comparison fft/fftw/fftw-3.3.4/rdft/scalar/r2cf/hf_64.c @ 19:26056e866c29

Add FFTW to comparison table
author Chris Cannam
date Tue, 06 Oct 2015 13:08:39 +0100
parents
children
comparison
equal deleted inserted replaced
18:8db794ca3e0b 19:26056e866c29
1 /*
2 * Copyright (c) 2003, 2007-14 Matteo Frigo
3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
18 *
19 */
20
21 /* This file was automatically generated --- DO NOT EDIT */
22 /* Generated on Tue Mar 4 13:49:10 EST 2014 */
23
24 #include "codelet-rdft.h"
25
26 #ifdef HAVE_FMA
27
28 /* Generated by: ../../../genfft/gen_hc2hc.native -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -n 64 -dit -name hf_64 -include hf.h */
29
30 /*
31 * This function contains 1038 FP additions, 644 FP multiplications,
32 * (or, 520 additions, 126 multiplications, 518 fused multiply/add),
33 * 246 stack variables, 15 constants, and 256 memory accesses
34 */
35 #include "hf.h"
36
37 static void hf_64(R *cr, R *ci, const R *W, stride rs, INT mb, INT me, INT ms)
38 {
39 DK(KP881921264, +0.881921264348355029712756863660388349508442621);
40 DK(KP956940335, +0.956940335732208864935797886980269969482849206);
41 DK(KP773010453, +0.773010453362736960810906609758469800971041293);
42 DK(KP995184726, +0.995184726672196886244836953109479921575474869);
43 DK(KP831469612, +0.831469612302545237078788377617905756738560812);
44 DK(KP980785280, +0.980785280403230449126182236134239036973933731);
45 DK(KP668178637, +0.668178637919298919997757686523080761552472251);
46 DK(KP534511135, +0.534511135950791641089685961295362908582039528);
47 DK(KP303346683, +0.303346683607342391675883946941299872384187453);
48 DK(KP098491403, +0.098491403357164253077197521291327432293052451);
49 DK(KP820678790, +0.820678790828660330972281985331011598767386482);
50 DK(KP923879532, +0.923879532511286756128183189396788286822416626);
51 DK(KP198912367, +0.198912367379658006911597622644676228597850501);
52 DK(KP707106781, +0.707106781186547524400844362104849039284835938);
53 DK(KP414213562, +0.414213562373095048801688724209698078569671875);
54 {
55 INT m;
56 for (m = mb, W = W + ((mb - 1) * 126); m < me; m = m + 1, cr = cr + ms, ci = ci - ms, W = W + 126, MAKE_VOLATILE_STRIDE(128, rs)) {
57 E Tku, Tky, Tkt, Tkx;
58 {
59 E TiV, Tjm, T7e, TcA, TjR, Tkl, Tm, TeM, T7Q, TcI, TeZ, Thr, T1G, TeW, TcJ;
60 E T7X, T87, TcN, Tf5, Thw, T29, Tf8, TcQ, T8u, Taq, Tdm, Tgc, ThX, T5K, TfS;
61 E Tdx, Tbj, TcB, T7l, TiP, TeP, Tjl, TN, TcC, T7s, T7B, TcF, TeU, Ths, T7I;
62 E TcG, T1f, TeR, T8G, TcU, Tfg, ThB, T32, Tfj, TcX, T93, T9h, Td3, TfK, ThM;
63 E T3X, Tfr, Tde, Taa, Thx, Tfb, Tf6, T2A, T8x, TcO, T8m, TcR, Tfm, ThC, T3t;
64 E Tfh, T96, TcV, T8V, TcY, ThN, Tfu, TfL, T4o, Tad, Td4, T9w, Tdf, TfV, ThY;
65 E T6b, Tg9, Tbm, Tdn, TaF, Tdy, ThJ, T4Q, TfN, TfA, Taf, T9M, Td8, Tdh, ThI;
66 E T5h, TfO, TfF, Tag, Ta1, Tdb, Tdi, ThU, T6D, Tgf, Tg1, Tbo, TaV, Tdr, TdA;
67 E Tb2, Tds, Tg5, ThT, Tg2, T74, Tdt, Tb9;
68 {
69 E T7a, Te, T78, T8, TjQ, TiU, T7c, Tk;
70 {
71 E T1, TiT, TiS, T7, Tg, Tj, Tf, Ti, T7b, Th;
72 T1 = cr[0];
73 TiT = ci[0];
74 {
75 E T3, T6, T2, T5;
76 T3 = cr[WS(rs, 32)];
77 T6 = ci[WS(rs, 32)];
78 T2 = W[62];
79 T5 = W[63];
80 {
81 E Ta, Td, Tc, T79, Tb, TiR, T4, T9;
82 Ta = cr[WS(rs, 16)];
83 Td = ci[WS(rs, 16)];
84 TiR = T2 * T6;
85 T4 = T2 * T3;
86 T9 = W[30];
87 Tc = W[31];
88 TiS = FNMS(T5, T3, TiR);
89 T7 = FMA(T5, T6, T4);
90 T79 = T9 * Td;
91 Tb = T9 * Ta;
92 Tg = cr[WS(rs, 48)];
93 Tj = ci[WS(rs, 48)];
94 T7a = FNMS(Tc, Ta, T79);
95 Te = FMA(Tc, Td, Tb);
96 Tf = W[94];
97 Ti = W[95];
98 }
99 }
100 T78 = T1 - T7;
101 T8 = T1 + T7;
102 TjQ = TiT - TiS;
103 TiU = TiS + TiT;
104 T7b = Tf * Tj;
105 Th = Tf * Tg;
106 T7c = FNMS(Ti, Tg, T7b);
107 Tk = FMA(Ti, Tj, Th);
108 }
109 {
110 E T7S, T1l, T7O, T1E, T1u, T1x, T1w, T7U, T1r, T7L, T1v;
111 {
112 E T1A, T1D, T1C, T7N, T1B;
113 {
114 E T1h, T1k, T1g, T1j, T7R, T1i, T1z;
115 T1h = cr[WS(rs, 60)];
116 T1k = ci[WS(rs, 60)];
117 {
118 E T7d, TiQ, Tl, TjP;
119 T7d = T7a - T7c;
120 TiQ = T7a + T7c;
121 Tl = Te + Tk;
122 TjP = Te - Tk;
123 TiV = TiQ + TiU;
124 Tjm = TiU - TiQ;
125 T7e = T78 - T7d;
126 TcA = T78 + T7d;
127 TjR = TjP + TjQ;
128 Tkl = TjQ - TjP;
129 Tm = T8 + Tl;
130 TeM = T8 - Tl;
131 T1g = W[118];
132 }
133 T1j = W[119];
134 T1A = cr[WS(rs, 44)];
135 T1D = ci[WS(rs, 44)];
136 T7R = T1g * T1k;
137 T1i = T1g * T1h;
138 T1z = W[86];
139 T1C = W[87];
140 T7S = FNMS(T1j, T1h, T7R);
141 T1l = FMA(T1j, T1k, T1i);
142 T7N = T1z * T1D;
143 T1B = T1z * T1A;
144 }
145 {
146 E T1n, T1q, T1m, T1p, T7T, T1o, T1t;
147 T1n = cr[WS(rs, 28)];
148 T1q = ci[WS(rs, 28)];
149 T7O = FNMS(T1C, T1A, T7N);
150 T1E = FMA(T1C, T1D, T1B);
151 T1m = W[54];
152 T1p = W[55];
153 T1u = cr[WS(rs, 12)];
154 T1x = ci[WS(rs, 12)];
155 T7T = T1m * T1q;
156 T1o = T1m * T1n;
157 T1t = W[22];
158 T1w = W[23];
159 T7U = FNMS(T1p, T1n, T7T);
160 T1r = FMA(T1p, T1q, T1o);
161 T7L = T1t * T1x;
162 T1v = T1t * T1u;
163 }
164 }
165 {
166 E T7V, TeX, T1s, T7K, T7M, T1y;
167 T7V = T7S - T7U;
168 TeX = T7S + T7U;
169 T1s = T1l + T1r;
170 T7K = T1l - T1r;
171 T7M = FNMS(T1w, T1u, T7L);
172 T1y = FMA(T1w, T1x, T1v);
173 {
174 E TeY, T7P, T7W, T1F;
175 TeY = T7M + T7O;
176 T7P = T7M - T7O;
177 T7W = T1y - T1E;
178 T1F = T1y + T1E;
179 T7Q = T7K - T7P;
180 TcI = T7K + T7P;
181 TeZ = TeX - TeY;
182 Thr = TeX + TeY;
183 T1G = T1s + T1F;
184 TeW = T1s - T1F;
185 TcJ = T7V - T7W;
186 T7X = T7V + T7W;
187 }
188 }
189 }
190 }
191 {
192 E T8p, T1O, T85, T27, T1X, T20, T1Z, T8r, T1U, T82, T1Y;
193 {
194 E T23, T26, T25, T84, T24;
195 {
196 E T1K, T1N, T1J, T1M, T8o, T1L, T22;
197 T1K = cr[WS(rs, 2)];
198 T1N = ci[WS(rs, 2)];
199 T1J = W[2];
200 T1M = W[3];
201 T23 = cr[WS(rs, 50)];
202 T26 = ci[WS(rs, 50)];
203 T8o = T1J * T1N;
204 T1L = T1J * T1K;
205 T22 = W[98];
206 T25 = W[99];
207 T8p = FNMS(T1M, T1K, T8o);
208 T1O = FMA(T1M, T1N, T1L);
209 T84 = T22 * T26;
210 T24 = T22 * T23;
211 }
212 {
213 E T1Q, T1T, T1P, T1S, T8q, T1R, T1W;
214 T1Q = cr[WS(rs, 34)];
215 T1T = ci[WS(rs, 34)];
216 T85 = FNMS(T25, T23, T84);
217 T27 = FMA(T25, T26, T24);
218 T1P = W[66];
219 T1S = W[67];
220 T1X = cr[WS(rs, 18)];
221 T20 = ci[WS(rs, 18)];
222 T8q = T1P * T1T;
223 T1R = T1P * T1Q;
224 T1W = W[34];
225 T1Z = W[35];
226 T8r = FNMS(T1S, T1Q, T8q);
227 T1U = FMA(T1S, T1T, T1R);
228 T82 = T1W * T20;
229 T1Y = T1W * T1X;
230 }
231 }
232 {
233 E T8s, Tf3, T1V, T81, T83, T21;
234 T8s = T8p - T8r;
235 Tf3 = T8p + T8r;
236 T1V = T1O + T1U;
237 T81 = T1O - T1U;
238 T83 = FNMS(T1Z, T1X, T82);
239 T21 = FMA(T1Z, T20, T1Y);
240 {
241 E Tf4, T86, T8t, T28;
242 Tf4 = T83 + T85;
243 T86 = T83 - T85;
244 T8t = T21 - T27;
245 T28 = T21 + T27;
246 T87 = T81 - T86;
247 TcN = T81 + T86;
248 Tf5 = Tf3 - Tf4;
249 Thw = Tf3 + Tf4;
250 T29 = T1V + T28;
251 Tf8 = T1V - T28;
252 TcQ = T8s - T8t;
253 T8u = T8s + T8t;
254 }
255 }
256 }
257 {
258 E Tbf, T5p, Tao, T5I, T5y, T5B, T5A, Tbh, T5v, Tal, T5z;
259 {
260 E T5E, T5H, T5G, Tan, T5F;
261 {
262 E T5l, T5o, T5k, T5n, Tbe, T5m, T5D;
263 T5l = cr[WS(rs, 63)];
264 T5o = ci[WS(rs, 63)];
265 T5k = W[124];
266 T5n = W[125];
267 T5E = cr[WS(rs, 47)];
268 T5H = ci[WS(rs, 47)];
269 Tbe = T5k * T5o;
270 T5m = T5k * T5l;
271 T5D = W[92];
272 T5G = W[93];
273 Tbf = FNMS(T5n, T5l, Tbe);
274 T5p = FMA(T5n, T5o, T5m);
275 Tan = T5D * T5H;
276 T5F = T5D * T5E;
277 }
278 {
279 E T5r, T5u, T5q, T5t, Tbg, T5s, T5x;
280 T5r = cr[WS(rs, 31)];
281 T5u = ci[WS(rs, 31)];
282 Tao = FNMS(T5G, T5E, Tan);
283 T5I = FMA(T5G, T5H, T5F);
284 T5q = W[60];
285 T5t = W[61];
286 T5y = cr[WS(rs, 15)];
287 T5B = ci[WS(rs, 15)];
288 Tbg = T5q * T5u;
289 T5s = T5q * T5r;
290 T5x = W[28];
291 T5A = W[29];
292 Tbh = FNMS(T5t, T5r, Tbg);
293 T5v = FMA(T5t, T5u, T5s);
294 Tal = T5x * T5B;
295 T5z = T5x * T5y;
296 }
297 }
298 {
299 E Tbi, Tga, T5w, Tak, Tam, T5C;
300 Tbi = Tbf - Tbh;
301 Tga = Tbf + Tbh;
302 T5w = T5p + T5v;
303 Tak = T5p - T5v;
304 Tam = FNMS(T5A, T5y, Tal);
305 T5C = FMA(T5A, T5B, T5z);
306 {
307 E Tgb, Tap, T5J, Tbd;
308 Tgb = Tam + Tao;
309 Tap = Tam - Tao;
310 T5J = T5C + T5I;
311 Tbd = T5I - T5C;
312 Taq = Tak - Tap;
313 Tdm = Tak + Tap;
314 Tgc = Tga - Tgb;
315 ThX = Tga + Tgb;
316 T5K = T5w + T5J;
317 TfS = T5w - T5J;
318 Tdx = Tbi + Tbd;
319 Tbj = Tbd - Tbi;
320 }
321 }
322 }
323 {
324 E T7z, T1d, T7G, TeS, T11, T7v, T7x, T17, T7r, T7m;
325 {
326 E T7h, Ts, T7q, TL, TB, TE, TD, T7j, Ty, T7n, TC;
327 {
328 E TH, TK, TJ, T7p, TI;
329 {
330 E To, Tr, Tn, Tq, T7g, Tp, TG;
331 To = cr[WS(rs, 8)];
332 Tr = ci[WS(rs, 8)];
333 Tn = W[14];
334 Tq = W[15];
335 TH = cr[WS(rs, 24)];
336 TK = ci[WS(rs, 24)];
337 T7g = Tn * Tr;
338 Tp = Tn * To;
339 TG = W[46];
340 TJ = W[47];
341 T7h = FNMS(Tq, To, T7g);
342 Ts = FMA(Tq, Tr, Tp);
343 T7p = TG * TK;
344 TI = TG * TH;
345 }
346 {
347 E Tu, Tx, Tt, Tw, T7i, Tv, TA;
348 Tu = cr[WS(rs, 40)];
349 Tx = ci[WS(rs, 40)];
350 T7q = FNMS(TJ, TH, T7p);
351 TL = FMA(TJ, TK, TI);
352 Tt = W[78];
353 Tw = W[79];
354 TB = cr[WS(rs, 56)];
355 TE = ci[WS(rs, 56)];
356 T7i = Tt * Tx;
357 Tv = Tt * Tu;
358 TA = W[110];
359 TD = W[111];
360 T7j = FNMS(Tw, Tu, T7i);
361 Ty = FMA(Tw, Tx, Tv);
362 T7n = TA * TE;
363 TC = TA * TB;
364 }
365 }
366 {
367 E T7k, TeO, Tz, T7f, T7o, TF, TeN, TM;
368 T7k = T7h - T7j;
369 TeO = T7h + T7j;
370 Tz = Ts + Ty;
371 T7f = Ts - Ty;
372 T7o = FNMS(TD, TB, T7n);
373 TF = FMA(TD, TE, TC);
374 T7r = T7o - T7q;
375 TeN = T7o + T7q;
376 TM = TF + TL;
377 T7m = TF - TL;
378 TcB = T7f + T7k;
379 T7l = T7f - T7k;
380 TiP = TeO + TeN;
381 TeP = TeN - TeO;
382 Tjl = Tz - TM;
383 TN = Tz + TM;
384 }
385 }
386 {
387 E T7D, TU, T13, T16, T7F, T10, T12, T15, T7w, T14;
388 {
389 E T19, T1c, T18, T1b;
390 {
391 E TQ, TT, TS, T7C, TR, TP;
392 TQ = cr[WS(rs, 4)];
393 TT = ci[WS(rs, 4)];
394 TP = W[6];
395 TcC = T7m - T7r;
396 T7s = T7m + T7r;
397 TS = W[7];
398 T7C = TP * TT;
399 TR = TP * TQ;
400 T19 = cr[WS(rs, 52)];
401 T1c = ci[WS(rs, 52)];
402 T7D = FNMS(TS, TQ, T7C);
403 TU = FMA(TS, TT, TR);
404 T18 = W[102];
405 T1b = W[103];
406 }
407 {
408 E TW, TZ, TY, T7E, TX, T7y, T1a, TV;
409 TW = cr[WS(rs, 36)];
410 TZ = ci[WS(rs, 36)];
411 T7y = T18 * T1c;
412 T1a = T18 * T19;
413 TV = W[70];
414 TY = W[71];
415 T7z = FNMS(T1b, T19, T7y);
416 T1d = FMA(T1b, T1c, T1a);
417 T7E = TV * TZ;
418 TX = TV * TW;
419 T13 = cr[WS(rs, 20)];
420 T16 = ci[WS(rs, 20)];
421 T7F = FNMS(TY, TW, T7E);
422 T10 = FMA(TY, TZ, TX);
423 T12 = W[38];
424 T15 = W[39];
425 }
426 }
427 T7G = T7D - T7F;
428 TeS = T7D + T7F;
429 T11 = TU + T10;
430 T7v = TU - T10;
431 T7w = T12 * T16;
432 T14 = T12 * T13;
433 T7x = FNMS(T15, T13, T7w);
434 T17 = FMA(T15, T16, T14);
435 }
436 {
437 E T8Y, T2H, T8E, T30, T2Q, T2T, T2S, T90, T2N, T8B, T2R;
438 {
439 E T2W, T2Z, T2Y, T8D, T2X;
440 {
441 E T2D, T2G, T2C, T2F, T8X, T2E, T2V;
442 T2D = cr[WS(rs, 62)];
443 T2G = ci[WS(rs, 62)];
444 {
445 E TeT, T7A, T1e, T7H;
446 TeT = T7x + T7z;
447 T7A = T7x - T7z;
448 T1e = T17 + T1d;
449 T7H = T17 - T1d;
450 T7B = T7v - T7A;
451 TcF = T7v + T7A;
452 TeU = TeS - TeT;
453 Ths = TeS + TeT;
454 T7I = T7G + T7H;
455 TcG = T7G - T7H;
456 T1f = T11 + T1e;
457 TeR = T11 - T1e;
458 T2C = W[122];
459 }
460 T2F = W[123];
461 T2W = cr[WS(rs, 46)];
462 T2Z = ci[WS(rs, 46)];
463 T8X = T2C * T2G;
464 T2E = T2C * T2D;
465 T2V = W[90];
466 T2Y = W[91];
467 T8Y = FNMS(T2F, T2D, T8X);
468 T2H = FMA(T2F, T2G, T2E);
469 T8D = T2V * T2Z;
470 T2X = T2V * T2W;
471 }
472 {
473 E T2J, T2M, T2I, T2L, T8Z, T2K, T2P;
474 T2J = cr[WS(rs, 30)];
475 T2M = ci[WS(rs, 30)];
476 T8E = FNMS(T2Y, T2W, T8D);
477 T30 = FMA(T2Y, T2Z, T2X);
478 T2I = W[58];
479 T2L = W[59];
480 T2Q = cr[WS(rs, 14)];
481 T2T = ci[WS(rs, 14)];
482 T8Z = T2I * T2M;
483 T2K = T2I * T2J;
484 T2P = W[26];
485 T2S = W[27];
486 T90 = FNMS(T2L, T2J, T8Z);
487 T2N = FMA(T2L, T2M, T2K);
488 T8B = T2P * T2T;
489 T2R = T2P * T2Q;
490 }
491 }
492 {
493 E T91, Tfe, T2O, T8A, T8C, T2U;
494 T91 = T8Y - T90;
495 Tfe = T8Y + T90;
496 T2O = T2H + T2N;
497 T8A = T2H - T2N;
498 T8C = FNMS(T2S, T2Q, T8B);
499 T2U = FMA(T2S, T2T, T2R);
500 {
501 E Tff, T8F, T92, T31;
502 Tff = T8C + T8E;
503 T8F = T8C - T8E;
504 T92 = T2U - T30;
505 T31 = T2U + T30;
506 T8G = T8A - T8F;
507 TcU = T8A + T8F;
508 Tfg = Tfe - Tff;
509 ThB = Tfe + Tff;
510 T32 = T2O + T31;
511 Tfj = T2O - T31;
512 TcX = T91 - T92;
513 T93 = T91 + T92;
514 }
515 }
516 }
517 {
518 E Ta5, T3C, T9f, T3V, T3L, T3O, T3N, Ta7, T3I, T9c, T3M;
519 {
520 E T3R, T3U, T3T, T9e, T3S;
521 {
522 E T3y, T3B, T3x, T3A, Ta4, T3z, T3Q;
523 T3y = cr[WS(rs, 1)];
524 T3B = ci[WS(rs, 1)];
525 T3x = W[0];
