Mercurial > hg > js-dsp-test
comparison fft/fftw/fftw-3.3.4/rdft/scalar/r2cf/hf_64.c @ 19:26056e866c29
Add FFTW to comparison table
author | Chris Cannam |
---|---|
date | Tue, 06 Oct 2015 13:08:39 +0100 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
18:8db794ca3e0b | 19:26056e866c29 |
---|---|
1 /* | |
2 * Copyright (c) 2003, 2007-14 Matteo Frigo | |
3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology | |
4 * | |
5 * This program is free software; you can redistribute it and/or modify | |
6 * it under the terms of the GNU General Public License as published by | |
7 * the Free Software Foundation; either version 2 of the License, or | |
8 * (at your option) any later version. | |
9 * | |
10 * This program is distributed in the hope that it will be useful, | |
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
13 * GNU General Public License for more details. | |
14 * | |
15 * You should have received a copy of the GNU General Public License | |
16 * along with this program; if not, write to the Free Software | |
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA | |
18 * | |
19 */ | |
20 | |
21 /* This file was automatically generated --- DO NOT EDIT */ | |
22 /* Generated on Tue Mar 4 13:49:10 EST 2014 */ | |
23 | |
24 #include "codelet-rdft.h" | |
25 | |
26 #ifdef HAVE_FMA | |
27 | |
28 /* Generated by: ../../../genfft/gen_hc2hc.native -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -n 64 -dit -name hf_64 -include hf.h */ | |
29 | |
30 /* | |
31 * This function contains 1038 FP additions, 644 FP multiplications, | |
32 * (or, 520 additions, 126 multiplications, 518 fused multiply/add), | |
33 * 246 stack variables, 15 constants, and 256 memory accesses | |
34 */ | |
35 #include "hf.h" | |
36 | |
37 static void hf_64(R *cr, R *ci, const R *W, stride rs, INT mb, INT me, INT ms) | |
38 { | |
39 DK(KP881921264, +0.881921264348355029712756863660388349508442621); | |
40 DK(KP956940335, +0.956940335732208864935797886980269969482849206); | |
41 DK(KP773010453, +0.773010453362736960810906609758469800971041293); | |
42 DK(KP995184726, +0.995184726672196886244836953109479921575474869); | |
43 DK(KP831469612, +0.831469612302545237078788377617905756738560812); | |
44 DK(KP980785280, +0.980785280403230449126182236134239036973933731); | |
45 DK(KP668178637, +0.668178637919298919997757686523080761552472251); | |
46 DK(KP534511135, +0.534511135950791641089685961295362908582039528); | |
47 DK(KP303346683, +0.303346683607342391675883946941299872384187453); | |
48 DK(KP098491403, +0.098491403357164253077197521291327432293052451); | |
49 DK(KP820678790, +0.820678790828660330972281985331011598767386482); | |
50 DK(KP923879532, +0.923879532511286756128183189396788286822416626); | |
51 DK(KP198912367, +0.198912367379658006911597622644676228597850501); | |
52 DK(KP707106781, +0.707106781186547524400844362104849039284835938); | |
53 DK(KP414213562, +0.414213562373095048801688724209698078569671875); | |
54 { | |
55 INT m; | |
56 for (m = mb, W = W + ((mb - 1) * 126); m < me; m = m + 1, cr = cr + ms, ci = ci - ms, W = W + 126, MAKE_VOLATILE_STRIDE(128, rs)) { | |
