP900968867 * Tc); | |
331 ci[WS(rs, 2)] = TM - TN; | |
332 cr[WS(rs, 3)] = TM + TN; | |
333 TJ = FNMS(KP781831482, TF, KP974927912 * TC) - (KP433883739 * TI); | |
334 Tz = FMA(KP623489801, Ty, T1) + FNMA(KP900968867, Tn, KP222520933 * Tc); | |
335 ci[WS(rs, 1)] = Tz - TJ; | |
336 cr[WS(rs, 2)] = Tz + TJ; | |
337 } | |
338 } | |
339 } | |
340 } | |
341 | |
342 static const tw_instr twinstr[] = { | |
343 {TW_FULL, 1, 7}, | |
344 {TW_NEXT, 1, 0} | |
345 }; | |
346 | |
347 static const hc2hc_desc desc = { 7, "hf_7", twinstr, &GENUS, {36, 24, 36, 0} }; | |
348 | |
349 void X(codelet_hf_7) (planner *p) { | |
350 X(khc2hc_register) (p, hf_7, &desc); | |
351 } | |
352 #endif /* HAVE_FMA */ |