526 T3A = W[1];
527 T3R = cr[WS(rs, 49)];
528 T3U = ci[WS(rs, 49)];
529 Ta4 = T3x * T3B;
530 T3z = T3x * T3y;
531 T3Q = W[96];
532 T3T = W[97];
533 Ta5 = FNMS(T3A, T3y, Ta4);
534 T3C = FMA(T3A, T3B, T3z);
535 T9e = T3Q * T3U;
536 T3S = T3Q * T3R;
537 }
538 {
539 E T3E, T3H, T3D, T3G, Ta6, T3F, T3K;
540 T3E = cr[WS(rs, 33)];
541 T3H = ci[WS(rs, 33)];
542 T9f = FNMS(T3T, T3R, T9e);
543 T3V = FMA(T3T, T3U, T3S);
544 T3D = W[64];
545 T3G = W[65];
546 T3L = cr[WS(rs, 17)];
547 T3O = ci[WS(rs, 17)];
548 Ta6 = T3D * T3H;
549 T3F = T3D * T3E;
550 T3K = W[32];
551 T3N = W[33];
552 Ta7 = FNMS(T3G, T3E, Ta6);
553 T3I = FMA(T3G, T3H, T3F);
554 T9c = T3K * T3O;
555 T3M = T3K * T3L;
556 }
557 }
558 {
559 E Ta8, TfI, T3J, T9b, T9d, T3P;
560 Ta8 = Ta5 - Ta7;
561 TfI = Ta5 + Ta7;
562 T3J = T3C + T3I;
563 T9b = T3C - T3I;
564 T9d = FNMS(T3N, T3L, T9c);
565 T3P = FMA(T3N, T3O, T3M);
566 {
567 E TfJ, T9g, Ta9, T3W;
568 TfJ = T9d + T9f;
569 T9g = T9d - T9f;
570 Ta9 = T3P - T3V;
571 T3W = T3P + T3V;
572 T9h = T9b - T9g;
573 Td3 = T9b + T9g;
574 TfK = TfI - TfJ;
575 ThM = TfI + TfJ;
576 T3X = T3J + T3W;
577 Tfr = T3J - T3W;
578 Tde = Ta8 - Ta9;
579 Taa = Ta8 + Ta9;
580 }
581 }
582 }
583 }
584 {
585 E TaC, T69, Taw, TfU, T5X, Tar, TaA, T63;
586 {
587 E T8S, T3r, T8M, Tfl, T3f, T8H, T8Q, T3l;
588 {
589 E T8k, T8f, T8v, T8e;
590 {
591 E T8a, T2f, T8j, T2y, T2o, T2r, T2q, T8c, T2l, T8g, T2p;
592 {
593 E T2u, T2x, T2w, T8i, T2v;
594 {
595 E T2b, T2e, T2a, T2d, T89, T2c, T2t;
596 T2b = cr[WS(rs, 10)];
597 T2e = ci[WS(rs, 10)];
598 T2a = W[18];
599 T2d = W[19];
600 T2u = cr[WS(rs, 26)];
601 T2x = ci[WS(rs, 26)];
602 T89 = T2a * T2e;
603 T2c = T2a * T2b;
604 T2t = W[50];
605 T2w = W[51];
606 T8a = FNMS(T2d, T2b, T89);
607 T2f = FMA(T2d, T2e, T2c);
608 T8i = T2t * T2x;
609 T2v = T2t * T2u;
610 }
611 {
612 E T2h, T2k, T2g, T2j, T8b, T2i, T2n;
613 T2h = cr[WS(rs, 42)];
614 T2k = ci[WS(rs, 42)];
615 T8j = FNMS(T2w, T2u, T8i);
616 T2y = FMA(T2w, T2x, T2v);
617 T2g = W[82];
618 T2j = W[83];
619 T2o = cr[WS(rs, 58)];
620 T2r = ci[WS(rs, 58)];
621 T8b = T2g * T2k;
622 T2i = T2g * T2h;
623 T2n = W[114];
624 T2q = W[115];
625 T8c = FNMS(T2j, T2h, T8b);
626 T2l = FMA(T2j, T2k, T2i);
627 T8g = T2n * T2r;
628 T2p = T2n * T2o;
629 }
630 }
631 {
632 E T8d, Tfa, T2m, T88, T8h, T2s, Tf9, T2z;
633 T8d = T8a - T8c;
634 Tfa = T8a + T8c;
635 T2m = T2f + T2l;
636 T88 = T2f - T2l;
637 T8h = FNMS(T2q, T2o, T8g);
638 T2s = FMA(T2q, T2r, T2p);
639 T8k = T8h - T8j;
640 Tf9 = T8h + T8j;
641 T2z = T2s + T2y;
642 T8f = T2s - T2y;
643 T8v = T88 + T8d;
644 T8e = T88 - T8d;
645 Thx = Tfa + Tf9;
646 Tfb = Tf9 - Tfa;
647 Tf6 = T2m - T2z;
648 T2A = T2m + T2z;
649 }
650 }
651 {
652 E T38, T8J, T3h, T3k, T8L, T3e, T3g, T3j, T8P, T3i;
653 {
654 E T3n, T3q, T3m, T3p;
655 {
656 E T34, T37, T33, T8w, T8l, T36, T8I, T35;
657 T34 = cr[WS(rs, 6)];
658 T37 = ci[WS(rs, 6)];
659 T33 = W[10];
660 T8w = T8k - T8f;
661 T8l = T8f + T8k;
662 T36 = W[11];
663 T8I = T33 * T37;
664 T35 = T33 * T34;
665 T8x = T8v + T8w;
666 TcO = T8v - T8w;
667 T8m = T8e + T8l;
668 TcR = T8l - T8e;
669 T38 = FMA(T36, T37, T35);
670 T8J = FNMS(T36, T34, T8I);
671 }
672 T3n = cr[WS(rs, 22)];
673 T3q = ci[WS(rs, 22)];
674 T3m = W[42];
675 T3p = W[43];
676 {
677 E T3a, T3d, T3c, T8K, T3b, T8R, T3o, T39;
678 T3a = cr[WS(rs, 38)];
679 T3d = ci[WS(rs, 38)];
680 T8R = T3m * T3q;
681 T3o = T3m * T3n;
682 T39 = W[74];
683 T3c = W[75];
684 T8S = FNMS(T3p, T3n, T8R);
685 T3r = FMA(T3p, T3q, T3o);
686 T8K = T39 * T3d;
687 T3b = T39 * T3a;
688 T3h = cr[WS(rs, 54)];
689 T3k = ci[WS(rs, 54)];
690 T8L = FNMS(T3c, T3a, T8K);
691 T3e = FMA(T3c, T3d, T3b);
692 T3g = W[106];
693 T3j = W[107];
694 }
695 }
696 T8M = T8J - T8L;
697 Tfl = T8J + T8L;
698 T3f = T38 + T3e;
699 T8H = T38 - T3e;
700 T8P = T3g * T3k;
701 T3i = T3g * T3h;
702 T8Q = FNMS(T3j, T3h, T8P);
703 T3l = FMA(T3j, T3k, T3i);
704 }
705 }
706 {
707 E T9u, T9p, Tab, T9o;
708 {
709 E T9k, T43, T9t, T4m, T4c, T4f, T4e, T9m, T49, T9q, T4d;
710 {
711 E T4i, T4l, T4k, T9s, T4j;
712 {
713 E T3Z, T42, T3Y, T41, T9j, T40, T4h;
714 {
715 E T94, T8N, T8T, Tfk, T8O, T3s, T8U, T95;
716 T3Z = cr[WS(rs, 9)];
717 T94 = T8H + T8M;
718 T8N = T8H - T8M;
719 T8T = T8Q - T8S;
720 Tfk = T8Q + T8S;
721 T8O = T3l - T3r;
722 T3s = T3l + T3r;
723 T42 = ci[WS(rs, 9)];
724 Tfm = Tfk - Tfl;
725 ThC = Tfl + Tfk;
726 T8U = T8O + T8T;
727 T95 = T8T - T8O;
728 T3t = T3f + T3s;
729 Tfh = T3f - T3s;
730 T96 = T94 + T95;
731 TcV = T94 - T95;
732 T8V = T8N + T8U;
733 TcY = T8U - T8N;
734 T3Y = W[16];
735 }
736 T41 = W[17];
737 T4i = cr[WS(rs, 25)];
738 T4l = ci[WS(rs, 25)];
739 T9j = T3Y * T42;
740 T40 = T3Y * T3Z;
741 T4h = W[48];
742 T4k = W[49];
743 T9k = FNMS(T41, T3Z, T9j);
744 T43 = FMA(T41, T42, T40);
745 T9s = T4h * T4l;
746 T4j = T4h * T4i;
747 }
748 {
749 E T45, T48, T44, T47, T9l, T46, T4b;
750 T45 = cr[WS(rs, 41)];
751 T48 = ci[WS(rs, 41)];
752 T9t = FNMS(T4k, T4i, T9s);
753 T4m = FMA(T4k, T4l, T4j);
754 T44 = W[80];
755 T47 = W[81];
756 T4c = cr[WS(rs, 57)];
757 T4f = ci[WS(rs, 57)];
758 T9l = T44 * T48;
759 T46 = T44 * T45;
760 T4b = W[112];
761 T4e = W[113];
762 T9m = FNMS(T47, T45, T9l);
763 T49 = FMA(T47, T48, T46);
764 T9q = T4b * T4f;
765 T4d = T4b * T4c;
766 }
767 }
768 {
769 E T9n, Tft, T4a, T9i, T9r, T4g, Tfs, T4n;
770 T9n = T9k - T9m;
771 Tft = T9k + T9m;
772 T4a = T43 + T49;
773 T9i = T43 - T49;
774 T9r = FNMS(T4e, T4c, T9q);
775 T4g = FMA(T4e, T4f, T4d);
776 T9u = T9r - T9t;
777 Tfs = T9r + T9t;
778 T4n = T4g + T4m;
779 T9p = T4g - T4m;
780 Tab = T9i + T9n;
781 T9o = T9i - T9n;
782 ThN = Tft + Tfs;
783 Tfu = Tfs - Tft;
784 TfL = T4a - T4n;
785 T4o = T4a + T4n;
786 }
787 }
788 {
789 E T5Q, Tat, T5Z, T62, Tav, T5W, T5Y, T61, Taz, T60;
790 {
791 E T65, T68, T64, T67;
792 {
793 E T5M, T5P, T5L, Tac, T9v, T5O, Tas, T5N;
794 T5M = cr[WS(rs, 7)];
795 T5P = ci[WS(rs, 7)];
796 T5L = W[12];
797 Tac = T9u - T9p;
798 T9v = T9p + T9u;
799 T5O = W[13];
800 Tas = T5L * T5P;
801 T5N = T5L * T5M;
802 Tad = Tab + Tac;
803 Td4 = Tab - Tac;
804 T9w = T9o + T9v;
805 Tdf = T9v - T9o;
806 T5Q = FMA(T5O, T5P, T5N);
807 Tat = FNMS(T5O, T5M, Tas);
808 }
809 T65 = cr[WS(rs, 23)];
810 T68 = ci[WS(rs, 23)];
811 T64 = W[44];
812 T67 = W[45];
813 {
814 E T5S, T5V, T5U, Tau, T5T, TaB, T66, T5R;
815 T5S = cr[WS(rs, 39)];
816 T5V = ci[WS(rs, 39)];
817 TaB = T64 * T68;
818 T66 = T64 * T65;
819 T5R = W[76];
820 T5U = W[77];
821 TaC = FNMS(T67, T65, TaB);
822 T69 = FMA(T67, T68, T66);
823 Tau = T5R * T5V;
824 T5T = T5R * T5S;
825 T5Z = cr[WS(rs, 55)];
826 T62 = ci[WS(rs, 55)];
827 Tav = FNMS(T5U, T5S, Tau);
828 T5W = FMA(T5U, T5V, T5T);
829 T5Y = W[108];
830 T61 = W[109];
831 }
832 }
833 Taw = Tat - Tav;
834 TfU = Tat + Tav;
835 T5X = T5Q + T5W;
836 Tar = T5Q - T5W;
837 Taz = T5Y * T62;
838 T60 = T5Y * T5Z;
839 TaA = FNMS(T61, T5Z, Taz);
840 T63 = FMA(T61, T62, T60);
841 }
842 }
843 }
844 {
845 E T9T, Td9, TfE, TfB, Tda, Ta0;
846 {
847 E T9E, Td6, Tfz, Tfw, Td7, T9L;
848 {
849 E T9G, T4v, T9C, T4O, T4E, T4H, T4G, T9I, T4B, T9z, T4F;
850 {
851 E T4K, T4N, T4M, T9B, T4L;
852 {
853 E T4r, T4u, T4q, T4t, T9F, T4s, T4J;
854 {
855 E Tbl, Tax, TaD, TfT, Tay, T6a, TaE, Tbk;
856 T4r = cr[WS(rs, 5)];
857 Tbl = Tar + Taw;
858 Tax = Tar - Taw;
859 TaD = TaA - TaC;
860 TfT = TaA + TaC;
861 Tay = T63 - T69;
862 T6a = T63 + T69;
863 T4u = ci[WS(rs, 5)];
864 TfV = TfT - TfU;
865 ThY = TfU + TfT;
866 TaE = Tay + TaD;
867 Tbk = Tay - TaD;
868 T6b = T5X + T6a;
869 Tg9 = T6a - T5X;
870 Tbm = Tbk - Tbl;
871 Tdn = Tbl + Tbk;
872 TaF = Tax + TaE;
873 Tdy = TaE - Tax;
874 T4q = W[8];
875 }
876 T4t = W[9];
877 T4K = cr[WS(rs, 53)];
878 T4N = ci[WS(rs, 53)];
879 T9F = T4q * T4u;
880 T4s = T4q * T4r;
881 T4J = W[104];
882 T4M = W[105];
883 T9G = FNMS(T4t, T4r, T9F);
884 T4v = FMA(T4t, T4u, T4s);
885 T9B = T4J * T4N;
886 T4L = T4J * T4K;
887 }
888 {
889 E T4x, T4A, T4w, T4z, T9H, T4y, T4D;
890 T4x = cr[WS(rs, 37)];
891 T4A = ci[WS(rs, 37)];
892 T9C = FNMS(T4M, T4K, T9B);
893 T4O = FMA(T4M, T4N, T4L);
894 T4w = W[72];
895 T4z = W[73];
896 T4E = cr[WS(rs, 21)];
897 T4H = ci[WS(rs, 21)];
898 T9H = T4w * T4A;
899 T4y = T4w * T4x;
900 T4D = W[40];
901 T4G = W[41];
902 T9I = FNMS(T4z, T4x, T9H);
903 T4B = FMA(T4z, T4A, T4y);
904 T9z = T4D * T4H;
905 T4F = T4D * T4E;
906 }
907 }
908 {
909 E T9J, Tfx, T4C, T9y, T9A, T4I;
910 T9J = T9G - T9I;
911 Tfx = T9G + T9I;
912 T4C = T4v + T4B;
913 T9y = T4v - T4B;
914 T9A = FNMS(T4G, T4E, T9z);
915 T4I = FMA(T4G, T4H, T4F);
916 {
917 E Tfy, T9D, T9K, T4P;
918 Tfy = T9A + T9C;
919 T9D = T9A - T9C;
920 T9K = T4I - T4O;
921 T4P = T4I + T4O;
922 T9E = T9y - T9D;
923 Td6 = T9y + T9D;
924 Tfz = Tfx - Tfy;
925 ThJ = Tfx + Tfy;
926 Tfw = T4C - T4P;
927 T4Q = T4C + T4P;
928 Td7 = T9J - T9K;
929 T9L = T9J + T9K;
930 }
931 }
932 }
933 {
934 E T9V, T4W, T9R, T5f, T55, T58, T57, T9X, T52, T9O, T56;
935 {
936 E T5b, T5e, T5d, T9Q, T5c;
937 {
938 E T4S, T4V, T4R, T4U, T9U, T4T, T5a;
939 T4S = cr[WS(rs, 61)];
940 TfN = Tfw + Tfz;
941 TfA = Tfw - Tfz;
942 Taf = FMA(KP414213562, T9E, T9L);
943 T9M = FNMS(KP414213562, T9L, T9E);
944 Td8 = FMA(KP414213562, Td7, Td6);
945 Tdh = FNMS(KP414213562, Td6, Td7);
946 T4V = ci[WS(rs, 61)];
947 T4R = W[120];
948 T4U = W[121];
949 T5b = cr[WS(rs, 45)];
950 T5e = ci[WS(rs, 45)];
951 T9U = T4R * T4V;
952 T4T = T4R * T4S;
953 T5a = W[88];
954 T5d = W[89];
955 T9V = FNMS(T4U, T4S, T9U);
956 T4W = FMA(T4U, T4V, T4T);
957 T9Q = T5a * T5e;
958 T5c = T5a * T5b;
959 }
960 {
961 E T4Y, T51, T4X, T50, T9W, T4Z, T54;
962 T4Y = cr[WS(rs, 29)];
963 T51 = ci[WS(rs, 29)];
964 T9R = FNMS(T5d, T5b, T9Q);
965 T5f = FMA(T5d, T5e, T5c);
966 T4X = W[56];
967 T50 = W[57];
968 T55 = cr[WS(rs, 13)];
969 T58 = ci[WS(rs, 13)];
970 T9W = T4X * T51;
971 T4Z = T4X * T4Y;
972 T54 = W[24];
973 T57 = W[25];
974 T9X = FNMS(T50, T4Y, T9W);
975 T52 = FMA(T50, T51, T4Z);
976 T9O = T54 * T58;
977 T56 = T54 * T55;
978 }
979 }
980 {
981 E T9Y, TfC, T53, T9N, T9P, T59;
982 T9Y = T9V - T9X;
983 TfC = T9V + T9X;
984 T53 = T4W + T52;
985 T9N = T4W - T52;
986 T9P = FNMS(T57, T55, T9O);
987 T59 = FMA(T57, T58, T56);
988 {
989 E TfD, T9S, T9Z, T5g;
990 TfD = T9P + T9R;
991 T9S = T9P - T9R;
992 T9Z = T59 - T5f;
993 T5g = T59 + T5f;
994 T9T = T9N - T9S;
995 Td9 = T9N + T9S;
996 TfE = TfC - TfD;
997 ThI = TfC + TfD;
998 TfB = T53 - T5g;
999 T5h = T53 + T5g;
1000 Tda = T9Y - T9Z;
1001 Ta0 = T9Y + T9Z;
1002 }
1003 }
1004 }
1005 }
1006 {
1007 E TaN, Tdp, Tg0, TfX, Tdq, TaU;
1008 {
1009 E TaQ, T6i, TaL, T6B, T6r, T6u, T6t, TaS, T6o, TaI, T6s;
1010 {
1011 E T6x, T6A, T6z, TaK, T6y;
1012 {
1013 E T6e, T6h, T6d, T6g, TaP, T6f, T6w;
1014 T6e = cr[WS(rs, 3)];
1015 TfO = TfE - TfB;
1016 TfF = TfB + TfE;
1017 Tag = FNMS(KP414213562, T9T, Ta0);
1018 Ta1 = FMA(KP414213562, Ta0, T9T);
1019 Tdb = FNMS(KP414213562, Tda, Td9);
1020 Tdi = FMA(KP414213562, Td9, Tda);
1021 T6h = ci[WS(rs, 3)];
1022 T6d = W[4];
1023 T6g = W[5];
1024 T6x = cr[WS(rs, 51)];
1025 T6A = ci[WS(rs, 51)];
1026 TaP = T6d * T6h;
1027 T6f = T6d * T6e;
1028 T6w = W[100];
1029 T6z = W[101];
1030 TaQ = FNMS(T6g, T6e, TaP);
1031 T6i = FMA(T6g, T6h, T6f);
1032 TaK = T6w * T6A;
1033 T6y = T6w * T6x;
1034 }
1035 {
1036 E T6k, T6n, T6j, T6m, TaR, T6l, T6q;
1037 T6k = cr[WS(rs, 35)];
1038 T6n = ci[WS(rs, 35)];
1039 TaL = FNMS(T6z, T6x, TaK);
1040 T6B = FMA(T6z, T6A, T6y);
1041 T6j = W[68];
1042 T6m = W[69];
1043 T6r = cr[WS(rs, 19)];
1044 T6u = ci[WS(rs, 19)];
1045 TaR = T6j * T6n;
1046 T6l = T6j * T6k;
1047 T6q = W[36];
1048 T6t = W[37];
1049 TaS = FNMS(T6m, T6k, TaR);
1050 T6o = FMA(T6m, T6n, T6l);
1051 TaI = T6q * T6u;
1052 T6s = T6q * T6r;
1053 }
1054 }
1055 {
1056 E TaT, TfY, T6p, TaH, TaJ, T6v;
1057 TaT = TaQ - TaS;
1058 TfY = TaQ + TaS;
1059 T6p = T6i + T6o;
1060 TaH = T6i - T6o;
1061 TaJ = FNMS(T6t, T6r, TaI);
1062 T6v = FMA(T6t, T6u, T6s);
1063 {
1064 E TfZ, TaM, T6C, TaO;
1065 TfZ = TaJ + TaL;
1066 TaM = TaJ - TaL;
1067 T6C = T6v + T6B;
1068 TaO = T6B - T6v;
1069 TaN = TaH - TaM;
1070 Tdp = TaH + TaM;
1071 Tg0 = TfY - TfZ;
1072 ThU = TfY + TfZ;
1073 TfX = T6p - T6C;
1074 T6D = T6p + T6C;
1075 Tdq = TaT + TaO;
1076 TaU = TaO - TaT;
1077 }
1078 }
1079 }
1080 {
1081 E Tb5, T6J, Tb0, T72, T6S, T6V, T6U, Tb7, T6P, TaX, T6T;
1082 {
1083 E T6Y, T71, T70, TaZ, T6Z;
1084 {
1085 E T6F, T6I, T6E, T6H, Tb4, T6G, T6X;
1086 T6F = cr[WS(rs, 59)];
1087 Tgf = TfX + Tg0;
1088 Tg1 = TfX - Tg0;
1089 Tbo = FNMS(KP414213562, TaN, TaU);
1090 TaV = FMA(KP414213562, TaU, TaN);
1091 Tdr = FMA(KP414213562, Tdq, Tdp);
1092 TdA = FNMS(KP414213562, Tdp, Tdq);
1093 T6I = ci[WS(rs, 59)];
1094 T6E = W[116];
1095 T6H = W[117];
1096 T6Y = cr[WS(rs, 43)];
1097 T71 = ci[WS(rs, 43)];
1098 Tb4 = T6E * T6I;
1099 T6G = T6E * T6F;
1100 T6X = W[84];
1101 T70 = W[85];
1102 Tb5 = FNMS(T6H, T6F, Tb4);
1103 T6J = FMA(T6H, T6I, T6G);
1104 TaZ = T6X * T71;
1105 T6Z = T6X * T6Y;
1106 }
1107 {
1108 E T6L, T6O, T6K, T6N, Tb6, T6M, T6R;
1109 T6L = cr[WS(rs, 27)];
1110 T6O = ci[WS(rs, 27)];
1111 Tb0 = FNMS(T70, T6Y, TaZ);
1112 T72 = FMA(T70, T71, T6Z);
1113 T6K = W[52];
1114 T6N = W[53];
1115 T6S = cr[WS(rs, 11)];
1116 T6V = ci[WS(rs, 11)];
1117 Tb6 = T6K * T6O;
1118 T6M = T6K * T6L;
1119 T6R = W[20];
1120 T6U = W[21];
1121 Tb7 = FNMS(T6N, T6L, Tb6);
1122 T6P = FMA(T6N, T6O, T6M);
1123 TaX = T6R * T6V;
1124 T6T = T6R * T6S;
1125 }
1126 }
1127 {
1128 E Tb8, Tg3, T6Q, TaW, TaY, T6W;
1129 Tb8 = Tb5 - Tb7;
1130 Tg3 = Tb5 + Tb7;
1131 T6Q = T6J + T6P;
1132 TaW = T6J - T6P;
1133 TaY = FNMS(T6U, T6S, TaX);
1134 T6W = FMA(T6U, T6V, T6T);
1135 {
1136 E Tg4, Tb1, T73, Tb3;
1137 Tg4 = TaY + Tb0;
1138 Tb1 = TaY - Tb0;
1139 T73 = T6W + T72;
1140 Tb3 = T72 - T6W;
1141 Tb2 = TaW - Tb1;
1142 Tds = TaW + Tb1;
1143 Tg5 = Tg3 - Tg4;
1144 ThT = Tg3 + Tg4;
1145 Tg2 = T6Q - T73;
1146 T74 = T6Q + T73;
1147 Tdt = Tb8 + Tb3;
1148 Tb9 = Tb3 - Tb8;
1149 }
1150 }
1151 }
1152 }
1153 }
1154 }
1155 {
1156 E Thq, Tge, Tg6, Tdu, TdB, Tj7, Thv, ThA, Tht, Tj8, ThD, Thy, ThS, Ti0, ThZ;
1157 E ThV, ThH, ThP, ThO, ThK, Tkm, TcD, Tk0, Tk4, TjZ, Tk3, Tik, Tin;
1158 {
1159 E Tbp, Tba, TiI, TiL;
1160 {
1161 E Tio, T1I, Tj1, T3v, Tj2, TiX, TiN, Tir, T76, TiJ, TiC, TiG, T5j, Tit, Tiw;
1162 E TiK;
1163 {
1164 E TiO, TiW, Tip, Tiq;
1165 {
1166 E TO, T1H, T2B, T3u;
1167 Thq = Tm - TN;
1168 TO = Tm + TN;
1169 Tge = Tg2 - Tg5;
1170 Tg6 = Tg2 + Tg5;
1171 Tbp = FMA(KP414213562, Tb2, Tb9);
1172 Tba = FNMS(KP414213562, Tb9, Tb2);
1173 Tdu = FNMS(KP414213562, Tdt, Tds);
1174 TdB = FMA(KP414213562, Tds, Tdt);
1175 T1H = T1f + T1G;
1176 Tj7 = T1f - T1G;
1177 Thv = T29 - T2A;
1178 T2B = T29 + T2A;
1179 T3u = T32 + T3t;
1180 ThA = T32 - T3t;
1181 Tht = Thr - Ths;
1182 TiO = Ths + Thr;
1183 Tio = TO - T1H;
1184 T1I = TO + T1H;
1185 Tj1 = T2B - T3u;
1186 T3v = T2B + T3u;
1187 TiW = TiP + TiV;
1188 Tj8 = TiV - TiP;
1189 }
1190 ThD = ThB - ThC;
1191 Tip = ThB + ThC;
1192 Tiq = Thw + Thx;
1193 Thy = Thw - Thx;
1194 {
1195 E T6c, T75, Tiz, TiA;
1196 ThS = T5K - T6b;
1197 T6c = T5K + T6b;
1198 Tj2 = TiW - TiO;
1199 TiX = TiO + TiW;
1200 TiN = Tiq + Tip;
1201 Tir = Tip - Tiq;
1202 T75 = T6D + T74;
1203 Ti0 = T74 - T6D;
1204 ThZ = ThX - ThY;
1205 Tiz = ThX + ThY;
1206 TiA = ThU + ThT;
1207 ThV = ThT - ThU;
1208 {
1209 E T4p, Tiy, TiB, T5i, Tiu, Tiv;
1210 ThH = T3X - T4o;
1211 T4p = T3X + T4o;
1212 T76 = T6c + T75;
1213 Tiy = T6c - T75;
1214 TiJ = Tiz + TiA;
1215 TiB = Tiz - TiA;
1216 T5i = T4Q + T5h;
1217 ThP = T4Q - T5h;
1218 ThO = ThM - ThN;
1219 Tiu = ThM + ThN;
1220 Tiv = ThJ + ThI;
1221 ThK = ThI - ThJ;
1222 TiC = Tiy - TiB;
1223 TiG = Tiy + TiB;
1224 T5j = T4p + T5i;
1225 Tit = T4p - T5i;
1226 Tiw = Tiu - Tiv;
1227 TiK = Tiu + Tiv;
1228 }
1229 }
1230 }
1231 {
1232 E TiZ, TiD, TiH, TiE, Tis, TiM, TiY, Tj0;
1233 {
1234 E T3w, TiF, Tix, T77, Tj5, Tj3, Tj6, Tj4;
1235 TiI = T1I - T3v;
1236 T3w = T1I + T3v;
1237 TiF = Tit - Tiw;
1238 Tix = Tit + Tiw;
1239 T77 = T5j + T76;
1240 TiZ = T76 - T5j;
1241 Tj5 = Tj2 - Tj1;
1242 Tj3 = Tj1 + Tj2;
1243 TiD = Tix + TiC;
1244 Tj4 = TiC - Tix;
1245 cr[0] = T3w + T77;
1246 ci[WS(rs, 31)] = T3w - T77;
1247 Tj6 = TiG - TiF;
1248 TiH = TiF + TiG;
1249 ci[WS(rs, 39)] = FMA(KP707106781, Tj4, Tj3);
1250 cr[WS(rs, 56)] = FMS(KP707106781, Tj4, Tj3);
1251 TiE = Tio + Tir;
1252 Tis = Tio - Tir;
1253 ci[WS(rs, 55)] = FMA(KP707106781, Tj6, Tj5);
1254 cr[WS(rs, 40)] = FMS(KP707106781, Tj6, Tj5);
1255 }
1256 TiL = TiJ - TiK;
1257 TiM = TiK + TiJ;
1258 cr[WS(rs, 8)] = FMA(KP707106781, TiD, Tis);
1259 ci[WS(rs, 23)] = FNMS(KP707106781, TiD, Tis);
1260 ci[WS(rs, 7)] = FMA(KP707106781, TiH, TiE);
1261 cr[WS(rs, 24)] = FNMS(KP707106781, TiH, TiE);
1262 TiY = TiN + TiX;
1263 Tj0 = TiX - TiN;
1264 ci[WS(rs, 63)] = TiM + TiY;
1265 cr[WS(rs, 32)] = TiM - TiY;
1266 ci[WS(rs, 47)] = TiZ + Tj0;
1267 cr[WS(rs, 48)] = TiZ - Tj0;
1268 }
1269 }
1270 {
1271 E TjW, TbB, Tk2, T99, TbF, TbL, Tbv, Taj, Tcu, Tcy, Tci, Tce, Tcr, Tcx, Tch;
1272 E Tc7, Tcn, Tkg, Tka, TbZ, TbP, T7J, TbO, T7u, Tk7, TjT, TbI, TbM, Tbw, Tbs;
1273 E T7Y, TbQ;
1274 {
1275 E TbX, TbW, TbU, TbT, Tc1, Tc5, Tc4, Tc2, TaG, Tbq, Tbn, Tcb, Tcs, Tca, Tcc;
1276 E Tbb, Tcm, TbV;
1277 {
1278 E T8W, Tbz, T8z, T97, T8n, T8y;
1279 TbX = FNMS(KP707106781, T8m, T87);
1280 T8n = FMA(KP707106781, T8m, T87);
1281 T8y = FMA(KP707106781, T8x, T8u);
1282 TbW = FNMS(KP707106781, T8x, T8u);
1283 TbU = FNMS(KP707106781, T8V, T8G);
1284 T8W = FMA(KP707106781, T8V, T8G);
1285 ci[WS(rs, 15)] = TiI + TiL;
1286 cr[WS(rs, 16)] = TiI - TiL;
1287 Tbz = FMA(KP198912367, T8n, T8y);
1288 T8z = FNMS(KP198912367, T8y, T8n);
1289 T97 = FMA(KP707106781, T96, T93);
1290 TbT = FNMS(KP707106781, T96, T93);
1291 {
1292 E Tae, TbD, Ta3, Tah;
1293 {
1294 E T9x, Ta2, TbA, T98;
1295 Tc1 = FNMS(KP707106781, T9w, T9h);
1296 T9x = FMA(KP707106781, T9w, T9h);
1297 Ta2 = T9M + Ta1;
1298 Tc5 = Ta1 - T9M;
1299 Tc4 = FNMS(KP707106781, Tad, Taa);
1300 Tae = FMA(KP707106781, Tad, Taa);
1301 TbA = FNMS(KP198912367, T8W, T97);
1302 T98 = FMA(KP198912367, T97, T8W);
1303 TbD = FNMS(KP923879532, Ta2, T9x);
1304 Ta3 = FMA(KP923879532, Ta2, T9x);
1305 TjW = Tbz + TbA;
1306 TbB = Tbz - TbA;
1307 Tk2 = T98 - T8z;
1308 T99 = T8z + T98;
1309 Tah = Taf + Tag;
1310 Tc2 = Taf - Tag;
1311 }
1312 {
1313 E Tc8, Tc9, TbE, Tai;
1314 TaG = FMA(KP707106781, TaF, Taq);
1315 Tc8 = FNMS(KP707106781, TaF, Taq);
1316 Tc9 = Tbp - Tbo;
1317 Tbq = Tbo + Tbp;
1318 Tbn = FMA(KP707106781, Tbm, Tbj);
1319 Tcb = FNMS(KP707106781, Tbm, Tbj);
1320 TbE = FNMS(KP923879532, Tah, Tae);
1321 Tai = FMA(KP923879532, Tah, Tae);
1322 Tcs = FMA(KP923879532, Tc9, Tc8);
1323 Tca = FNMS(KP923879532, Tc9, Tc8);
1324 TbF = FMA(KP820678790, TbE, TbD);
1325 TbL = FNMS(KP820678790, TbD, TbE);
1326 Tbv = FMA(KP098491403, Ta3, Tai);
1327 Taj = FNMS(KP098491403, Tai, Ta3);
1328 Tcc = Tba - TaV;
1329 Tbb = TaV + Tba;
1330 }
1331 }
1332 }
1333 {
1334 E Tcp, Tc3, Tct, Tcd, Tcq, Tc6;
1335 Tct = FNMS(KP923879532, Tcc, Tcb);
1336 Tcd = FMA(KP923879532, Tcc, Tcb);
1337 Tcp = FMA(KP923879532, Tc2, Tc1);
1338 Tc3 = FNMS(KP923879532, Tc2, Tc1);
1339 Tcu = FMA(KP303346683, Tct, Tcs);
1340 Tcy = FNMS(KP303346683, Tcs, Tct);
1341 Tci = FMA(KP534511135, Tca, Tcd);
1342 Tce = FNMS(KP534511135, Tcd, Tca);
1343 Tcq = FMA(KP923879532, Tc5, Tc4);
1344 Tc6 = FNMS(KP923879532, Tc5, Tc4);
1345 Tcm = FNMS(KP668178637, TbT, TbU);
1346 TbV = FMA(KP668178637, TbU, TbT);
1347 Tcr = FMA(KP303346683, Tcq, Tcp);
1348 Tcx = FNMS(KP303346683, Tcp, Tcq);
1349 Tch = FMA(KP534511135, Tc3, Tc6);
1350 Tc7 = FNMS(KP534511135, Tc6, Tc3);
1351 }
1352 {
1353 E TbG, Tbc, Tcl, TbY;
1354 Tcl = FMA(KP668178637, TbW, TbX);
1355 TbY = FNMS(KP668178637, TbX, TbW);
1356 TbG = FNMS(KP923879532, Tbb, TaG);
1357 Tbc = FMA(KP923879532, Tbb, TaG);
1358 Tcn = Tcl + Tcm;
1359 Tkg = Tcl - Tcm;
1360 Tka = TbY + TbV;
1361 TbZ = TbV - TbY;
1362 {
1363 E T7t, TjS, TbH, Tbr;
1364 Tkm = T7s - T7l;
1365 T7t = T7l + T7s;
1366 TjS = TcB - TcC;
1367 TcD = TcB + TcC;
1368 TbP = FMA(KP414213562, T7B, T7I);
1369 T7J = FNMS(KP414213562, T7I, T7B);
1370 TbH = FNMS(KP923879532, Tbq, Tbn);
1371 Tbr = FMA(KP923879532, Tbq, Tbn);
1372 TbO = FNMS(KP707106781, T7t, T7e);
1373 T7u = FMA(KP707106781, T7t, T7e);
1374 Tk7 = FNMS(KP707106781, TjS, TjR);
1375 TjT = FMA(KP707106781, TjS, TjR);
1376 TbI = FMA(KP820678790, TbH, TbG);
1377 TbM = FNMS(KP820678790, TbG, TbH);
1378 Tbw = FMA(KP098491403, Tbc, Tbr);
1379 Tbs = FNMS(KP098491403, Tbr, Tbc);
1380 T7Y = FMA(KP414213562, T7X, T7Q);
1381 TbQ = FNMS(KP414213562, T7Q, T7X);
1382 }
1383 }
1384 }
1385 {
1386 E Tk1, TjV, Tck, TbS, Tkd, Tcz, Tkh, Tcf, TjY, Tk6, Tke, Tcv, Tki, Tcj;
1387 {
1388 E Tbu, TbC, Tkb, Tkc, Tkj, Tkk, Tbx, TbJ;
1389 {
1390 E Tbt, Tkf, Tk9, T9a, TbK, TbN, Tby;
1391 Tk0 = Tbs - Taj;
1392 Tbt = Taj + Tbs;
1393 {
1394 E Tk8, T7Z, TjU, TbR, T80;
1395 Tk8 = T7Y - T7J;
1396 T7Z = T7J + T7Y;
1397 TjU = TbP + TbQ;
1398 TbR = TbP - TbQ;
1399 Tkf = FNMS(KP923879532, Tk8, Tk7);
1400 Tk9 = FMA(KP923879532, Tk8, Tk7);
1401 Tby = FNMS(KP923879532, T7Z, T7u);
1402 T80 = FMA(KP923879532, T7Z, T7u);
1403 Tk1 = FNMS(KP923879532, TjU, TjT);
1404 TjV = FMA(KP923879532, TjU, TjT);
1405 Tck = FMA(KP923879532, TbR, TbO);
1406 TbS = FNMS(KP923879532, TbR, TbO);
1407 T9a = FMA(KP980785280, T99, T80);
1408 Tbu = FNMS(KP980785280, T99, T80);
1409 }
1410 TbC = FMA(KP980785280, TbB, Tby);
1411 TbK = FNMS(KP980785280, TbB, Tby);
1412 TbN = TbL + TbM;
1413 Tk4 = TbL - TbM;
1414 Tkd = FNMS(KP831469612, Tka, Tk9);
1415 Tkb = FMA(KP831469612, Tka, Tk9);
1416 ci[0] = FMA(KP995184726, Tbt, T9a);
1417 cr[WS(rs, 31)] = FNMS(KP995184726, Tbt, T9a);
1418 ci[WS(rs, 8)] = FNMS(KP773010453, TbN, TbK);
1419 cr[WS(rs, 23)] = FMA(KP773010453, TbN, TbK);
1420 Tkc = Tcx - Tcy;
1421 Tcz = Tcx + Tcy;
1422 Tkh = FMA(KP831469612, Tkg, Tkf);
1423 Tkj = FNMS(KP831469612, Tkg, Tkf);
1424 Tkk = Tce - Tc7;
1425 Tcf = Tc7 + Tce;
1426 }
1427 ci[WS(rs, 60)] = FMA(KP956940335, Tkc, Tkb);
1428 cr[WS(rs, 35)] = FMS(KP956940335, Tkc, Tkb);
1429 ci[WS(rs, 52)] = FMA(KP881921264, Tkk, Tkj);
1430 cr[WS(rs, 43)] = FMS(KP881921264, Tkk, Tkj);
1431 Tbx = Tbv + Tbw;
1432 TjY = Tbw - Tbv;
1433 TbJ = TbF + TbI;
1434 Tk6 = TbI - TbF;
1435 cr[WS(rs, 15)] = FMA(KP995184726, Tbx, Tbu);
1436 ci[WS(rs, 16)] = FNMS(KP995184726, Tbx, Tbu);
1437 cr[WS(rs, 7)] = FMA(KP773010453, TbJ, TbC);
1438 ci[WS(rs, 24)] = FNMS(KP773010453, TbJ, TbC);
1439 Tke = Tcu - Tcr;
1440 Tcv = Tcr + Tcu;
1441 Tki = Tci - Tch;
1442 Tcj = Tch + Tci;
1443 }
1444 {
1445 E Tcg, Tco, TjX, Tk5, Tc0, Tcw;
1446 Tcg = FNMS(KP831469612, TbZ, TbS);
1447 Tc0 = FMA(KP831469612, TbZ, TbS);
1448 ci[WS(rs, 44)] = FMA(KP956940335, Tke, Tkd);
1449 cr[WS(rs, 51)] = FMS(KP956940335, Tke, Tkd);
1450 ci[WS(rs, 36)] = FMA(KP881921264, Tki, Tkh);
1451 cr[WS(rs, 59)] = FMS(KP881921264, Tki, Tkh);
1452 Tco = FMA(KP831469612, Tcn, Tck);
1453 Tcw = FNMS(KP831469612, Tcn, Tck);
1454 TjZ = FNMS(KP980785280, TjW, TjV);
1455 TjX = FMA(KP980785280, TjW, TjV);
1456 ci[WS(rs, 4)] = FMA(KP881921264, Tcf, Tc0);
1457 cr[WS(rs, 27)] = FNMS(KP881921264, Tcf, Tc0);
1458 ci[WS(rs, 12)] = FNMS(KP956940335, Tcz, Tcw);
1459 cr[WS(rs, 19)] = FMA(KP956940335, Tcz, Tcw);
1460 Tk3 = FMA(KP980785280, Tk2, Tk1);
1461 Tk5 = FNMS(KP980785280, Tk2, Tk1);
1462 ci[WS(rs, 32)] = FMA(KP995184726, TjY, TjX);
1463 cr[WS(rs, 63)] = FMS(KP995184726, TjY, TjX);
1464 ci[WS(rs, 40)] = FMA(KP773010453, Tk6, Tk5);
1465 cr[WS(rs, 55)] = FMS(KP773010453, Tk6, Tk5);
1466 cr[WS(rs, 11)] = FMA(KP881921264, Tcj, Tcg);
1467 ci[WS(rs, 20)] = FNMS(KP881921264, Tcj, Tcg);
1468 cr[WS(rs, 3)] = FMA(KP956940335, Tcv, Tco);
1469 ci[WS(rs, 28)] = FNMS(KP956940335, Tcv, Tco);
1470 }
1471 }
1472 }
1473 }
1474 {
1475 E Ti8, Thu, Tjf, Tj9, Tib, Tjg, Tja, ThF, Tig, ThW, Tif, Til, Ti6, ThR;
1476 ci[WS(rs, 48)] = FMA(KP995184726, Tk0, TjZ);
1477 cr[WS(rs, 47)] = FMS(KP995184726, Tk0, TjZ);
1478 ci[WS(rs, 56)] = FMA(KP773010453, Tk4, Tk3);
1479 cr[WS(rs, 39)] = FMS(KP773010453, Tk4, Tk3);
1480 Ti8 = Thq + Tht;
1481 Thu = Thq - Tht;
1482 Tjf = Tj8 - Tj7;
1483 Tj9 = Tj7 + Tj8;
1484 {
1485 E Tid, ThL, Tie, ThQ;
1486 {
1487 E Ti9, Thz, Tia, ThE;
1488 Ti9 = Thv - Thy;
1489 Thz = Thv + Thy;
1490 Tia = ThA + ThD;
1491 ThE = ThA - ThD;
1492 Tib = Ti9 + Tia;
1493 Tjg = Tia - Ti9;
1494 Tja = Thz - ThE;
1495 ThF = Thz + ThE;
1496 Tid = ThH + ThK;
1497 ThL = ThH - ThK;
1498 }
1499 Tie = ThO + ThP;
1500 ThQ = ThO - ThP;
1501 Tig = ThS + ThV;
1502 ThW = ThS - ThV;
1503 Tif = FNMS(KP414213562, Tie, Tid);
1504 Til = FMA(KP414213562, Tid, Tie);
1505 Ti6 = FNMS(KP414213562, ThL, ThQ);
1506 ThR = FMA(KP414213562, ThQ, ThL);
1507 }
1508 {
1509 E Ti4, ThG, Tjh, Tjj, Tih, Ti1;
1510 Ti4 = FNMS(KP707106781, ThF, Thu);
1511 ThG = FMA(KP707106781, ThF, Thu);
1512 Tjh = FMA(KP707106781, Tjg, Tjf);
1513 Tjj = FNMS(KP707106781, Tjg, Tjf);
1514 Tih = Ti0 - ThZ;
1515 Ti1 = ThZ + Ti0;
1516 {
1517 E Tje, Tjd, Tjb, Tjc;
1518 {
1519 E Tic, Tim, Ti5, Ti2, Tij, Tii;
1520 Tik = FNMS(KP707106781, Tib, Ti8);
1521 Tic = FMA(KP707106781, Tib, Ti8);
1522 Tii = FNMS(KP414213562, Tih, Tig);
1523 Tim = FMA(KP414213562, Tig, Tih);
1524 Ti5 = FMA(KP414213562, ThW, Ti1);
1525 Ti2 = FNMS(KP414213562, Ti1, ThW);
1526 Tij = Tif + Tii;
1527 Tje = Tii - Tif;
1528 Tjd = FNMS(KP707106781, Tja, Tj9);
1529 Tjb = FMA(KP707106781, Tja, Tj9);
1530 {
1531 E Ti7, Tji, Tjk, Ti3;
1532 Ti7 = Ti5 - Ti6;
1533 Tji = Ti6 + Ti5;
1534 Tjk = Ti2 - ThR;
1535 Ti3 = ThR + Ti2;
1536 ci[WS(rs, 3)] = FMA(KP923879532, Tij, Tic);
1537 cr[WS(rs, 28)] = FNMS(KP923879532, Tij, Tic);
1538 ci[WS(rs, 11)] = FMA(KP923879532, Ti7, Ti4);
1539 cr[WS(rs, 20)] = FNMS(KP923879532, Ti7, Ti4);
1540 ci[WS(rs, 59)] = FMA(KP923879532, Tji, Tjh);
1541 cr[WS(rs, 36)] = FMS(KP923879532, Tji, Tjh);
1542 ci[WS(rs, 43)] = FMA(KP923879532, Tjk, Tjj);
1543 cr[WS(rs, 52)] = FMS(KP923879532, Tjk, Tjj);
1544 cr[WS(rs, 4)] = FMA(KP923879532, Ti3, ThG);
1545 ci[WS(rs, 27)] = FNMS(KP923879532, Ti3, ThG);
1546 Tjc = Tim - Til;
1547 Tin = Til + Tim;
1548 }
1549 }
1550 ci[WS(rs, 35)] = FMA(KP923879532, Tjc, Tjb);
1551 cr[WS(rs, 60)] = FMS(KP923879532, Tjc, Tjb);
1552 ci[WS(rs, 51)] = FMA(KP923879532, Tje, Tjd);
1553 cr[WS(rs, 44)] = FMS(KP923879532, Tje, Tjd);
1554 }
1555 }
1556 }
1557 {
1558 E Tjy, Tju, Tjt, Tjx;
1559 {
1560 E TjD, TjJ, Tgo, Tf2, Tjp, Tjv, Tha, TgI, Tgg, Tgd, Tgr, Tjw, Tjq, Tfp, Thk;
1561 E Tho, Th7, Th4, Tgv, TgB, Tgl, TfR, TjE, Thd, TjK, TgP, Tgw, Tg8, Thh, Thn;
1562 E Th8, TgX;
1563 {
1564 E TgK, TgJ, TgN, TgM, TfW, Th1, Thi, Th0, Th2, Tg7;
1565 {
1566 E TgE, TeQ, TjB, Tjn, TgF, TgG, TjC, Tf1, TeV, Tf0;
1567 TgE = TeM - TeP;
1568 TeQ = TeM + TeP;
1569 TjB = Tjm - Tjl;
1570 Tjn = Tjl + Tjm;
1571 TgF = TeR + TeU;
1572 TeV = TeR - TeU;
1573 cr[WS(rs, 12)] = FMA(KP923879532, Tin, Tik);
1574 ci[WS(rs, 19)] = FNMS(KP923879532, Tin, Tik);
1575 Tf0 = TeW + TeZ;
1576 TgG = TeW - TeZ;
1577 TjC = Tf0 - TeV;
1578 Tf1 = TeV + Tf0;
1579 {
1580 E Tfi, Tgp, Tfd, Tfn;
1581 {
1582 E Tf7, Tjo, TgH, Tfc;
1583 TgK = Tf5 - Tf6;
1584 Tf7 = Tf5 + Tf6;
1585 TjD = FMA(KP707106781, TjC, TjB);
1586 TjJ = FNMS(KP707106781, TjC, TjB);
1587 Tgo = FMA(KP707106781, Tf1, TeQ);
1588 Tf2 = FNMS(KP707106781, Tf1, TeQ);
1589 Tjo = TgF - TgG;
1590 TgH = TgF + TgG;
1591 Tfc = Tf8 + Tfb;
1592 TgJ = Tf8 - Tfb;
1593 TgN = Tfg - Tfh;
1594 Tfi = Tfg + Tfh;
1595 Tjp = FMA(KP707106781, Tjo, Tjn);
1596 Tjv = FNMS(KP707106781, Tjo, Tjn);
1597 Tha = FNMS(KP707106781, TgH, TgE);
1598 TgI = FMA(KP707106781, TgH, TgE);
1599 Tgp = FNMS(KP414213562, Tf7, Tfc);
1600 Tfd = FMA(KP414213562, Tfc, Tf7);
1601 Tfn = Tfj + Tfm;
1602 TgM = Tfj - Tfm;
1603 }
1604 {
1605 E TgY, TgZ, Tgq, Tfo;
1606 TfW = TfS + TfV;
1607 TgY = TfS - TfV;
1608 TgZ = Tgf + Tge;
1609 Tgg = Tge - Tgf;
1610 Tgd = Tg9 - Tgc;
1611 Th1 = Tgc + Tg9;
1612 Tgq = FMA(KP414213562, Tfi, Tfn);
1613 Tfo = FNMS(KP414213562, Tfn, Tfi);
1614 Thi = FNMS(KP707106781, TgZ, TgY);
1615 Th0 = FMA(KP707106781, TgZ, TgY);
1616 Tgr = Tgp + Tgq;
1617 Tjw = Tgq - Tgp;
1618 Tjq = Tfd + Tfo;
1619 Tfp = Tfd - Tfo;
1620 Th2 = Tg6 - Tg1;
1621 Tg7 = Tg1 + Tg6;
1622 }
1623 }
1624 }
1625 {
1626 E TgR, TgV, TgU, TgS, Thc, TgL;
1627 {
1628 E TfM, Tgt, TfH, TfP, Tgu, TfQ;
1629 {
1630 E Tfv, TfG, Thj, Th3;
1631 TgR = Tfr - Tfu;
1632 Tfv = Tfr + Tfu;
1633 TfG = TfA + TfF;
1634 TgV = TfF - TfA;
1635 TgU = TfK - TfL;
1636 TfM = TfK + TfL;
1637 Thj = FNMS(KP707106781, Th2, Th1);
1638 Th3 = FMA(KP707106781, Th2, Th1);
1639 Tgt = FMA(KP707106781, TfG, Tfv);
1640 TfH = FNMS(KP707106781, TfG, Tfv);
1641 Thk = FMA(KP668178637, Thj, Thi);
1642 Tho = FNMS(KP668178637, Thi, Thj);
1643 Th7 = FMA(KP198912367, Th0, Th3);
1644 Th4 = FNMS(KP198912367, Th3, Th0);
1645 TfP = TfN + TfO;
1646 TgS = TfN - TfO;
1647 }
1648 Tgu = FMA(KP707106781, TfP, TfM);
1649 TfQ = FNMS(KP707106781, TfP, TfM);
1650 Thc = FNMS(KP414213562, TgJ, TgK);
1651 TgL = FMA(KP414213562, TgK, TgJ);
1652 Tgv = FNMS(KP198912367, Tgu, Tgt);
1653 TgB = FMA(KP198912367, Tgt, Tgu);
1654 Tgl = FNMS(KP668178637, TfH, TfQ);
1655 TfR = FMA(KP668178637, TfQ, TfH);
1656 }
1657 {
1658 E Thf, TgT, Thb, TgO, Thg, TgW;
1659 Thb = FMA(KP414213562, TgM, TgN);
1660 TgO = FNMS(KP414213562, TgN, TgM);
1661 Thf = FNMS(KP707106781, TgS, TgR);
1662 TgT = FMA(KP707106781, TgS, TgR);
1663 TjE = Thc + Thb;
1664 Thd = Thb - Thc;
1665 TjK = TgL - TgO;
1666 TgP = TgL + TgO;
1667 Thg = FNMS(KP707106781, TgV, TgU);
1668 TgW = FMA(KP707106781, TgV, TgU);
1669 Tgw = FMA(KP707106781, Tg7, TfW);
1670 Tg8 = FNMS(KP707106781, Tg7, TfW);
1671 Thh = FNMS(KP668178637, Thg, Thf);
1672 Thn = FMA(KP668178637, Thf, Thg);
1673 Th8 = FNMS(KP198912367, TgT, TgW);
1674 TgX = FMA(KP198912367, TgW, TgT);
1675 }
1676 }
1677 }
1678 {
1679 E TjH, Th9, TjL, Tjs, TjA, Thl, TjI, Th5, TjM, Thp;
1680 {
1681 E Tgk, Tfq, TgA, Tgs, TjN, Tgy, Tgm, TgD, Tgj, TjO, Tgn, Tgz;
1682 Tgk = FNMS(KP923879532, Tfp, Tf2);
1683 Tfq = FMA(KP923879532, Tfp, Tf2);
1684 TgA = FNMS(KP923879532, Tgr, Tgo);
1685 Tgs = FMA(KP923879532, Tgr, Tgo);
1686 {
1687 E TjF, Tgx, Tgh, TjG, TgC, Tgi;
1688 TjH = FNMS(KP923879532, TjE, TjD);
1689 TjF = FMA(KP923879532, TjE, TjD);
1690 Tgx = FMA(KP707106781, Tgg, Tgd);
1691 Tgh = FNMS(KP707106781, Tgg, Tgd);
1692 TjG = Th8 + Th7;
1693 Th9 = Th7 - Th8;
1694 TjL = FMA(KP923879532, TjK, TjJ);
1695 TjN = FNMS(KP923879532, TjK, TjJ);
1696 Tgy = FNMS(KP198912367, Tgx, Tgw);
1697 TgC = FMA(KP198912367, Tgw, Tgx);
1698 Tgm = FNMS(KP668178637, Tg8, Tgh);
1699 Tgi = FMA(KP668178637, Tgh, Tg8);
1700 ci[WS(rs, 61)] = FMA(KP980785280, TjG, TjF);
1701 cr[WS(rs, 34)] = FMS(KP980785280, TjG, TjF);
1702 TgD = TgB + TgC;
1703 Tjs = TgC - TgB;
1704 TjA = Tgi - TfR;
1705 Tgj = TfR + Tgi;
1706 TjO = Thk - Thh;
1707 Thl = Thh + Thk;
1708 }
1709 cr[WS(rs, 14)] = FMA(KP980785280, TgD, TgA);
1710 ci[WS(rs, 17)] = FNMS(KP980785280, TgD, TgA);
1711 cr[WS(rs, 6)] = FMA(KP831469612, Tgj, Tfq);
1712 ci[WS(rs, 25)] = FNMS(KP831469612, Tgj, Tfq);
1713 ci[WS(rs, 53)] = FMA(KP831469612, TjO, TjN);
1714 cr[WS(rs, 42)] = FMS(KP831469612, TjO, TjN);
1715 Tgn = Tgl + Tgm;
1716 Tjy = Tgl - Tgm;
1717 Tgz = Tgv + Tgy;
1718 Tju = Tgy - Tgv;
1719 ci[WS(rs, 9)] = FNMS(KP831469612, Tgn, Tgk);
1720 cr[WS(rs, 22)] = FMA(KP831469612, Tgn, Tgk);
1721 ci[WS(rs, 1)] = FMA(KP980785280, Tgz, Tgs);
1722 cr[WS(rs, 30)] = FNMS(KP980785280, Tgz, Tgs);
1723 TjI = Th4 - TgX;
1724 Th5 = TgX + Th4;
1725 TjM = Thn + Tho;
1726 Thp = Thn - Tho;
1727 }
1728 {
1729 E Th6, The, Tjr, Tjz, TgQ, Thm;
1730 Th6 = FNMS(KP923879532, TgP, TgI);
1731 TgQ = FMA(KP923879532, TgP, TgI);
1732 ci[WS(rs, 45)] = FMA(KP980785280, TjI, TjH);
1733 cr[WS(rs, 50)] = FMS(KP980785280, TjI, TjH);
1734 ci[WS(rs, 37)] = FNMS(KP831469612, TjM, TjL);
1735 cr[WS(rs, 58)] = -(FMA(KP831469612, TjM, TjL));
1736 The = FMA(KP923879532, Thd, Tha);
1737 Thm = FNMS(KP923879532, Thd, Tha);
1738 Tjt = FNMS(KP923879532, Tjq, Tjp);
1739 Tjr = FMA(KP923879532, Tjq, Tjp);
1740 cr[WS(rs, 2)] = FMA(KP980785280, Th5, TgQ);
1741 ci[WS(rs, 29)] = FNMS(KP980785280, Th5, TgQ);
1742 cr[WS(rs, 10)] = FMA(KP831469612, Thp, Thm);
1743 ci[WS(rs, 21)] = FNMS(KP831469612, Thp, Thm);
1744 Tjx = FMA(KP923879532, Tjw, Tjv);
1745 Tjz = FNMS(KP923879532, Tjw, Tjv);
1746 ci[WS(rs, 33)] = FMA(KP980785280, Tjs, Tjr);
1747 cr[WS(rs, 62)] = FMS(KP980785280, Tjs, Tjr);
1748 ci[WS(rs, 41)] = FMA(KP831469612, TjA, Tjz);
1749 cr[WS(rs, 54)] = FMS(KP831469612, TjA, Tjz);
1750 ci[WS(rs, 13)] = FMA(KP980785280, Th9, Th6);
1751 cr[WS(rs, 18)] = FNMS(KP980785280, Th9, Th6);
1752 ci[WS(rs, 5)] = FMA(KP831469612, Thl, The);
1753 cr[WS(rs, 26)] = FNMS(KP831469612, Thl, The);
1754 }
1755 }
1756 }
1757 {
1758 E Tkq, TdN, Tkw, Td1, TdR, TdX, TdI, Tdl, TeG, TeK, Tet, Teq, TeD, TeJ, Teu;
1759 E Tej, Tez, TkK, TkE, Teb, Te2, TcH, Te0, TcE, TkB, Tkn, TdU, TdY, TdH, TdE;
1760 E TcK, Te1;
1761 {
1762 E Te6, Te5, Te9, Te8, Ted, Teh, Teg, Tee, Tdo, TdC, Tdz, Ten, TeE, Tem, Teo;
1763 E Tdv, Tex, Te7;
1764 {
1765 E TcP, TcS, TcW, TcZ;
1766 Te6 = FNMS(KP707106781, TcO, TcN);
1767 TcP = FMA(KP707106781, TcO, TcN);
1768 ci[WS(rs, 49)] = FMA(KP980785280, Tju, Tjt);
1769 cr[WS(rs, 46)] = FMS(KP980785280, Tju, Tjt);
1770 ci[WS(rs, 57)] = FMA(KP831469612, Tjy, Tjx);
1771 cr[WS(rs, 38)] = FMS(KP831469612, Tjy, Tjx);
1772 TcS = FMA(KP707106781, TcR, TcQ);
1773 Te5 = FNMS(KP707106781, TcR, TcQ);
1774 Te9 = FNMS(KP707106781, TcV, TcU);
1775 TcW = FMA(KP707106781, TcV, TcU);
1776 TcZ = FMA(KP707106781, TcY, TcX);
1777 Te8 = FNMS(KP707106781, TcY, TcX);
1778 {
1779 E Tdg, TdP, Tdd, Tdj;
1780 {
1781 E Td5, TdM, TcT, TdL, Td0, Tdc;
1782 Ted = FNMS(KP707106781, Td4, Td3);
1783 Td5 = FMA(KP707106781, Td4, Td3);
1784 TdM = FNMS(KP198912367, TcP, TcS);
1785 TcT = FMA(KP198912367, TcS, TcP);
1786 TdL = FMA(KP198912367, TcW, TcZ);
1787 Td0 = FNMS(KP198912367, TcZ, TcW);
1788 Tdc = Td8 + Tdb;
1789 Teh = Td8 - Tdb;
1790 Teg = FNMS(KP707106781, Tdf, Tde);
1791 Tdg = FMA(KP707106781, Tdf, Tde);
1792 Tkq = TdM + TdL;
1793 TdN = TdL - TdM;
1794 Tkw = TcT - Td0;
1795 Td1 = TcT + Td0;
1796 TdP = FNMS(KP923879532, Tdc, Td5);
1797 Tdd = FMA(KP923879532, Tdc, Td5);
1798 Tdj = Tdh + Tdi;
1799 Tee = Tdi - Tdh;
1800 }
1801 {
1802 E Tek, Tel, TdQ, Tdk;
1803 Tdo = FMA(KP707106781, Tdn, Tdm);
1804 Tek = FNMS(KP707106781, Tdn, Tdm);
1805 Tel = TdB - TdA;
1806 TdC = TdA + TdB;
1807 Tdz = FMA(KP707106781, Tdy, Tdx);
1808 Ten = FNMS(KP707106781, Tdy, Tdx);
1809 TdQ = FNMS(KP923879532, Tdj, Tdg);
1810 Tdk = FMA(KP923879532, Tdj, Tdg);
1811 TeE = FMA(KP923879532, Tel, Tek);
1812 Tem = FNMS(KP923879532, Tel, Tek);
1813 TdR = FNMS(KP820678790, TdQ, TdP);
1814 TdX = FMA(KP820678790, TdP, TdQ);
1815 TdI = FNMS(KP098491403, Tdd, Tdk);
1816 Tdl = FMA(KP098491403, Tdk, Tdd);
1817 Teo = Tdu - Tdr;
1818 Tdv = Tdr + Tdu;
1819 }
1820 }
1821 }
1822 {
1823 E TeB, Tef, TeF, Tep, TeC, Tei;
1824 TeF = FNMS(KP923879532, Teo, Ten);
1825 Tep = FMA(KP923879532, Teo, Ten);
1826 TeB = FMA(KP923879532, Tee, Ted);
1827 Tef = FNMS(KP923879532, Tee, Ted);
1828 TeG = FMA(KP303346683, TeF, TeE);
1829 TeK = FNMS(KP303346683, TeE, TeF);
1830 Tet = FMA(KP534511135, Tem, Tep);
1831 Teq = FNMS(KP534511135, Tep, Tem);
1832 TeC = FMA(KP923879532, Teh, Teg);
1833 Tei = FNMS(KP923879532, Teh, Teg);
1834 Tex = FNMS(KP668178637, Te5, Te6);
1835 Te7 = FMA(KP668178637, Te6, Te5);
1836 TeD = FNMS(KP303346683, TeC, TeB);
1837 TeJ = FMA(KP303346683, TeB, TeC);
1838 Teu = FNMS(KP534511135, Tef, Tei);
1839 Tej = FMA(KP534511135, Tei, Tef);
1840 }
1841 {
1842 E TdS, Tdw, Tey, Tea, TdT, TdD;
1843 Tey = FMA(KP668178637, Te8, Te9);
1844 Tea = FNMS(KP668178637, Te9, Te8);
1845 TdS = FNMS(KP923879532, Tdv, Tdo);
1846 Tdw = FMA(KP923879532, Tdv, Tdo);
1847 Tez = Tex + Tey;
1848 TkK = Tey - Tex;
1849 TkE = Te7 + Tea;
1850 Teb = Te7 - Tea;
1851 Te2 = FNMS(KP414213562, TcF, TcG);
1852 TcH = FMA(KP414213562, TcG, TcF);
1853 TdT = FNMS(KP923879532, TdC, Tdz);
1854 TdD = FMA(KP923879532, TdC, Tdz);
1855 Te0 = FNMS(KP707106781, TcD, TcA);
1856 TcE = FMA(KP707106781, TcD, TcA);
1857 TkB = FNMS(KP707106781, Tkm, Tkl);
1858 Tkn = FMA(KP707106781, Tkm, Tkl);
1859 TdU = FMA(KP820678790, TdT, TdS);
1860 TdY = FNMS(KP820678790, TdS, TdT);
1861 TdH = FMA(KP098491403, Tdw, TdD);
1862 TdE = FNMS(KP098491403, TdD, Tdw);
1863 TcK = FNMS(KP414213562, TcJ, TcI);
1864 Te1 = FMA(KP414213562, TcI, TcJ);
1865 }
1866 }
1867 {
1868 E Tkv, Tkp, Tew, Te4, TkH, TeL, TkL, Ter, Tks, TkA, TkI, TeH, TkM, Tev;
1869 {
1870 E TdG, TdO, TkF, TkG, TkN, TkO, TdJ, TdV;
1871 {
1872 E TdF, TkJ, TkD, Td2, TdW, TdZ, TdK;
1873 Tku = TdE - Tdl;
1874 TdF = Tdl + TdE;
1875 {
1876 E TkC, TcL, Tko, Te3, TcM;
1877 TkC = TcH - TcK;
1878 TcL = TcH + TcK;
1879 Tko = Te2 + Te1;
1880 Te3 = Te1 - Te2;
1881 TkJ = FNMS(KP923879532, TkC, TkB);
1882 TkD = FMA(KP923879532, TkC, TkB);
1883 TdK = FNMS(KP923879532, TcL, TcE);
1884 TcM = FMA(KP923879532, TcL, TcE);
1885 Tkv = FNMS(KP923879532, Tko, Tkn);
1886 Tkp = FMA(KP923879532, Tko, Tkn);
1887 Tew = FMA(KP923879532, Te3, Te0);
1888 Te4 = FNMS(KP923879532, Te3, Te0);
1889 Td2 = FMA(KP980785280, Td1, TcM);
1890 TdG = FNMS(KP980785280, Td1, TcM);
1891 }
1892 TdO = FMA(KP980785280, TdN, TdK);
1893 TdW = FNMS(KP980785280, TdN, TdK);
1894 TdZ = TdX - TdY;
1895 Tky = TdX + TdY;
1896 TkH = FNMS(KP831469612, TkE, TkD);
1897 TkF = FMA(KP831469612, TkE, TkD);
1898 cr[WS(rs, 1)] = FMA(KP995184726, TdF, Td2);
1899 ci[WS(rs, 30)] = FNMS(KP995184726, TdF, Td2);
1900 cr[WS(rs, 9)] = FMA(KP773010453, TdZ, TdW);
1901 ci[WS(rs, 22)] = FNMS(KP773010453, TdZ, TdW);
1902 TkG = TeJ + TeK;
1903 TeL = TeJ - TeK;
1904 TkL = FMA(KP831469612, TkK, TkJ);
1905 TkN = FNMS(KP831469612, TkK, TkJ);
1906 TkO = Teq - Tej;
1907 Ter = Tej + Teq;
1908 }
1909 ci[WS(rs, 34)] = FNMS(KP956940335, TkG, TkF);
1910 cr[WS(rs, 61)] = -(FMA(KP956940335, TkG, TkF));
1911 ci[WS(rs, 42)] = FMA(KP881921264, TkO, TkN);
1912 cr[WS(rs, 53)] = FMS(KP881921264, TkO, TkN);
1913 TdJ = TdH - TdI;
1914 Tks = TdI + TdH;
1915 TdV = TdR + TdU;
1916 TkA = TdU - TdR;
1917 ci[WS(rs, 14)] = FMA(KP995184726, TdJ, TdG);
1918 cr[WS(rs, 17)] = FNMS(KP995184726, TdJ, TdG);
1919 ci[WS(rs, 6)] = FMA(KP773010453, TdV, TdO);
1920 cr[WS(rs, 25)] = FNMS(KP773010453, TdV, TdO);
1921 TkI = TeG - TeD;
1922 TeH = TeD + TeG;
1923 TkM = Teu + Tet;
1924 Tev = Tet - Teu;
1925 }
1926 {
1927 E Tes, TeA, Tkr, Tkz, Tec, TeI;
1928 Tes = FNMS(KP831469612, Teb, Te4);
1929 Tec = FMA(KP831469612, Teb, Te4);
1930 ci[WS(rs, 50)] = FMA(KP956940335, TkI, TkH);
1931 cr[WS(rs, 45)] = FMS(KP956940335, TkI, TkH);
1932 ci[WS(rs, 58)] = FMA(KP881921264, TkM, TkL);
1933 cr[WS(rs, 37)] = FMS(KP881921264, TkM, TkL);
1934 TeA = FMA(KP831469612, Tez, Tew);
1935 TeI = FNMS(KP831469612, Tez, Tew);
1936 Tkt = FNMS(KP980785280, Tkq, Tkp);
1937 Tkr = FMA(KP980785280, Tkq, Tkp);
1938 cr[WS(rs, 5)] = FMA(KP881921264, Ter, Tec);
1939 ci[WS(rs, 26)] = FNMS(KP881921264, Ter, Tec);
1940 cr[WS(rs, 13)] = FMA(KP956940335, TeL, TeI);
1941 ci[WS(rs, 18)] = FNMS(KP956940335, TeL, TeI);
1942 Tkx = FMA(KP980785280, Tkw, Tkv);
1943 Tkz = FNMS(KP980785280, Tkw, Tkv);
1944 ci[WS(rs, 62)] = FMA(KP995184726, Tks, Tkr);
1945 cr[WS(rs, 33)] = FMS(KP995184726, Tks, Tkr);
1946 ci[WS(rs, 54)] = FMA(KP773010453, TkA, Tkz);
1947 cr[WS(rs, 41)] = FMS(KP773010453, TkA, Tkz);
1948 ci[WS(rs, 10)] = FMA(KP881921264, Tev, Tes);
1949 cr[WS(rs, 21)] = FNMS(KP881921264, Tev, Tes);
1950 ci[WS(rs, 2)] = FMA(KP956940335, TeH, TeA);
1951 cr[WS(rs, 29)] = FNMS(KP956940335, TeH, TeA);
1952 }
1953 }
1954 }
1955 }
1956 }
1957 }
1958 ci[WS(rs, 46)] = FMA(KP995184726, Tku, Tkt);
1959 cr[WS(rs, 49)] = FMS(KP995184726, Tku, Tkt);
1960 ci[WS(rs, 38)] = FNMS(KP773010453, Tky, Tkx);
1961 cr[WS(rs, 57)] = -(FMA(KP773010453, Tky, Tkx));
1962 }
1963 }
1964 }
1965
1966 static const tw_instr twinstr[] = {
1967 {TW_FULL, 1, 64},
1968 {TW_NEXT, 1, 0}
1969 };
1970
1971 static const hc2hc_desc desc = { 64, "hf_64", twinstr, &GENUS, {520, 126, 518, 0} };
1972
1973 void X(codelet_hf_64) (planner *p) {
1974 X(khc2hc_register) (p, hf_64, &desc);
1975 }
1976 #else /* HAVE_FMA */
1977
1978 /* Generated by: ../../../genfft/gen_hc2hc.native -compact -variables 4 -pipeline-latency 4 -n 64 -dit -name hf_64 -include hf.h */
1979
1980 /*
1981 * This function contains 1038 FP additions, 500 FP multiplications,
1982 * (or, 808 additions, 270 multiplications, 230 fused multiply/add),
1983 * 176 stack variables, 15 constants, and 256 memory accesses
1984 */
1985 #include "hf.h"
1986
1987 static void hf_64(R *cr, R *ci, const R *W, stride rs, INT mb, INT me, INT ms)
1988 {
1989 DK(KP290284677, +0.290284677254462367636192375817395274691476278);
1990 DK(KP956940335, +0.956940335732208864935797886980269969482849206);
1991 DK(KP881921264, +0.881921264348355029712756863660388349508442621);
1992 DK(KP471396736, +0.471396736825997648556387625905254377657460319);
1993 DK(KP555570233, +0.555570233019602224742830813948532874374937191);
1994 DK(KP831469612, +0.831469612302545237078788377617905756738560812);
1995 DK(KP098017140, +0.098017140329560601994195563888641845861136673);
1996 DK(KP995184726, +0.995184726672196886244836953109479921575474869);
1997 DK(KP773010453, +0.773010453362736960810906609758469800971041293);
1998 DK(KP634393284, +0.634393284163645498215171613225493370675687095);
1999 DK(KP980785280, +0.980785280403230449126182236134239036973933731);
2000 DK(KP195090322, +0.195090322016128267848284868477022240927691618);
2001 DK(KP382683432, +0.382683432365089771728459984030398866761344562);
2002 DK(KP923879532, +0.923879532511286756128183189396788286822416626);
2003 DK(KP707106781, +0.707106781186547524400844362104849039284835938);
2004 {
2005 INT m;
2006 for (m = mb, W = W + ((mb - 1) * 126); m < me; m = m + 1, cr = cr + ms, ci = ci - ms, W = W + 126, MAKE_VOLATILE_STRIDE(128, rs)) {
2007 E Tj, TcL, ThT, Tin, T6b, Taz, TgT, Thn, TG, Thm, TcO, TgO, T6m, Tim, TaC;
2008 E ThQ, T14, Tfr, T6y, T9O, TaG, Tc0, TcU, TeE, T1r, Tfq, T6J, T9P, TaJ, Tc1;
2009 E TcZ, TeF, T1Q, T2d, Tfu, Tfv, Tfw, Tfx, T6Q, TaM, Tdb, TeI, T71, TaQ, T7a;
2010 E TaN, Td6, TeJ, T77, TaP, T2B, T2Y, Tfz, TfA, TfB, TfC, T7h, TaW, Tdm, TeL;
2011 E T7s, TaU, T7B, TaX, Tdh, TeM, T7y, TaT, T5j, TfR, Tec, TeX, TfY, Tgy, T8D;
2012 E Tbl, T8O, Tbx, T9l, Tbm, TdV, Tf0, T9i, Tbw, T3M, TfL, TdL, TeT, TfI, Tgt;
2013 E T7K, Tbd, T7V, Tb3, T8s, Tbe, Tdu, TeQ, T8p, Tb2, T4x, TfJ, TdE, TdM, TfO;
2014 E Tgu, T87, T8u, T8i, T8v, Tba, Tbh, Tdz, TdN, Tb7, Tbg, T64, TfZ, Te5, Ted;
2015 E TfU, Tgz, T90, T9n, T9b, T9o, Tbt, TbA, Te0, Tee, Tbq, Tbz;
2016 {
2017 E T1, TgR, T6, TgQ, Tc, T68, Th, T69;
2018 T1 = cr[0];
2019 TgR = ci[0];
2020 {
2021 E T3, T5, T2, T4;
2022 T3 = cr[WS(rs, 32)];
2023 T5 = ci[WS(rs, 32)];
2024 T2 = W[62];
2025 T4 = W[63];
2026 T6 = FMA(T2, T3, T4 * T5);
2027 TgQ = FNMS(T4, T3, T2 * T5);
2028 }
2029 {
2030 E T9, Tb, T8, Ta;
2031 T9 = cr[WS(rs, 16)];
2032 Tb = ci[WS(rs, 16)];
2033 T8 = W[30];
2034 Ta = W[31];
2035 Tc = FMA(T8, T9, Ta * Tb);
2036 T68 = FNMS(Ta, T9, T8 * Tb);
2037 }
2038 {
2039 E Te, Tg, Td, Tf;
2040 Te = cr[WS(rs, 48)];
2041 Tg = ci[WS(rs, 48)];
2042 Td = W[94];
2043 Tf = W[95];
2044 Th = FMA(Td, Te, Tf * Tg);
2045 T69 = FNMS(Tf, Te, Td * Tg);
2046 }
2047 {
2048 E T7, Ti, ThR, ThS;
2049 T7 = T1 + T6;
2050 Ti = Tc + Th;
2051 Tj = T7 + Ti;
2052 TcL = T7 - Ti;
2053 ThR = Tc - Th;
2054 ThS = TgR - TgQ;
2055 ThT = ThR + ThS;
2056 Tin = ThS - ThR;
2057 }
2058 {
2059 E T67, T6a, TgP, TgS;
2060 T67 = T1 - T6;
2061 T6a = T68 - T69;
2062 T6b = T67 - T6a;
2063 Taz = T67 + T6a;
2064 TgP = T68 + T69;
2065 TgS = TgQ + TgR;
2066 TgT = TgP + TgS;
2067 Thn = TgS - TgP;
2068 }
2069 }
2070 {
2071 E To, T6d, Tt, T6e, T6c, T6f, Tz, T6i, TE, T6j, T6h, T6k;
2072 {
2073 E Tl, Tn, Tk, Tm;
2074 Tl = cr[WS(rs, 8)];
2075 Tn = ci[WS(rs, 8)];
2076 Tk = W[14];
2077 Tm = W[15];
2078 To = FMA(Tk, Tl, Tm * Tn);
2079 T6d = FNMS(Tm, Tl, Tk * Tn);
2080 }
2081 {
2082 E Tq, Ts, Tp, Tr;
2083 Tq = cr[WS(rs, 40)];
2084 Ts = ci[WS(rs, 40)];
2085 Tp = W[78];
2086 Tr = W[79];
2087 Tt = FMA(Tp, Tq, Tr * Ts);
2088 T6e = FNMS(Tr, Tq, Tp * Ts);
2089 }
2090 T6c = To - Tt;
2091 T6f = T6d - T6e;
2092 {
2093 E Tw, Ty, Tv, Tx;
2094 Tw = cr[WS(rs, 56)];
2095 Ty = ci[WS(rs, 56)];
2096 Tv = W[110];
2097 Tx = W[111];
2098 Tz = FMA(Tv, Tw, Tx * Ty);
2099 T6i = FNMS(Tx, Tw, Tv * Ty);
2100 }
2101 {
2102 E TB, TD, TA, TC;
2103 TB = cr[WS(rs, 24)];
2104 TD = ci[WS(rs, 24)];
2105 TA = W[46];
2106 TC = W[47];
2107 TE = FMA(TA, TB, TC * TD);
2108 T6j = FNMS(TC, TB, TA * TD);
2109 }
2110 T6h = Tz - TE;
2111 T6k = T6i - T6j;
2112 {
2113 E Tu, TF, TcM, TcN;
2114 Tu = To + Tt;
2115 TF = Tz + TE;
2116 TG = Tu + TF;
2117 Thm = Tu - TF;
2118 TcM = T6i + T6j;
2119 TcN = T6d + T6e;
2120 TcO = TcM - TcN;
2121 TgO = TcN + TcM;
2122 }
2123 {
2124 E T6g, T6l, TaA, TaB;
2125 T6g = T6c - T6f;
2126 T6l = T6h + T6k;
2127 T6m = KP707106781 * (T6g + T6l);
2128 Tim = KP707106781 * (T6l - T6g);
2129 TaA = T6c + T6f;
2130 TaB = T6h - T6k;
2131 TaC = KP707106781 * (TaA + TaB);
2132 ThQ = KP707106781 * (TaA - TaB);
2133 }
2134 }
2135 {
2136 E TS, TcR, T6o, T6v, T13, TcS, T6r, T6w, T6s, T6x;
2137 {
2138 E TM, T6t, TR, T6u;
2139 {
2140 E TJ, TL, TI, TK;
2141 TJ = cr[WS(rs, 4)];
2142 TL = ci[WS(rs, 4)];
2143 TI = W[6];
2144 TK = W[7];
2145 TM = FMA(TI, TJ, TK * TL);
2146 T6t = FNMS(TK, TJ, TI * TL);
2147 }
2148 {
2149 E TO, TQ, TN, TP;
2150 TO = cr[WS(rs, 36)];
2151 TQ = ci[WS(rs, 36)];
2152 TN = W[70];
2153 TP = W[71];
2154 TR = FMA(TN, TO, TP * TQ);
2155 T6u = FNMS(TP, TO, TN * TQ);
2156 }
2157 TS = TM + TR;
2158 TcR = T6t + T6u;
2159 T6o = TM - TR;
2160 T6v = T6t - T6u;
2161 }
2162 {
2163 E TX, T6p, T12, T6q;
2164 {
2165 E TU, TW, TT, TV;
2166 TU = cr[WS(rs, 20)];
2167 TW = ci[WS(rs, 20)];
2168 TT = W[38];
2169 TV = W[39];
2170 TX = FMA(TT, TU, TV * TW);
2171 T6p = FNMS(TV, TU, TT * TW);
2172 }
2173 {
2174 E TZ, T11, TY, T10;
2175 TZ = cr[WS(rs, 52)];
2176 T11 = ci[WS(rs, 52)];
2177 TY = W[102];
2178 T10 = W[103];
2179 T12 = FMA(TY, TZ, T10 * T11);
2180 T6q = FNMS(T10, TZ, TY * T11);
2181 }
2182 T13 = TX + T12;
2183 TcS = T6p + T6q;
2184 T6r = T6p - T6q;
2185 T6w = TX - T12;
2186 }
2187 T14 = TS + T13;
2188 Tfr = TcR + TcS;
2189 T6s = T6o - T6r;
2190 T6x = T6v + T6w;
2191 T6y = FNMS(KP382683432, T6x, KP923879532 * T6s);
2192 T9O = FMA(KP923879532, T6x, KP382683432 * T6s);
2193 {
2194 E TaE, TaF, TcQ, TcT;
2195 TaE = T6v - T6w;
2196 TaF = T6o + T6r;
2197 TaG = FMA(KP382683432, TaE, KP923879532 * TaF);
2198 Tc0 = FNMS(KP923879532, TaE, KP382683432 * TaF);
2199 TcQ = TS - T13;
2200 TcT = TcR - TcS;
2201 TcU = TcQ + TcT;
2202 TeE = TcQ - TcT;
2203 }
2204 }
2205 {
2206 E T1f, TcW, T6B, T6E, T1q, TcX, T6C, T6H, T6D, T6I;
2207 {
2208 E T19, T6z, T1e, T6A;
2209 {
2210 E T16, T18, T15, T17;
2211 T16 = cr[WS(rs, 60)];
2212 T18 = ci[WS(rs, 60)];
2213 T15 = W[118];
2214 T17 = W[119];
2215 T19 = FMA(T15, T16, T17 * T18);
2216 T6z = FNMS(T17, T16, T15 * T18);
2217 }
2218 {
2219 E T1b, T1d, T1a, T1c;
2220 T1b = cr[WS(rs, 28)];
2221 T1d = ci[WS(rs, 28)];
2222 T1a = W[54];
2223 T1c = W[55];
2224 T1e = FMA(T1a, T1b, T1c * T1d);
2225 T6A = FNMS(T1c, T1b, T1a * T1d);
2226 }
2227 T1f = T19 + T1e;
2228 TcW = T6z + T6A;
2229 T6B = T6z - T6A;
2230 T6E = T19 - T1e;
2231 }
2232 {
2233 E T1k, T6F, T1p, T6G;
2234 {
2235 E T1h, T1j, T1g, T1i;
2236 T1h = cr[WS(rs, 12)];
2237 T1j = ci[WS(rs, 12)];
2238 T1g = W[22];
2239 T1i = W[23];
2240 T1k = FMA(T1g, T1h, T1i * T1j);
2241 T6F = FNMS(T1i, T1h, T1g * T1j);
2242 }
2243 {
2244 E T1m, T1o, T1l, T1n;
2245 T1m = cr[WS(rs, 44)];
2246 T1o = ci[WS(rs, 44)];
2247 T1l = W[86];
2248 T1n = W[87];
2249 T1p = FMA(T1l, T1m, T1n * T1o);
2250 T6G = FNMS(T1n, T1m, T1l * T1o);
2251 }
2252 T1q = T1k + T1p;
2253 TcX = T6F + T6G;
2254 T6C = T1k - T1p;
2255 T6H = T6F - T6G;
2256 }
2257 T1r = T1f + T1q;
2258 Tfq = TcW + TcX;
2259 T6D = T6B + T6C;
2260 T6I = T6E - T6H;
2261 T6J = FMA(KP382683432, T6D, KP923879532 * T6I);
2262 T9P = FNMS(KP923879532, T6D, KP382683432 * T6I);
2263 {
2264 E TaH, TaI, TcV, TcY;
2265 TaH = T6E + T6H;
2266 TaI = T6B - T6C;
2267 TaJ = FNMS(KP382683432, TaI, KP923879532 * TaH);
2268 Tc1 = FMA(KP923879532, TaI, KP382683432 * TaH);
2269 TcV = T1f - T1q;
2270 TcY = TcW - TcX;
2271 TcZ = TcV - TcY;
2272 TeF = TcV + TcY;
2273 }
2274 }
2275 {
2276 E T1y, T73, T1D, T74, T1E, Td7, T1J, T6N, T1O, T6O, T1P, Td8, T21, Td4, T6R;
2277 E T6U, T2c, Td3, T6W, T6Z;
2278 {
2279 E T1v, T1x, T1u, T1w;
2280 T1v = cr[WS(rs, 2)];
2281 T1x = ci[WS(rs, 2)];
2282 T1u = W[2];
2283 T1w = W[3];
2284 T1y = FMA(T1u, T1v, T1w * T1x);
2285 T73 = FNMS(T1w, T1v, T1u * T1x);
2286 }
2287 {
2288 E T1A, T1C, T1z, T1B;
2289 T1A = cr[WS(rs, 34)];
2290 T1C = ci[WS(rs, 34)];
2291 T1z = W[66];
2292 T1B = W[67];
2293 T1D = FMA(T1z, T1A, T1B * T1C);
2294 T74 = FNMS(T1B, T1A, T1z * T1C);
2295 }
2296 T1E = T1y + T1D;
2297 Td7 = T73 + T74;
2298 {
2299 E T1G, T1I, T1F, T1H;
2300 T1G = cr[WS(rs, 18)];
2301 T1I = ci[WS(rs, 18)];
2302 T1F = W[34];
2303 T1H = W[35];
2304 T1J = FMA(T1F, T1G, T1H * T1I);
2305 T6N = FNMS(T1H, T1G, T1F * T1I);
2306 }
2307 {
2308 E T1L, T1N, T1K, T1M;
2309 T1L = cr[WS(rs, 50)];
2310 T1N = ci[WS(rs, 50)];
2311 T1K = W[98];
2312 T1M = W[99];
2313 T1O = FMA(T1K, T1L, T1M * T1N);
2314 T6O = FNMS(T1M, T1L, T1K * T1N);
2315 }
2316 T1P = T1J + T1O;
2317 Td8 = T6N + T6O;
2318 {
2319 E T1V, T6S, T20, T6T;
2320 {
2321 E T1S, T1U, T1R, T1T;
2322 T1S = cr[WS(rs, 10)];
2323 T1U = ci[WS(rs, 10)];
2324 T1R = W[18];
2325 T1T = W[19];
2326 T1V = FMA(T1R, T1S, T1T * T1U);
2327 T6S = FNMS(T1T, T1S, T1R * T1U);
2328 }
2329 {
2330 E T1X, T1Z, T1W, T1Y;
2331 T1X = cr[WS(rs, 42)];
2332 T1Z = ci[WS(rs, 42)];
2333 T1W = W[82];
2334 T1Y = W[83];
2335 T20 = FMA(T1W, T1X, T1Y * T1Z);
2336 T6T = FNMS(T1Y, T1X, T1W * T1Z);
2337 }
2338 T21 = T1V + T20;
2339 Td4 = T6S + T6T;
2340 T6R = T1V - T20;
2341 T6U = T6S - T6T;
2342 }
2343 {
2344 E T26, T6X, T2b, T6Y;
2345 {
2346 E T23, T25, T22, T24;
2347 T23 = cr[WS(rs, 58)];
2348 T25 = ci[WS(rs, 58)];
2349 T22 = W[114];
2350 T24 = W[115];
2351 T26 = FMA(T22, T23, T24 * T25);
2352 T6X = FNMS(T24, T23, T22 * T25);
2353 }
2354 {
2355 E T28, T2a, T27, T29;
2356 T28 = cr[WS(rs, 26)];
2357 T2a = ci[WS(rs, 26)];
2358 T27 = W[50];
2359 T29 = W[51];
2360 T2b = FMA(T27, T28, T29 * T2a);
2361 T6Y = FNMS(T29, T28, T27 * T2a);
2362 }
2363 T2c = T26 + T2b;
2364 Td3 = T6X + T6Y;
2365 T6W = T26 - T2b;
2366 T6Z = T6X - T6Y;
2367 }
2368 T1Q = T1E + T1P;
2369 T2d = T21 + T2c;
2370 Tfu = T1Q - T2d;
2371 Tfv = Td7 + Td8;
2372 Tfw = Td4 + Td3;
2373 Tfx = Tfv - Tfw;
2374 {
2375 E T6M, T6P, Td9, Tda;
2376 T6M = T1y - T1D;
2377 T6P = T6N - T6O;
2378 T6Q = T6M - T6P;
2379 TaM = T6M + T6P;
2380 Td9 = Td7 - Td8;
2381 Tda = T21 - T2c;
2382 Tdb = Td9 - Tda;
2383 TeI = Td9 + Tda;
2384 }
2385 {
2386 E T6V, T70, T78, T79;
2387 T6V = T6R - T6U;
2388 T70 = T6W + T6Z;
2389 T71 = KP707106781 * (T6V + T70);
2390 TaQ = KP707106781 * (T70 - T6V);
2391 T78 = T6R + T6U;
2392 T79 = T6Z - T6W;
2393 T7a = KP707106781 * (T78 + T79);
2394 TaN = KP707106781 * (T78 - T79);
2395 }
2396 {
2397 E Td2, Td5, T75, T76;
2398 Td2 = T1E - T1P;
2399 Td5 = Td3 - Td4;
2400 Td6 = Td2 - Td5;
2401 TeJ = Td2 + Td5;
2402 T75 = T73 - T74;
2403 T76 = T1J - T1O;
2404 T77 = T75 + T76;
2405 TaP = T75 - T76;
2406 }
2407 }
2408 {
2409 E T2j, T7u, T2o, T7v, T2p, Tdd, T2u, T7e, T2z, T7f, T2A, Tde, T2M, Tdk, T7i;
2410 E T7l, T2X, Tdj, T7n, T7q;
2411 {
2412 E T2g, T2i, T2f, T2h;
2413 T2g = cr[WS(rs, 62)];
2414 T2i = ci[WS(rs, 62)];
2415 T2f = W[122];
2416 T2h = W[123];
2417 T2j = FMA(T2f, T2g, T2h * T2i);
2418 T7u = FNMS(T2h, T2g, T2f * T2i);
2419 }
2420 {
2421 E T2l, T2n, T2k, T2m;
2422 T2l = cr[WS(rs, 30)];
2423 T2n = ci[WS(rs, 30)];
2424 T2k = W[58];
2425 T2m = W[59];
2426 T2o = FMA(T2k, T2l, T2m * T2n);
2427 T7v = FNMS(T2m, T2l, T2k * T2n);
2428 }
2429 T2p = T2j + T2o;
2430 Tdd = T7u + T7v;
2431 {
2432 E T2r, T2t, T2q, T2s;
2433 T2r = cr[WS(rs, 14)];
2434 T2t = ci[WS(rs, 14)];
2435 T2q = W[26];
2436 T2s = W[27];
2437 T2u = FMA(T2q, T2r, T2s * T2t);
2438 T7e = FNMS(T2s, T2r, T2q * T2t);
2439 }
2440 {
2441 E T2w, T2y, T2v, T2x;
2442 T2w = cr[WS(rs, 46)];
2443 T2y = ci[WS(rs, 46)];
2444 T2v = W[90];
2445 T2x = W[91];
2446 T2z = FMA(T2v, T2w, T2x * T2y);
2447 T7f = FNMS(T2x, T2w, T2v * T2y);
2448 }
2449 T2A = T2u + T2z;
2450 Tde = T7e + T7f;
2451 {
2452 E T2G, T7j, T2L, T7k;
2453 {
2454 E T2D, T2F, T2C, T2E;
2455 T2D = cr[WS(rs, 6)];
2456 T2F = ci[WS(rs, 6)];
2457 T2C = W[10];
2458 T2E = W[11];
2459 T2G = FMA(T2C, T2D, T2E * T2F);
2460 T7j = FNMS(T2E, T2D, T2C * T2F);
2461 }
2462 {
2463 E T2I, T2K, T2H, T2J;
2464 T2I = cr[WS(rs, 38)];
2465 T2K = ci[WS(rs, 38)];
2466 T2H = W[74];
2467 T2J = W[75];
2468 T2L = FMA(T2H, T2I, T2J * T2K);
2469 T7k = FNMS(T2J, T2I, T2H * T2K);
2470 }
2471 T2M = T2G + T2L;
2472 Tdk = T7j + T7k;
2473 T7i = T2G - T2L;
2474 T7l = T7j - T7k;
2475 }
2476 {
2477 E T2R, T7o, T2W, T7p;
2478 {
2479 E T2O, T2Q, T2N, T2P;
2480 T2O = cr[WS(rs, 54)];
2481 T2Q = ci[WS(rs, 54)];
2482 T2N = W[106];
2483 T2P = W[107];
2484 T2R = FMA(T2N, T2O, T2P * T2Q);
2485 T7o = FNMS(T2P, T2O, T2N * T2Q);
2486 }
2487 {
2488 E T2T, T2V, T2S, T2U;
2489 T2T = cr[WS(rs, 22)];
2490 T2V = ci[WS(rs, 22)];
2491 T2S = W[42];
2492 T2U = W[43];
2493 T2W = FMA(T2S, T2T, T2U * T2V);
2494 T7p = FNMS(T2U, T2T, T2S * T2V);
2495 }
2496 T2X = T2R + T2W;
2497 Tdj = T7o + T7p;
2498 T7n = T2R - T2W;
2499 T7q = T7o - T7p;
2500 }
2501 T2B = T2p + T2A;
2502 T2Y = T2M + T2X;
2503 Tfz = T2B - T2Y;
2504 TfA = Tdd + Tde;
2505 TfB = Tdk + Tdj;
2506 TfC = TfA - TfB;
2507 {
2508 E T7d, T7g, Tdi, Tdl;
2509 T7d = T2j - T2o;
2510 T7g = T7e - T7f;
2511 T7h = T7d - T7g;
2512 TaW = T7d + T7g;
2513 Tdi = T2p - T2A;
2514 Tdl = Tdj - Tdk;
2515 Tdm = Tdi - Tdl;
2516 TeL = Tdi + Tdl;
2517 }
2518 {
2519 E T7m, T7r, T7z, T7A;
2520 T7m = T7i - T7l;
2521 T7r = T7n + T7q;
2522 T7s = KP707106781 * (T7m + T7r);
2523 TaU = KP707106781 * (T7r - T7m);
2524 T7z = T7i + T7l;
2525 T7A = T7q - T7n;
2526 T7B = KP707106781 * (T7z + T7A);
2527 TaX = KP707106781 * (T7z - T7A);
2528 }
2529 {
2530 E Tdf, Tdg, T7w, T7x;
2531 Tdf = Tdd - Tde;
2532 Tdg = T2M - T2X;
2533 Tdh = Tdf - Tdg;
2534 TeM = Tdf + Tdg;
2535 T7w = T7u - T7v;
2536 T7x = T2u - T2z;
2537 T7y = T7w + T7x;
2538 TaT = T7w - T7x;
2539 }
2540 }
2541 {
2542 E T4D, T9e, T4I, T9f, T4J, TdR, T4O, T8A, T4T, T8B, T4U, TdS, T56, Tea, T8E;
2543 E T8H, T5h, Te9, T8J, T8M;
2544 {
2545 E T4A, T4C, T4z, T4B;
2546 T4A = cr[WS(rs, 63)];
2547 T4C = ci[WS(rs, 63)];
2548 T4z = W[124];
2549 T4B = W[125];
2550 T4D = FMA(T4z, T4A, T4B * T4C);
2551 T9e = FNMS(T4B, T4A, T4z * T4C);
2552 }
2553 {
2554 E T4F, T4H, T4E, T4G;
2555 T4F = cr[WS(rs, 31)];
2556 T4H = ci[WS(rs, 31)];
2557 T4E = W[60];
2558 T4G = W[61];
2559 T4I = FMA(T4E, T4F, T4G * T4H);
2560 T9f = FNMS(T4G, T4F, T4E * T4H);
2561 }
2562 T4J = T4D + T4I;
2563 TdR = T9e + T9f;
2564 {
2565 E T4L, T4N, T4K, T4M;
2566 T4L = cr[WS(rs, 15)];
2567 T4N = ci[WS(rs, 15)];
2568 T4K = W[28];
2569 T4M = W[29];
2570 T4O = FMA(T4K, T4L, T4M * T4N);
2571 T8A = FNMS(T4M, T4L, T4K * T4N);
2572 }
2573 {
2574 E T4Q, T4S, T4P, T4R;
2575 T4Q = cr[WS(rs, 47)];
2576 T4S = ci[WS(rs, 47)];
2577 T4P = W[92];
2578 T4R = W[93];
2579 T4T = FMA(T4P, T4Q, T4R * T4S);
2580 T8B = FNMS(T4R, T4Q, T4P * T4S);
2581 }
2582 T4U = T4O + T4T;
2583 TdS = T8A + T8B;
2584 {
2585 E T50, T8F, T55, T8G;
2586 {
2587 E T4X, T4Z, T4W, T4Y;
2588 T4X = cr[WS(rs, 7)];
2589 T4Z = ci[WS(rs, 7)];
2590 T4W = W[12];
2591 T4Y = W[13];
2592 T50 = FMA(T4W, T4X, T4Y * T4Z);
2593 T8F = FNMS(T4Y, T4X, T4W * T4Z);
2594 }
2595 {
2596 E T52, T54, T51, T53;
2597 T52 = cr[WS(rs, 39)];
2598 T54 = ci[WS(rs, 39)];
2599 T51 = W[76];
2600 T53 = W[77];
2601 T55 = FMA(T51, T52, T53 * T54);
2602 T8G = FNMS(T53, T52, T51 * T54);
2603 }
2604 T56 = T50 + T55;
2605 Tea = T8F + T8G;
2606 T8E = T50 - T55;
2607 T8H = T8F - T8G;
2608 }
2609 {
2610 E T5b, T8K, T5g, T8L;
2611 {
2612 E T58, T5a, T57, T59;
2613 T58 = cr[WS(rs, 55)];
2614 T5a = ci[WS(rs, 55)];
2615 T57 = W[108];
2616 T59 = W[109];
2617 T5b = FMA(T57, T58, T59 * T5a);
2618 T8K = FNMS(T59, T58, T57 * T5a);
2619 }
2620 {
2621 E T5d, T5f, T5c, T5e;
2622 T5d = cr[WS(rs, 23)];
2623 T5f = ci[WS(rs, 23)];
2624 T5c = W[44];
2625 T5e = W[45];
2626 T5g = FMA(T5c, T5d, T5e * T5f);
2627 T8L = FNMS(T5e, T5d, T5c * T5f);
2628 }
2629 T5h = T5b + T5g;
2630 Te9 = T8K + T8L;
2631 T8J = T5b - T5g;
2632 T8M = T8K - T8L;
2633 }
2634 {
2635 E T4V, T5i, Te8, Teb;
2636 T4V = T4J + T4U;
2637 T5i = T56 + T5h;
2638 T5j = T4V + T5i;
2639 TfR = T4V - T5i;
2640 Te8 = T4J - T4U;
2641 Teb = Te9 - Tea;
2642 Tec = Te8 - Teb;
2643 TeX = Te8 + Teb;
2644 }
2645 {
2646 E TfW, TfX, T8z, T8C;
2647 TfW = TdR + TdS;
2648 TfX = Tea + Te9;
2649 TfY = TfW - TfX;
2650 Tgy = TfW + TfX;
2651 T8z = T4D - T4I;
2652 T8C = T8A - T8B;
2653 T8D = T8z - T8C;
2654 Tbl = T8z + T8C;
2655 }
2656 {
2657 E T8I, T8N, T9j, T9k;
2658 T8I = T8E - T8H;
2659 T8N = T8J + T8M;
2660 T8O = KP707106781 * (T8I + T8N);
2661 Tbx = KP707106781 * (T8N - T8I);
2662 T9j = T8E + T8H;
2663 T9k = T8M - T8J;
2664 T9l = KP707106781 * (T9j + T9k);
2665 Tbm = KP707106781 * (T9j - T9k);
2666 }
2667 {
2668 E TdT, TdU, T9g, T9h;
2669 TdT = TdR - TdS;
2670 TdU = T56 - T5h;
2671 TdV = TdT - TdU;
2672 Tf0 = TdT + TdU;
2673 T9g = T9e - T9f;
2674 T9h = T4O - T4T;
2675 T9i = T9g + T9h;
2676 Tbw = T9g - T9h;
2677 }
2678 }
2679 {
2680 E T36, T7G, T3b, T7H, T3c, TdH, T3h, T8m, T3m, T8n, T3n, TdI, T3z, Tds, T7L;
2681 E T7O, T3K, Tdr, T7S, T7T;
2682 {
2683 E T33, T35, T32, T34;
2684 T33 = cr[WS(rs, 1)];
2685 T35 = ci[WS(rs, 1)];
2686 T32 = W[0];
2687 T34 = W[1];
2688 T36 = FMA(T32, T33, T34 * T35);
2689 T7G = FNMS(T34, T33, T32 * T35);
2690 }
2691 {
2692 E T38, T3a, T37, T39;
2693 T38 = cr[WS(rs, 33)];
2694 T3a = ci[WS(rs, 33)];
2695 T37 = W[64];
2696 T39 = W[65];
2697 T3b = FMA(T37, T38, T39 * T3a);
2698 T7H = FNMS(T39, T38, T37 * T3a);
2699 }
2700 T3c = T36 + T3b;
2701 TdH = T7G + T7H;
2702 {
2703 E T3e, T3g, T3d, T3f;
2704 T3e = cr[WS(rs, 17)];
2705 T3g = ci[WS(rs, 17)];
2706 T3d = W[32];
2707 T3f = W[33];
2708 T3h = FMA(T3d, T3e, T3f * T3g);
2709 T8m = FNMS(T3f, T3e, T3d * T3g);
2710 }
2711 {
2712 E T3j, T3l, T3i, T3k;
2713 T3j = cr[WS(rs, 49)];
2714 T3l = ci[WS(rs, 49)];
2715 T3i = W[96];
2716 T3k = W[97];
2717 T3m = FMA(T3i, T3j, T3k * T3l);
2718 T8n = FNMS(T3k, T3j, T3i * T3l);
2719 }
2720 T3n = T3h + T3m;
2721 TdI = T8m + T8n;
2722 {
2723 E T3t, T7M, T3y, T7N;
2724 {
2725 E T3q, T3s, T3p, T3r;
2726 T3q = cr[WS(rs, 9)];
2727 T3s = ci[WS(rs, 9)];
2728 T3p = W[16];
2729 T3r = W[17];
2730 T3t = FMA(T3p, T3q, T3r * T3s);
2731 T7M = FNMS(T3r, T3q, T3p * T3s);
2732 }
2733 {
2734 E T3v, T3x, T3u, T3w;
2735 T3v = cr[WS(rs, 41)];
2736 T3x = ci[WS(rs, 41)];
2737 T3u = W[80];
2738 T3w = W[81];
2739 T3y = FMA(T3u, T3v, T3w * T3x);
2740 T7N = FNMS(T3w, T3v, T3u * T3x);
2741 }
2742 T3z = T3t + T3y;
2743 Tds = T7M + T7N;
2744 T7L = T3t - T3y;
2745 T7O = T7M - T7N;
2746 }
2747 {
2748 E T3E, T7Q, T3J, T7R;
2749 {
2750 E T3B, T3D, T3A, T3C;
2751 T3B = cr[WS(rs, 57)];
2752 T3D = ci[WS(rs, 57)];
2753 T3A = W[112];
2754 T3C = W[113];
2755 T3E = FMA(T3A, T3B, T3C * T3D);
2756 T7Q = FNMS(T3C, T3B, T3A * T3D);
2757 }
2758 {
2759 E T3G, T3I, T3F, T3H;
2760 T3G = cr[WS(rs, 25)];
2761 T3I = ci[WS(rs, 25)];
2762 T3F = W[48];
2763 T3H = W[49];
2764 T3J = FMA(T3F, T3G, T3H * T3I);
2765 T7R = FNMS(T3H, T3G, T3F * T3I);
2766 }
2767 T3K = T3E + T3J;
2768 Tdr = T7Q + T7R;
2769 T7S = T7Q - T7R;
2770 T7T = T3E - T3J;
2771 }
2772 {
2773 E T3o, T3L, TdJ, TdK;
2774 T3o = T3c + T3n;
2775 T3L = T3z + T3K;
2776 T3M = T3o + T3L;
2777 TfL = T3o - T3L;
2778 TdJ = TdH - TdI;
2779 TdK = T3z - T3K;
2780 TdL = TdJ - TdK;
2781 TeT = TdJ + TdK;
2782 }
2783 {
2784 E TfG, TfH, T7I, T7J;
2785 TfG = TdH + TdI;
2786 TfH = Tds + Tdr;
2787 TfI = TfG - TfH;
2788 Tgt = TfG + TfH;
2789 T7I = T7G - T7H;
2790 T7J = T3h - T3m;
2791 T7K = T7I + T7J;
2792 Tbd = T7I - T7J;
2793 }
2794 {
2795 E T7P, T7U, T8q, T8r;
2796 T7P = T7L + T7O;
2797 T7U = T7S - T7T;
2798 T7V = KP707106781 * (T7P + T7U);
2799 Tb3 = KP707106781 * (T7P - T7U);
2800 T8q = T7L - T7O;
2801 T8r = T7T + T7S;
2802 T8s = KP707106781 * (T8q + T8r);
2803 Tbe = KP707106781 * (T8r - T8q);
2804 }
2805 {
2806 E Tdq, Tdt, T8l, T8o;
2807 Tdq = T3c - T3n;
2808 Tdt = Tdr - Tds;
2809 Tdu = Tdq - Tdt;
2810 TeQ = Tdq + Tdt;
2811 T8l = T36 - T3b;
2812 T8o = T8m - T8n;
2813 T8p = T8l - T8o;
2814 Tb2 = T8l + T8o;
2815 }
2816 }
2817 {
2818 E T3X, Tdw, T7Z, T82, T4v, TdB, T8b, T8g, T48, Tdx, T80, T85, T4k, TdA, T8a;
2819 E T8d;
2820 {
2821 E T3R, T7X, T3W, T7Y;
2822 {
2823 E T3O, T3Q, T3N, T3P;
2824 T3O = cr[WS(rs, 5)];
2825 T3Q = ci[WS(rs, 5)];
2826 T3N = W[8];
2827 T3P = W[9];
2828 T3R = FMA(T3N, T3O, T3P * T3Q);
2829 T7X = FNMS(T3P, T3O, T3N * T3Q);
2830 }
2831 {
2832 E T3T, T3V, T3S, T3U;
2833 T3T = cr[WS(rs, 37)];
2834 T3V = ci[WS(rs, 37)];
2835 T3S = W[72];
2836 T3U = W[73];
2837 T3W = FMA(T3S, T3T, T3U * T3V);
2838 T7Y = FNMS(T3U, T3T, T3S * T3V);
2839 }
2840 T3X = T3R + T3W;
2841 Tdw = T7X + T7Y;
2842 T7Z = T7X - T7Y;
2843 T82 = T3R - T3W;
2844 }
2845 {
2846 E T4p, T8e, T4u, T8f;
2847 {
2848 E T4m, T4o, T4l, T4n;
2849 T4m = cr[WS(rs, 13)];
2850 T4o = ci[WS(rs, 13)];
2851 T4l = W[24];
2852 T4n = W[25];
2853 T4p = FMA(T4l, T4m, T4n * T4o);
2854 T8e = FNMS(T4n, T4m, T4l * T4o);
2855 }
2856 {
2857 E T4r, T4t, T4q, T4s;
2858 T4r = cr[WS(rs, 45)];
2859 T4t = ci[WS(rs, 45)];
2860 T4q = W[88];
2861 T4s = W[89];
2862 T4u = FMA(T4q, T4r, T4s * T4t);
2863 T8f = FNMS(T4s, T4r, T4q * T4t);
2864 }
2865 T4v = T4p + T4u;
2866 TdB = T8e + T8f;
2867 T8b = T4p - T4u;
2868 T8g = T8e - T8f;
2869 }
2870 {
2871 E T42, T83, T47, T84;
2872 {
2873 E T3Z, T41, T3Y, T40;
2874 T3Z = cr[WS(rs, 21)];
2875 T41 = ci[WS(rs, 21)];
2876 T3Y = W[40];
2877 T40 = W[41];
2878 T42 = FMA(T3Y, T3Z, T40 * T41);
2879 T83 = FNMS(T40, T3Z, T3Y * T41);
2880 }
2881 {
2882 E T44, T46, T43, T45;
2883 T44 = cr[WS(rs, 53)];
2884 T46 = ci[WS(rs, 53)];
2885 T43 = W[104];
2886 T45 = W[105];
2887 T47 = FMA(T43, T44, T45 * T46);
2888 T84 = FNMS(T45, T44, T43 * T46);
2889 }
2890 T48 = T42 + T47;
2891 Tdx = T83 + T84;
2892 T80 = T42 - T47;
2893 T85 = T83 - T84;
2894 }
2895 {
2896 E T4e, T88, T4j, T89;
2897 {
2898 E T4b, T4d, T4a, T4c;
2899 T4b = cr[WS(rs, 61)];
2900 T4d = ci[WS(rs, 61)];
2901 T4a = W[120];
2902 T4c = W[121];
2903 T4e = FMA(T4a, T4b, T4c * T4d);
2904 T88 = FNMS(T4c, T4b, T4a * T4d);
2905 }
2906 {
2907 E T4g, T4i, T4f, T4h;
2908 T4g = cr[WS(rs, 29)];
2909 T4i = ci[WS(rs, 29)];
2910 T4f = W[56];
2911 T4h = W[57];
2912 T4j = FMA(T4f, T4g, T4h * T4i);
2913 T89 = FNMS(T4h, T4g, T4f * T4i);
2914 }
2915 T4k = T4e + T4j;
2916 TdA = T88 + T89;
2917 T8a = T88 - T89;
2918 T8d = T4e - T4j;
2919 }
2920 {
2921 E T49, T4w, TdC, TdD;
2922 T49 = T3X + T48;
2923 T4w = T4k + T4v;
2924 T4x = T49 + T4w;
2925 TfJ = T49 - T4w;
2926 TdC = TdA - TdB;
2927 TdD = T4k - T4v;
2928 TdE = TdC - TdD;
2929 TdM = TdD + TdC;
2930 }
2931 {
2932 E TfM, TfN, T81, T86;
2933 TfM = TdA + TdB;
2934 TfN = Tdw + Tdx;
2935 TfO = TfM - TfN;
2936 Tgu = TfN + TfM;
2937 T81 = T7Z + T80;
2938 T86 = T82 - T85;
2939 T87 = FMA(KP923879532, T81, KP382683432 * T86);
2940 T8u = FNMS(KP382683432, T81, KP923879532 * T86);
2941 }
2942 {
2943 E T8c, T8h, Tb8, Tb9;
2944 T8c = T8a + T8b;
2945 T8h = T8d - T8g;
2946 T8i = FNMS(KP382683432, T8h, KP923879532 * T8c);
2947 T8v = FMA(KP382683432, T8c, KP923879532 * T8h);
2948 Tb8 = T8d + T8g;
2949 Tb9 = T8a - T8b;
2950 Tba = FNMS(KP382683432, Tb9, KP923879532 * Tb8);
2951 Tbh = FMA(KP923879532, Tb9, KP382683432 * Tb8);
2952 }
2953 {
2954 E Tdv, Tdy, Tb5, Tb6;
2955 Tdv = T3X - T48;
2956 Tdy = Tdw - Tdx;
2957 Tdz = Tdv + Tdy;
2958 TdN = Tdv - Tdy;
2959 Tb5 = T7Z - T80;
2960 Tb6 = T82 + T85;
2961 Tb7 = FMA(KP382683432, Tb5, KP923879532 * Tb6);
2962 Tbg = FNMS(KP382683432, Tb6, KP923879532 * Tb5);
2963 }
2964 }
2965 {
2966 E T5u, Te2, T8Q, T8X, T62, TdY, T94, T99, T5F, Te3, T8T, T8Y, T5R, TdX, T93;
2967 E T96;
2968 {
2969 E T5o, T8V, T5t, T8W;
2970 {
2971 E T5l, T5n, T5k, T5m;
2972 T5l = cr[WS(rs, 3)];
2973 T5n = ci[WS(rs, 3)];
2974 T5k = W[4];
2975 T5m = W[5];
2976 T5o = FMA(T5k, T5l, T5m * T5n);
2977 T8V = FNMS(T5m, T5l, T5k * T5n);
2978 }
2979 {
2980 E T5q, T5s, T5p, T5r;
2981 T5q = cr[WS(rs, 35)];
2982 T5s = ci[WS(rs, 35)];
2983 T5p = W[68];
2984 T5r = W[69];
2985 T5t = FMA(T5p, T5q, T5r * T5s);
2986 T8W = FNMS(T5r, T5q, T5p * T5s);
2987 }
2988 T5u = T5o + T5t;
2989 Te2 = T8V + T8W;
2990 T8Q = T5o - T5t;
2991 T8X = T8V - T8W;
2992 }
2993 {
2994 E T5W, T97, T61, T98;
2995 {
2996 E T5T, T5V, T5S, T5U;
2997 T5T = cr[WS(rs, 11)];
2998 T5V = ci[WS(rs, 11)];
2999 T5S = W[20];
3000 T5U = W[21];
3001 T5W = FMA(T5S, T5T, T5U * T5V);
3002 T97 = FNMS(T5U, T5T, T5S * T5V);
3003 }
3004 {
3005 E T5Y, T60, T5X, T5Z;
3006 T5Y = cr[WS(rs, 43)];
3007 T60 = ci[WS(rs, 43)];
3008 T5X = W[84];
3009 T5Z = W[85];
3010 T61 = FMA(T5X, T5Y, T5Z * T60);
3011 T98 = FNMS(T5Z, T5Y, T5X * T60);
3012 }
3013 T62 = T5W + T61;
3014 TdY = T97 + T98;
3015 T94 = T5W - T61;
3016 T99 = T97 - T98;
3017 }
3018 {
3019 E T5z, T8R, T5E, T8S;
3020 {
3021 E T5w, T5y, T5v, T5x;
3022 T5w = cr[WS(rs, 19)];
3023 T5y = ci[WS(rs, 19)];
3024 T5v = W[36];
3025 T5x = W[37];
3026 T5z = FMA(T5v, T5w, T5x * T5y);
3027 T8R = FNMS(T5x, T5w, T5v * T5y);
3028 }
3029 {
3030 E T5B, T5D, T5A, T5C;
3031 T5B = cr[WS(rs, 51)];
3032 T5D = ci[WS(rs, 51)];
3033 T5A = W[100];
3034 T5C = W[101];
3035 T5E = FMA(T5A, T5B, T5C * T5D);
3036 T8S = FNMS(T5C, T5B, T5A * T5D);
3037 }
3038 T5F = T5z + T5E;
3039 Te3 = T8R + T8S;
3040 T8T = T8R - T8S;
3041 T8Y = T5z - T5E;
3042 }
3043 {
3044 E T5L, T91, T5Q, T92;
3045 {
3046 E T5I, T5K, T5H, T5J;
3047 T5I = cr[WS(rs, 59)];
3048 T5K = ci[WS(rs, 59)];
3049 T5H = W[116];
3050 T5J = W[117];
3051 T5L = FMA(T5H, T5I, T5J * T5K);
3052 T91 = FNMS(T5J, T5I, T5H * T5K);
3053 }
3054 {
3055 E T5N, T5P, T5M, T5O;
3056 T5N = cr[WS(rs, 27)];
3057 T5P = ci[WS(rs, 27)];
3058 T5M = W[52];
3059 T5O = W[53];
3060 T5Q = FMA(T5M, T5N, T5O * T5P);
3061 T92 = FNMS(T5O, T5N, T5M * T5P);
3062 }
3063 T5R = T5L + T5Q;
3064 TdX = T91 + T92;
3065 T93 = T91 - T92;
3066 T96 = T5L - T5Q;
3067 }
3068 {
3069 E T5G, T63, Te1, Te4;
3070 T5G = T5u + T5F;
3071 T63 = T5R + T62;
3072 T64 = T5G + T63;
3073 TfZ = T5G - T63;
3074 Te1 = T5u - T5F;
3075 Te4 = Te2 - Te3;
3076 Te5 = Te1 - Te4;
3077 Ted = Te1 + Te4;
3078 }
3079 {
3080 E TfS, TfT, T8U, T8Z;
3081 TfS = TdX + TdY;
3082 TfT = Te2 + Te3;
3083 TfU = TfS - TfT;
3084 Tgz = TfT + TfS;
3085 T8U = T8Q - T8T;
3086 T8Z = T8X + T8Y;
3087 T90 = FNMS(KP382683432, T8Z, KP923879532 * T8U);
3088 T9n = FMA(KP923879532, T8Z, KP382683432 * T8U);
3089 }
3090 {
3091 E T95, T9a, Tbr, Tbs;
3092 T95 = T93 + T94;
3093 T9a = T96 - T99;
3094 T9b = FMA(KP382683432, T95, KP923879532 * T9a);
3095 T9o = FNMS(KP382683432, T9a, KP923879532 * T95);
3096 Tbr = T96 + T99;
3097 Tbs = T93 - T94;
3098 Tbt = FNMS(KP382683432, Tbs, KP923879532 * Tbr);
3099 TbA = FMA(KP923879532, Tbs, KP382683432 * Tbr);
3100 }
3101 {
3102 E TdW, TdZ, Tbo, Tbp;
3103 TdW = T5R - T62;
3104 TdZ = TdX - TdY;
3105 Te0 = TdW + TdZ;
3106 Tee = TdZ - TdW;
3107 Tbo = T8X - T8Y;
3108 Tbp = T8Q + T8T;
3109 Tbq = FMA(KP382683432, Tbo, KP923879532 * Tbp);
3110 Tbz = FNMS(KP382683432, Tbp, KP923879532 * Tbo);
3111 }
3112 }
3113 {
3114 E T1t, Tgn, TgK, TgL, TgV, Th1, T30, Th0, T66, TgX, Tgw, TgE, TgB, TgF, Tgq;
3115 E TgM;
3116 {
3117 E TH, T1s, TgI, TgJ;
3118 TH = Tj + TG;
3119 T1s = T14 + T1r;
3120 T1t = TH + T1s;
3121 Tgn = TH - T1s;
3122 TgI = Tgy + Tgz;
3123 TgJ = Tgt + Tgu;
3124 TgK = TgI - TgJ;
3125 TgL = TgJ + TgI;
3126 }
3127 {
3128 E TgN, TgU, T2e, T2Z;
3129 TgN = Tfr + Tfq;
3130 TgU = TgO + TgT;
3131 TgV = TgN + TgU;
3132 Th1 = TgU - TgN;
3133 T2e = T1Q + T2d;
3134 T2Z = T2B + T2Y;
3135 T30 = T2e + T2Z;
3136 Th0 = T2e - T2Z;
3137 }
3138 {
3139 E T4y, T65, Tgs, Tgv;
3140 T4y = T3M + T4x;
3141 T65 = T5j + T64;
3142 T66 = T4y + T65;
3143 TgX = T65 - T4y;
3144 Tgs = T3M - T4x;
3145 Tgv = Tgt - Tgu;
3146 Tgw = Tgs + Tgv;
3147 TgE = Tgs - Tgv;
3148 }
3149 {
3150 E Tgx, TgA, Tgo, Tgp;
3151 Tgx = T5j - T64;
3152 TgA = Tgy - Tgz;
3153 TgB = Tgx - TgA;
3154 TgF = Tgx + TgA;
3155 Tgo = TfA + TfB;
3156 Tgp = Tfv + Tfw;
3157 Tgq = Tgo - Tgp;
3158 TgM = Tgp + Tgo;
3159 }
3160 {
3161 E T31, TgW, TgY, TgH;
3162 T31 = T1t + T30;
3163 ci[WS(rs, 31)] = T31 - T66;
3164 cr[0] = T31 + T66;
3165 TgW = TgM + TgV;
3166 cr[WS(rs, 32)] = TgL - TgW;
3167 ci[WS(rs, 63)] = TgL + TgW;
3168 TgY = TgV - TgM;
3169 cr[WS(rs, 48)] = TgX - TgY;
3170 ci[WS(rs, 47)] = TgX + TgY;
3171 TgH = T1t - T30;
3172 cr[WS(rs, 16)] = TgH - TgK;
3173 ci[WS(rs, 15)] = TgH + TgK;
3174 }
3175 {
3176 E Tgr, TgC, TgZ, Th2;
3177 Tgr = Tgn - Tgq;
3178 TgC = KP707106781 * (Tgw + TgB);
3179 ci[WS(rs, 23)] = Tgr - TgC;
3180 cr[WS(rs, 8)] = Tgr + TgC;
3181 TgZ = KP707106781 * (TgB - Tgw);
3182 Th2 = Th0 + Th1;
3183 cr[WS(rs, 56)] = TgZ - Th2;
3184 ci[WS(rs, 39)] = TgZ + Th2;
3185 }
3186 {
3187 E Th3, Th4, TgD, TgG;
3188 Th3 = KP707106781 * (TgF - TgE);
3189 Th4 = Th1 - Th0;
3190 cr[WS(rs, 40)] = Th3 - Th4;
3191 ci[WS(rs, 55)] = Th3 + Th4;
3192 TgD = Tgn + Tgq;
3193 TgG = KP707106781 * (TgE + TgF);
3194 cr[WS(rs, 24)] = TgD - TgG;
3195 ci[WS(rs, 7)] = TgD + TgG;
3196 }
3197 }
3198 {
3199 E T6L, T9x, ThV, Ti1, T7E, Ti0, T9A, ThO, T8y, T9K, T9u, T9E, T9r, T9L, T9v;
3200 E T9H;
3201 {
3202 E T6n, T6K, ThP, ThU;
3203 T6n = T6b + T6m;
3204 T6K = T6y + T6J;
3205 T6L = T6n - T6K;
3206 T9x = T6n + T6K;
3207 ThP = T9O - T9P;
3208 ThU = ThQ + ThT;
3209 ThV = ThP + ThU;
3210 Ti1 = ThU - ThP;
3211 }
3212 {
3213 E T7c, T9y, T7D, T9z;
3214 {
3215 E T72, T7b, T7t, T7C;
3216 T72 = T6Q + T71;
3217 T7b = T77 + T7a;
3218 T7c = FMA(KP195090322, T72, KP980785280 * T7b);
3219 T9y = FNMS(KP195090322, T7b, KP980785280 * T72);
3220 T7t = T7h + T7s;
3221 T7C = T7y + T7B;
3222 T7D = FNMS(KP980785280, T7C, KP195090322 * T7t);
3223 T9z = FMA(KP980785280, T7t, KP195090322 * T7C);
3224 }
3225 T7E = T7c + T7D;
3226 Ti0 = T9z - T9y;
3227 T9A = T9y + T9z;
3228 ThO = T7c - T7D;
3229 }
3230 {
3231 E T8k, T9D, T8x, T9C;
3232 {
3233 E T7W, T8j, T8t, T8w;
3234 T7W = T7K + T7V;
3235 T8j = T87 + T8i;
3236 T8k = T7W - T8j;
3237 T9D = T7W + T8j;
3238 T8t = T8p + T8s;
3239 T8w = T8u + T8v;
3240 T8x = T8t - T8w;
3241 T9C = T8t + T8w;
3242 }
3243 T8y = FMA(KP634393284, T8k, KP773010453 * T8x);
3244 T9K = FMA(KP995184726, T9D, KP098017140 * T9C);
3245 T9u = FNMS(KP773010453, T8k, KP634393284 * T8x);
3246 T9E = FNMS(KP098017140, T9D, KP995184726 * T9C);
3247 }
3248 {
3249 E T9d, T9G, T9q, T9F;
3250 {
3251 E T8P, T9c, T9m, T9p;
3252 T8P = T8D + T8O;
3253 T9c = T90 + T9b;
3254 T9d = T8P - T9c;
3255 T9G = T8P + T9c;
3256 T9m = T9i + T9l;
3257 T9p = T9n + T9o;
3258 T9q = T9m - T9p;
3259 T9F = T9m + T9p;
3260 }
3261 T9r = FNMS(KP634393284, T9q, KP773010453 * T9d);
3262 T9L = FNMS(KP995184726, T9F, KP098017140 * T9G);
3263 T9v = FMA(KP773010453, T9q, KP634393284 * T9d);
3264 T9H = FMA(KP098017140, T9F, KP995184726 * T9G);
3265 }
3266 {
3267 E T7F, T9s, ThZ, Ti2;
3268 T7F = T6L + T7E;
3269 T9s = T8y + T9r;
3270 ci[WS(rs, 24)] = T7F - T9s;
3271 cr[WS(rs, 7)] = T7F + T9s;
3272 ThZ = T9v - T9u;
3273 Ti2 = Ti0 + Ti1;
3274 cr[WS(rs, 39)] = ThZ - Ti2;
3275 ci[WS(rs, 56)] = ThZ + Ti2;
3276 }
3277 {
3278 E Ti3, Ti4, T9t, T9w;
3279 Ti3 = T9r - T8y;
3280 Ti4 = Ti1 - Ti0;
3281 cr[WS(rs, 55)] = Ti3 - Ti4;
3282 ci[WS(rs, 40)] = Ti3 + Ti4;
3283 T9t = T6L - T7E;
3284 T9w = T9u + T9v;
3285 cr[WS(rs, 23)] = T9t - T9w;
3286 ci[WS(rs, 8)] = T9t + T9w;
3287 }
3288 {
3289 E T9B, T9I, ThN, ThW;
3290 T9B = T9x + T9A;
3291 T9I = T9E + T9H;
3292 cr[WS(rs, 31)] = T9B - T9I;
3293 ci[0] = T9B + T9I;
3294 ThN = T9L - T9K;
3295 ThW = ThO + ThV;
3296 cr[WS(rs, 63)] = ThN - ThW;
3297 ci[WS(rs, 32)] = ThN + ThW;
3298 }
3299 {
3300 E ThX, ThY, T9J, T9M;
3301 ThX = T9H - T9E;
3302 ThY = ThV - ThO;
3303 cr[WS(rs, 47)] = ThX - ThY;
3304 ci[WS(rs, 48)] = ThX + ThY;
3305 T9J = T9x - T9A;
3306 T9M = T9K + T9L;
3307 ci[WS(rs, 16)] = T9J - T9M;
3308 cr[WS(rs, 15)] = T9J + T9M;
3309 }
3310 }
3311 {
3312 E Tft, Tg7, Tgh, Tgl, Th9, Thf, TfE, Th6, TfQ, Tg4, Tga, The, Tge, Tgk, Tg1;
3313 E Tg5;
3314 {
3315 E Tfp, Tfs, Tgf, Tgg;
3316 Tfp = Tj - TG;
3317 Tfs = Tfq - Tfr;
3318 Tft = Tfp - Tfs;
3319 Tg7 = Tfp + Tfs;
3320 Tgf = TfY + TfZ;
3321 Tgg = TfR + TfU;
3322 Tgh = FMA(KP382683432, Tgf, KP923879532 * Tgg);
3323 Tgl = FNMS(KP923879532, Tgf, KP382683432 * Tgg);
3324 }
3325 {
3326 E Th7, Th8, Tfy, TfD;
3327 Th7 = T14 - T1r;
3328 Th8 = TgT - TgO;
3329 Th9 = Th7 + Th8;
3330 Thf = Th8 - Th7;
3331 Tfy = Tfu + Tfx;
3332 TfD = Tfz - TfC;
3333 TfE = KP707106781 * (Tfy + TfD);
3334 Th6 = KP707106781 * (Tfy - TfD);
3335 }
3336 {
3337 E TfK, TfP, Tg8, Tg9;
3338 TfK = TfI - TfJ;
3339 TfP = TfL - TfO;
3340 TfQ = FMA(KP382683432, TfK, KP923879532 * TfP);
3341 Tg4 = FNMS(KP923879532, TfK, KP382683432 * TfP);
3342 Tg8 = Tfu - Tfx;
3343 Tg9 = Tfz + TfC;
3344 Tga = KP707106781 * (Tg8 + Tg9);
3345 The = KP707106781 * (Tg9 - Tg8);
3346 }
3347 {
3348 E Tgc, Tgd, TfV, Tg0;
3349 Tgc = TfL + TfO;
3350 Tgd = TfI + TfJ;
3351 Tge = FNMS(KP382683432, Tgd, KP923879532 * Tgc);
3352 Tgk = FMA(KP923879532, Tgd, KP382683432 * Tgc);
3353 TfV = TfR - TfU;
3354 Tg0 = TfY - TfZ;
3355 Tg1 = FNMS(KP382683432, Tg0, KP923879532 * TfV);
3356 Tg5 = FMA(KP923879532, Tg0, KP382683432 * TfV);
3357 }
3358 {
3359 E TfF, Tg2, Thd, Thg;
3360 TfF = Tft + TfE;
3361 Tg2 = TfQ + Tg1;
3362 ci[WS(rs, 27)] = TfF - Tg2;
3363 cr[WS(rs, 4)] = TfF + Tg2;
3364 Thd = Tg5 - Tg4;
3365 Thg = The + Thf;
3366 cr[WS(rs, 36)] = Thd - Thg;
3367 ci[WS(rs, 59)] = Thd + Thg;
3368 }
3369 {
3370 E Thh, Thi, Tg3, Tg6;
3371 Thh = Tg1 - TfQ;
3372 Thi = Thf - The;
3373 cr[WS(rs, 52)] = Thh - Thi;
3374 ci[WS(rs, 43)] = Thh + Thi;
3375 Tg3 = Tft - TfE;
3376 Tg6 = Tg4 + Tg5;
3377 cr[WS(rs, 20)] = Tg3 - Tg6;
3378 ci[WS(rs, 11)] = Tg3 + Tg6;
3379 }
3380 {
3381 E Tgb, Tgi, Th5, Tha;
3382 Tgb = Tg7 + Tga;
3383 Tgi = Tge + Tgh;
3384 cr[WS(rs, 28)] = Tgb - Tgi;
3385 ci[WS(rs, 3)] = Tgb + Tgi;
3386 Th5 = Tgl - Tgk;
3387 Tha = Th6 + Th9;
3388 cr[WS(rs, 60)] = Th5 - Tha;
3389 ci[WS(rs, 35)] = Th5 + Tha;
3390 }
3391 {
3392 E Thb, Thc, Tgj, Tgm;
3393 Thb = Tgh - Tge;
3394 Thc = Th9 - Th6;
3395 cr[WS(rs, 44)] = Thb - Thc;
3396 ci[WS(rs, 51)] = Thb + Thc;
3397 Tgj = Tg7 - Tga;
3398 Tgm = Tgk + Tgl;
3399 ci[WS(rs, 19)] = Tgj - Tgm;
3400 cr[WS(rs, 12)] = Tgj + Tgm;
3401 }
3402 }
3403 {
3404 E TeH, Tf9, TeO, Thk, Thp, Thv, Tfc, Thu, Tf3, Tfn, Tf7, Tfj, TeW, Tfm, Tf6;
3405 E Tfg;
3406 {
3407 E TeD, TeG, Tfa, Tfb;
3408 TeD = TcL + TcO;
3409 TeG = KP707106781 * (TeE + TeF);
3410 TeH = TeD - TeG;
3411 Tf9 = TeD + TeG;
3412 {
3413 E TeK, TeN, Thl, Tho;
3414 TeK = FMA(KP923879532, TeI, KP382683432 * TeJ);
3415 TeN = FNMS(KP923879532, TeM, KP382683432 * TeL);
3416 TeO = TeK + TeN;
3417 Thk = TeK - TeN;
3418 Thl = KP707106781 * (TcU - TcZ);
3419 Tho = Thm + Thn;
3420 Thp = Thl + Tho;
3421 Thv = Tho - Thl;
3422 }
3423 Tfa = FNMS(KP382683432, TeI, KP923879532 * TeJ);
3424 Tfb = FMA(KP382683432, TeM, KP923879532 * TeL);
3425 Tfc = Tfa + Tfb;
3426 Thu = Tfb - Tfa;
3427 {
3428 E TeZ, Tfh, Tf2, Tfi, TeY, Tf1;
3429 TeY = KP707106781 * (Te5 + Te0);
3430 TeZ = TeX - TeY;
3431 Tfh = TeX + TeY;
3432 Tf1 = KP707106781 * (Ted + Tee);
3433 Tf2 = Tf0 - Tf1;
3434 Tfi = Tf0 + Tf1;
3435 Tf3 = FNMS(KP555570233, Tf2, KP831469612 * TeZ);
3436 Tfn = FMA(KP980785280, Tfh, KP195090322 * Tfi);
3437 Tf7 = FMA(KP555570233, TeZ, KP831469612 * Tf2);
3438 Tfj = FNMS(KP980785280, Tfi, KP195090322 * Tfh);
3439 }
3440 {
3441 E TeS, Tfe, TeV, Tff, TeR, TeU;
3442 TeR = KP707106781 * (TdN + TdM);
3443 TeS = TeQ - TeR;
3444 Tfe = TeQ + TeR;
3445 TeU = KP707106781 * (Tdz + TdE);
3446 TeV = TeT - TeU;
3447 Tff = TeT + TeU;
3448 TeW = FMA(KP831469612, TeS, KP555570233 * TeV);
3449 Tfm = FNMS(KP195090322, Tff, KP980785280 * Tfe);
3450 Tf6 = FNMS(KP831469612, TeV, KP555570233 * TeS);
3451 Tfg = FMA(KP195090322, Tfe, KP980785280 * Tff);
3452 }
3453 }
3454 {
3455 E TeP, Tf4, Tht, Thw;
3456 TeP = TeH + TeO;
3457 Tf4 = TeW + Tf3;
3458 ci[WS(rs, 25)] = TeP - Tf4;
3459 cr[WS(rs, 6)] = TeP + Tf4;
3460 Tht = Tf7 - Tf6;
3461 Thw = Thu + Thv;
3462 cr[WS(rs, 38)] = Tht - Thw;
3463 ci[WS(rs, 57)] = Tht + Thw;
3464 }
3465 {
3466 E Thx, Thy, Tf5, Tf8;
3467 Thx = Tf3 - TeW;
3468 Thy = Thv - Thu;
3469 cr[WS(rs, 54)] = Thx - Thy;
3470 ci[WS(rs, 41)] = Thx + Thy;
3471 Tf5 = TeH - TeO;
3472 Tf8 = Tf6 + Tf7;
3473 cr[WS(rs, 22)] = Tf5 - Tf8;
3474 ci[WS(rs, 9)] = Tf5 + Tf8;
3475 }
3476 {
3477 E Tfd, Tfk, Thj, Thq;
3478 Tfd = Tf9 - Tfc;
3479 Tfk = Tfg + Tfj;
3480 ci[WS(rs, 17)] = Tfd - Tfk;
3481 cr[WS(rs, 14)] = Tfd + Tfk;
3482 Thj = Tfj - Tfg;
3483 Thq = Thk + Thp;
3484 cr[WS(rs, 62)] = Thj - Thq;
3485 ci[WS(rs, 33)] = Thj + Thq;
3486 }
3487 {
3488 E Thr, Ths, Tfl, Tfo;
3489 Thr = Tfn - Tfm;
3490 Ths = Thp - Thk;
3491 cr[WS(rs, 46)] = Thr - Ths;
3492 ci[WS(rs, 49)] = Thr + Ths;
3493 Tfl = Tf9 + Tfc;
3494 Tfo = Tfm + Tfn;
3495 cr[WS(rs, 30)] = Tfl - Tfo;
3496 ci[WS(rs, 1)] = Tfl + Tfo;
3497 }
3498 }
3499 {
3500 E Td1, Ten, Tdo, ThA, ThD, ThJ, Teq, ThI, Teh, TeB, Tel, Tex, TdQ, TeA, Tek;
3501 E Teu;
3502 {
3503 E TcP, Td0, Teo, Tep;
3504 TcP = TcL - TcO;
3505 Td0 = KP707106781 * (TcU + TcZ);
3506 Td1 = TcP - Td0;
3507 Ten = TcP + Td0;
3508 {
3509 E Tdc, Tdn, ThB, ThC;
3510 Tdc = FNMS(KP923879532, Tdb, KP382683432 * Td6);
3511 Tdn = FMA(KP923879532, Tdh, KP382683432 * Tdm);
3512 Tdo = Tdc + Tdn;
3513 ThA = Tdn - Tdc;
3514 ThB = KP707106781 * (TeF - TeE);
3515 ThC = Thn - Thm;
3516 ThD = ThB + ThC;
3517 ThJ = ThC - ThB;
3518 }
3519 Teo = FMA(KP382683432, Tdb, KP923879532 * Td6);
3520 Tep = FNMS(KP382683432, Tdh, KP923879532 * Tdm);
3521 Teq = Teo + Tep;
3522 ThI = Teo - Tep;
3523 {
3524 E Te7, Tew, Teg, Tev, Te6, Tef;
3525 Te6 = KP707106781 * (Te0 - Te5);
3526 Te7 = TdV - Te6;
3527 Tew = TdV + Te6;
3528 Tef = KP707106781 * (Ted - Tee);
3529 Teg = Tec - Tef;
3530 Tev = Tec + Tef;
3531 Teh = FMA(KP555570233, Te7, KP831469612 * Teg);
3532 TeB = FMA(KP980785280, Tew, KP195090322 * Tev);
3533 Tel = FNMS(KP831469612, Te7, KP555570233 * Teg);
3534 Tex = FNMS(KP195090322, Tew, KP980785280 * Tev);
3535 }
3536 {
3537 E TdG, Tet, TdP, Tes, TdF, TdO;
3538 TdF = KP707106781 * (Tdz - TdE);
3539 TdG = Tdu - TdF;
3540 Tet = Tdu + TdF;
3541 TdO = KP707106781 * (TdM - TdN);
3542 TdP = TdL - TdO;
3543 Tes = TdL + TdO;
3544 TdQ = FNMS(KP555570233, TdP, KP831469612 * TdG);
3545 TeA = FNMS(KP980785280, Tes, KP195090322 * Tet);
3546 Tek = FMA(KP831469612, TdP, KP555570233 * TdG);
3547 Teu = FMA(KP195090322, Tes, KP980785280 * Tet);
3548 }
3549 }
3550 {
3551 E Tdp, Tei, ThH, ThK;
3552 Tdp = Td1 + Tdo;
3553 Tei = TdQ + Teh;
3554 cr[WS(rs, 26)] = Tdp - Tei;
3555 ci[WS(rs, 5)] = Tdp + Tei;
3556 ThH = Tel - Tek;
3557 ThK = ThI + ThJ;
3558 cr[WS(rs, 58)] = ThH - ThK;
3559 ci[WS(rs, 37)] = ThH + ThK;
3560 }
3561 {
3562 E ThL, ThM, Tej, Tem;
3563 ThL = Teh - TdQ;
3564 ThM = ThJ - ThI;
3565 cr[WS(rs, 42)] = ThL - ThM;
3566 ci[WS(rs, 53)] = ThL + ThM;
3567 Tej = Td1 - Tdo;
3568 Tem = Tek + Tel;
3569 ci[WS(rs, 21)] = Tej - Tem;
3570 cr[WS(rs, 10)] = Tej + Tem;
3571 }
3572 {
3573 E Ter, Tey, Thz, ThE;
3574 Ter = Ten + Teq;
3575 Tey = Teu + Tex;
3576 ci[WS(rs, 29)] = Ter - Tey;
3577 cr[WS(rs, 2)] = Ter + Tey;
3578 Thz = TeB - TeA;
3579 ThE = ThA + ThD;
3580 cr[WS(rs, 34)] = Thz - ThE;
3581 ci[WS(rs, 61)] = Thz + ThE;
3582 }
3583 {
3584 E ThF, ThG, Tez, TeC;
3585 ThF = Tex - Teu;
3586 ThG = ThD - ThA;
3587 cr[WS(rs, 50)] = ThF - ThG;
3588 ci[WS(rs, 45)] = ThF + ThG;
3589 Tez = Ten - Teq;
3590 TeC = TeA + TeB;
3591 cr[WS(rs, 18)] = Tez - TeC;
3592 ci[WS(rs, 13)] = Tez + TeC;
3593 }
3594 }
3595 {
3596 E Tc3, Tcv, TiD, TiJ, Tca, TiI, Tcy, TiA, Tci, TcI, Tcs, TcC, Tcp, TcJ, Tct;
3597 E TcF;
3598 {
3599 E TbZ, Tc2, TiB, TiC;
3600 TbZ = Taz - TaC;
3601 Tc2 = Tc0 + Tc1;
3602 Tc3 = TbZ - Tc2;
3603 Tcv = TbZ + Tc2;
3604 TiB = TaG - TaJ;
3605 TiC = Tin - Tim;
3606 TiD = TiB + TiC;
3607 TiJ = TiC - TiB;
3608 }
3609 {
3610 E Tc6, Tcw, Tc9, Tcx;
3611 {
3612 E Tc4, Tc5, Tc7, Tc8;
3613 Tc4 = TaP - TaQ;
3614 Tc5 = TaM - TaN;
3615 Tc6 = FMA(KP831469612, Tc4, KP555570233 * Tc5);
3616 Tcw = FNMS(KP555570233, Tc4, KP831469612 * Tc5);
3617 Tc7 = TaW - TaX;
3618 Tc8 = TaT - TaU;
3619 Tc9 = FNMS(KP831469612, Tc8, KP555570233 * Tc7);
3620 Tcx = FMA(KP555570233, Tc8, KP831469612 * Tc7);
3621 }
3622 Tca = Tc6 + Tc9;
3623 TiI = Tcx - Tcw;
3624 Tcy = Tcw + Tcx;
3625 TiA = Tc6 - Tc9;
3626 }
3627 {
3628 E Tce, TcB, Tch, TcA;
3629 {
3630 E Tcc, Tcd, Tcf, Tcg;
3631 Tcc = Tbd - Tbe;
3632 Tcd = Tb7 - Tba;
3633 Tce = Tcc - Tcd;
3634 TcB = Tcc + Tcd;
3635 Tcf = Tb2 - Tb3;
3636 Tcg = Tbh - Tbg;
3637 Tch = Tcf - Tcg;
3638 TcA = Tcf + Tcg;
3639 }
3640 Tci = FMA(KP471396736, Tce, KP881921264 * Tch);
3641 TcI = FMA(KP956940335, TcB, KP290284677 * TcA);
3642 Tcs = FNMS(KP881921264, Tce, KP471396736 * Tch);
3643 TcC = FNMS(KP290284677, TcB, KP956940335 * TcA);
3644 }
3645 {
3646 E Tcl, TcE, Tco, TcD;
3647 {
3648 E Tcj, Tck, Tcm, Tcn;
3649 Tcj = Tbl - Tbm;
3650 Tck = TbA - Tbz;
3651 Tcl = Tcj - Tck;
3652 TcE = Tcj + Tck;
3653 Tcm = Tbw - Tbx;
3654 Tcn = Tbq - Tbt;
3655 Tco = Tcm - Tcn;
3656 TcD = Tcm + Tcn;
3657 }
3658 Tcp = FNMS(KP471396736, Tco, KP881921264 * Tcl);
3659 TcJ = FNMS(KP956940335, TcD, KP290284677 * TcE);
3660 Tct = FMA(KP881921264, Tco, KP471396736 * Tcl);
3661 TcF = FMA(KP290284677, TcD, KP956940335 * TcE);
3662 }
3663 {
3664 E Tcb, Tcq, TiH, TiK;
3665 Tcb = Tc3 + Tca;
3666 Tcq = Tci + Tcp;
3667 ci[WS(rs, 26)] = Tcb - Tcq;
3668 cr[WS(rs, 5)] = Tcb + Tcq;
3669 TiH = Tct - Tcs;
3670 TiK = TiI + TiJ;
3671 cr[WS(rs, 37)] = TiH - TiK;
3672 ci[WS(rs, 58)] = TiH + TiK;
3673 }
3674 {
3675 E TiL, TiM, Tcr, Tcu;
3676 TiL = Tcp - Tci;
3677 TiM = TiJ - TiI;
3678 cr[WS(rs, 53)] = TiL - TiM;
3679 ci[WS(rs, 42)] = TiL + TiM;
3680 Tcr = Tc3 - Tca;
3681 Tcu = Tcs + Tct;
3682 cr[WS(rs, 21)] = Tcr - Tcu;
3683 ci[WS(rs, 10)] = Tcr + Tcu;
3684 }
3685 {
3686 E Tcz, TcG, Tiz, TiE;
3687 Tcz = Tcv + Tcy;
3688 TcG = TcC + TcF;
3689 cr[WS(rs, 29)] = Tcz - TcG;
3690 ci[WS(rs, 2)] = Tcz + TcG;
3691 Tiz = TcJ - TcI;
3692 TiE = TiA + TiD;
3693 cr[WS(rs, 61)] = Tiz - TiE;
3694 ci[WS(rs, 34)] = Tiz + TiE;
3695 }
3696 {
3697 E TiF, TiG, TcH, TcK;
3698 TiF = TcF - TcC;
3699 TiG = TiD - TiA;
3700 cr[WS(rs, 45)] = TiF - TiG;
3701 ci[WS(rs, 50)] = TiF + TiG;
3702 TcH = Tcv - Tcy;
3703 TcK = TcI + TcJ;
3704 ci[WS(rs, 18)] = TcH - TcK;
3705 cr[WS(rs, 13)] = TcH + TcK;
3706 }
3707 }
3708 {
3709 E TaL, TbJ, Tip, Tiv, Tb0, Tiu, TbM, Tik, Tbk, TbW, TbG, TbQ, TbD, TbX, TbH;
3710 E TbT;
3711 {
3712 E TaD, TaK, Til, Tio;
3713 TaD = Taz + TaC;
3714 TaK = TaG + TaJ;
3715 TaL = TaD - TaK;
3716 TbJ = TaD + TaK;
3717 Til = Tc1 - Tc0;
3718 Tio = Tim + Tin;
3719 Tip = Til + Tio;
3720 Tiv = Tio - Til;
3721 }
3722 {
3723 E TaS, TbK, TaZ, TbL;
3724 {
3725 E TaO, TaR, TaV, TaY;
3726 TaO = TaM + TaN;
3727 TaR = TaP + TaQ;
3728 TaS = FNMS(KP980785280, TaR, KP195090322 * TaO);
3729 TbK = FMA(KP195090322, TaR, KP980785280 * TaO);
3730 TaV = TaT + TaU;
3731 TaY = TaW + TaX;
3732 TaZ = FMA(KP980785280, TaV, KP195090322 * TaY);
3733 TbL = FNMS(KP195090322, TaV, KP980785280 * TaY);
3734 }
3735 Tb0 = TaS + TaZ;
3736 Tiu = TbK - TbL;
3737 TbM = TbK + TbL;
3738 Tik = TaZ - TaS;
3739 }
3740 {
3741 E Tbc, TbO, Tbj, TbP;
3742 {
3743 E Tb4, Tbb, Tbf, Tbi;
3744 Tb4 = Tb2 + Tb3;
3745 Tbb = Tb7 + Tba;
3746 Tbc = Tb4 - Tbb;
3747 TbO = Tb4 + Tbb;
3748 Tbf = Tbd + Tbe;
3749 Tbi = Tbg + Tbh;
3750 Tbj = Tbf - Tbi;
3751 TbP = Tbf + Tbi;
3752 }
3753 Tbk = FMA(KP634393284, Tbc, KP773010453 * Tbj);
3754 TbW = FNMS(KP995184726, TbP, KP098017140 * TbO);
3755 TbG = FNMS(KP634393284, Tbj, KP773010453 * Tbc);
3756 TbQ = FMA(KP995184726, TbO, KP098017140 * TbP);
3757 }
3758 {
3759 E Tbv, TbR, TbC, TbS;
3760 {
3761 E Tbn, Tbu, Tby, TbB;
3762 Tbn = Tbl + Tbm;
3763 Tbu = Tbq + Tbt;
3764 Tbv = Tbn - Tbu;
3765 TbR = Tbn + Tbu;
3766 Tby = Tbw + Tbx;
3767 TbB = Tbz + TbA;
3768 TbC = Tby - TbB;
3769 TbS = Tby + TbB;
3770 }
3771 TbD = FNMS(KP773010453, TbC, KP634393284 * Tbv);
3772 TbX = FMA(KP098017140, TbR, KP995184726 * TbS);
3773 TbH = FMA(KP773010453, Tbv, KP634393284 * TbC);
3774 TbT = FNMS(KP098017140, TbS, KP995184726 * TbR);
3775 }
3776 {
3777 E Tb1, TbE, Tit, Tiw;
3778 Tb1 = TaL - Tb0;
3779 TbE = Tbk + TbD;
3780 ci[WS(rs, 22)] = Tb1 - TbE;
3781 cr[WS(rs, 9)] = Tb1 + TbE;
3782 Tit = TbD - Tbk;
3783 Tiw = Tiu + Tiv;
3784 cr[WS(rs, 57)] = Tit - Tiw;
3785 ci[WS(rs, 38)] = Tit + Tiw;
3786 }
3787 {
3788 E Tix, Tiy, TbF, TbI;
3789 Tix = TbH - TbG;
3790 Tiy = Tiv - Tiu;
3791 cr[WS(rs, 41)] = Tix - Tiy;
3792 ci[WS(rs, 54)] = Tix + Tiy;
3793 TbF = TaL + Tb0;
3794 TbI = TbG + TbH;
3795 cr[WS(rs, 25)] = TbF - TbI;
3796 ci[WS(rs, 6)] = TbF + TbI;
3797 }
3798 {
3799 E TbN, TbU, Tij, Tiq;
3800 TbN = TbJ + TbM;
3801 TbU = TbQ + TbT;
3802 ci[WS(rs, 30)] = TbN - TbU;
3803 cr[WS(rs, 1)] = TbN + TbU;
3804 Tij = TbX - TbW;
3805 Tiq = Tik + Tip;
3806 cr[WS(rs, 33)] = Tij - Tiq;
3807 ci[WS(rs, 62)] = Tij + Tiq;
3808 }
3809 {
3810 E Tir, Tis, TbV, TbY;
3811 Tir = TbT - TbQ;
3812 Tis = Tip - Tik;
3813 cr[WS(rs, 49)] = Tir - Tis;
3814 ci[WS(rs, 46)] = Tir + Tis;
3815 TbV = TbJ - TbM;
3816 TbY = TbW + TbX;
3817 cr[WS(rs, 17)] = TbV - TbY;
3818 ci[WS(rs, 14)] = TbV + TbY;
3819 }
3820 }
3821 {
3822 E T9R, Taj, Ti9, Tif, T9Y, Tie, Tam, Ti6, Ta6, Taw, Tag, Taq, Tad, Tax, Tah;
3823 E Tat;
3824 {
3825 E T9N, T9Q, Ti7, Ti8;
3826 T9N = T6b - T6m;
3827 T9Q = T9O + T9P;
3828 T9R = T9N - T9Q;
3829 Taj = T9N + T9Q;
3830 Ti7 = T6J - T6y;
3831 Ti8 = ThT - ThQ;
3832 Ti9 = Ti7 + Ti8;
3833 Tif = Ti8 - Ti7;
3834 }
3835 {
3836 E T9U, Tak, T9X, Tal;
3837 {
3838 E T9S, T9T, T9V, T9W;
3839 T9S = T6Q - T71;
3840 T9T = T77 - T7a;
3841 T9U = FNMS(KP831469612, T9T, KP555570233 * T9S);
3842 Tak = FMA(KP831469612, T9S, KP555570233 * T9T);
3843 T9V = T7h - T7s;
3844 T9W = T7y - T7B;
3845 T9X = FMA(KP555570233, T9V, KP831469612 * T9W);
3846 Tal = FNMS(KP555570233, T9W, KP831469612 * T9V);
3847 }
3848 T9Y = T9U + T9X;
3849 Tie = Tak - Tal;
3850 Tam = Tak + Tal;
3851 Ti6 = T9X - T9U;
3852 }
3853 {
3854 E Ta2, Tao, Ta5, Tap;
3855 {
3856 E Ta0, Ta1, Ta3, Ta4;
3857 Ta0 = T8p - T8s;
3858 Ta1 = T87 - T8i;
3859 Ta2 = Ta0 - Ta1;
3860 Tao = Ta0 + Ta1;
3861 Ta3 = T7K - T7V;
3862 Ta4 = T8v - T8u;
3863 Ta5 = Ta3 - Ta4;
3864 Tap = Ta3 + Ta4;
3865 }
3866 Ta6 = FMA(KP471396736, Ta2, KP881921264 * Ta5);
3867 Taw = FNMS(KP956940335, Tap, KP290284677 * Tao);
3868 Tag = FNMS(KP471396736, Ta5, KP881921264 * Ta2);
3869 Taq = FMA(KP956940335, Tao, KP290284677 * Tap);
3870 }
3871 {
3872 E Ta9, Tar, Tac, Tas;
3873 {
3874 E Ta7, Ta8, Taa, Tab;
3875 Ta7 = T8D - T8O;
3876 Ta8 = T9n - T9o;
3877 Ta9 = Ta7 - Ta8;
3878 Tar = Ta7 + Ta8;
3879 Taa = T9i - T9l;
3880 Tab = T9b - T90;
3881 Tac = Taa - Tab;
3882 Tas = Taa + Tab;
3883 }
3884 Tad = FNMS(KP881921264, Tac, KP471396736 * Ta9);
3885 Tax = FMA(KP290284677, Tar, KP956940335 * Tas);
3886 Tah = FMA(KP881921264, Ta9, KP471396736 * Tac);
3887 Tat = FNMS(KP290284677, Tas, KP956940335 * Tar);
3888 }
3889 {
3890 E T9Z, Tae, Tid, Tig;
3891 T9Z = T9R - T9Y;
3892 Tae = Ta6 + Tad;
3893 ci[WS(rs, 20)] = T9Z - Tae;
3894 cr[WS(rs, 11)] = T9Z + Tae;
3895 Tid = Tad - Ta6;
3896 Tig = Tie + Tif;
3897 cr[WS(rs, 59)] = Tid - Tig;
3898 ci[WS(rs, 36)] = Tid + Tig;
3899 }
3900 {
3901 E Tih, Tii, Taf, Tai;
3902 Tih = Tah - Tag;
3903 Tii = Tif - Tie;
3904 cr[WS(rs, 43)] = Tih - Tii;
3905 ci[WS(rs, 52)] = Tih + Tii;
3906 Taf = T9R + T9Y;
3907 Tai = Tag + Tah;
3908 cr[WS(rs, 27)] = Taf - Tai;
3909 ci[WS(rs, 4)] = Taf + Tai;
3910 }
3911 {
3912 E Tan, Tau, Ti5, Tia;
3913 Tan = Taj + Tam;
3914 Tau = Taq + Tat;
3915 ci[WS(rs, 28)] = Tan - Tau;
3916 cr[WS(rs, 3)] = Tan + Tau;
3917 Ti5 = Tax - Taw;
3918 Tia = Ti6 + Ti9;
3919 cr[WS(rs, 35)] = Ti5 - Tia;
3920 ci[WS(rs, 60)] = Ti5 + Tia;
3921 }
3922 {
3923 E Tib, Tic, Tav, Tay;
3924 Tib = Tat - Taq;
3925 Tic = Ti9 - Ti6;
3926 cr[WS(rs, 51)] = Tib - Tic;
3927 ci[WS(rs, 44)] = Tib + Tic;
3928 Tav = Taj - Tam;
3929 Tay = Taw + Tax;
3930 cr[WS(rs, 19)] = Tav - Tay;
3931 ci[WS(rs, 12)] = Tav + Tay;
3932 }
3933 }
3934 }
3935 }
3936 }
3937
3938 static const tw_instr twinstr[] = {
3939 {TW_FULL, 1, 64},
3940 {TW_NEXT, 1, 0}
3941 };
3942
3943 static const hc2hc_desc desc = { 64, "hf_64", twinstr, &GENUS, {808, 270, 230, 0} };
3944
3945 void X(codelet_hf_64) (planner *p) {
3946 X(khc2hc_register) (p, hf_64, &desc);
3947 }
3948 #endif /* HAVE_FMA */