57 E Tku, Tky, Tkt, Tkx; | |
58 { | |
59 E TiV, Tjm, T7e, TcA, TjR, Tkl, Tm, TeM, T7Q, TcI, TeZ, Thr, T1G, TeW, TcJ; | |
60 E T7X, T87, TcN, Tf5, Thw, T29, Tf8, TcQ, T8u, Taq, Tdm, Tgc, ThX, T5K, TfS; | |
61 E Tdx, Tbj, TcB, T7l, TiP, TeP, Tjl, TN, TcC, T7s, T7B, TcF, TeU, Ths, T7I; | |
62 E TcG, T1f, TeR, T8G, TcU, Tfg, ThB, T32, Tfj, TcX, T93, T9h, Td3, TfK, ThM; | |
63 E T3X, Tfr, Tde, Taa, Thx, Tfb, Tf6, T2A, T8x, TcO, T8m, TcR, Tfm, ThC, T3t; | |
64 E Tfh, T96, TcV, T8V, TcY, ThN, Tfu, TfL, T4o, Tad, Td4, T9w, Tdf, TfV, ThY; | |
65 E T6b, Tg9, Tbm, Tdn, TaF, Tdy, ThJ, T4Q, TfN, TfA, Taf, T9M, Td8, Tdh, ThI; | |
66 E T5h, TfO, TfF, Tag, Ta1, Tdb, Tdi, ThU, T6D, Tgf, Tg1, Tbo, TaV, Tdr, TdA; | |
67 E Tb2, Tds, Tg5, ThT, Tg2, T74, Tdt, Tb9; | |
68 { | |
69 E T7a, Te, T78, T8, TjQ, TiU, T7c, Tk; | |
70 { | |
71 E T1, TiT, TiS, T7, Tg, Tj, Tf, Ti, T7b, Th; | |
72 T1 = cr[0]; | |
73 TiT = ci[0]; | |
74 { | |
75 E T3, T6, T2, T5; | |
76 T3 = cr[WS(rs, 32)]; | |
77 T6 = ci[WS(rs, 32)]; | |
78 T2 = W[62]; | |
79 T5 = W[63]; | |
80 { | |
81 E Ta, Td, Tc, T79, Tb, TiR, T4, T9; | |
82 Ta = cr[WS(rs, 16)]; | |
83 Td = ci[WS(rs, 16)]; | |
84 TiR = T2 * T6; | |
85 T4 = T2 * T3; | |
86 T9 = W[30]; | |
87 Tc = W[31]; | |
88 TiS = FNMS(T5, T3, TiR); | |
89 T7 = FMA(T5, T6, T4); | |
90 T79 = T9 * Td; | |
91 Tb = T9 * Ta; | |
92 Tg = cr[WS(rs, 48)]; | |
93 Tj = ci[WS(rs, 48)]; | |
94 T7a = FNMS(Tc, Ta, T79); | |
95 Te = FMA(Tc, Td, Tb); | |
96 Tf = W[94]; | |
97 Ti = W[95]; | |
98 } | |
99 } | |
100 T78 = T1 - T7; | |
101 T8 = T1 + T7; | |
102 TjQ = TiT - TiS; | |
103 TiU = TiS + TiT; | |
104 T7b = Tf * Tj; | |
105 Th = Tf * Tg; | |
106 T7c = FNMS(Ti, Tg, T7b); | |
107 Tk = FMA(Ti, Tj, Th); | |
108 } | |
109 { | |
110 E T7S, T1l, T7O, T1E, T1u, T1x, T1w, T7U, T1r, T7L, T1v; | |
111 { | |
112 E T1A, T1D, T1C, T7N, T1B; | |
113 { | |
114 E T1h, T1k, T1g, T1j, T7R, T1i, T1z; | |
115 T1h = cr[WS(rs, 60)]; | |
116 T1k = ci[WS(rs, 60)]; | |
117 { | |
118 E T7d, TiQ, Tl, TjP; | |
119 T7d = T7a - T7c; | |
120 TiQ = T7a + T7c; | |
121 Tl = Te + Tk; | |
122 TjP = Te - Tk; | |
123 TiV = TiQ + TiU; | |
124 Tjm = TiU - TiQ; | |
125 T7e = T78 - T7d; | |
126 TcA = T78 + T7d; | |
127 TjR = TjP + TjQ; | |
128 Tkl = TjQ - TjP; | |
129 Tm = T8 + Tl; | |
130 TeM = T8 - Tl; | |
131 T1g = W[118]; | |
132 } | |
133 T1j = W[119]; | |
134 T1A = cr[WS(rs, 44)]; | |
135 T1D = ci[WS(rs, 44)]; | |
136 T7R = T1g * T1k; | |
137 T1i = T1g * T1h; | |
138 T1z = W[86]; | |
139 T1C = W[87]; | |
140 T7S = FNMS(T1j, T1h, T7R); | |
141 T1l = FMA(T1j, T1k, T1i); | |
142 T7N = T1z * T1D; | |
143 T1B = T1z * T1A; | |
144 } | |
145 { | |
146 E T1n, T1q, T1m, T1p, T7T, T1o, T1t; | |
147 T1n = cr[WS(rs, 28)]; | |
148 T1q = ci[WS(rs, 28)]; | |
149 T7O = FNMS(T1C, T1A, T7N); | |
150 T1E = FMA(T1C, T1D, T1B); | |
151 T1m = W[54]; | |
152 T1p = W[55]; | |
153 T1u = cr[WS(rs, 12)]; | |
154 T1x = ci[WS(rs, 12)]; | |
155 T7T = T1m * T1q; | |
156 T1o = T1m * T1n; | |
157 T1t = W[22]; | |
158 T1w = W[23]; | |
159 T7U = FNMS(T1p, T1n, T7T); | |
160 T1r = FMA(T1p, T1q, T1o); | |
161 T7L = T1t * T1x; | |
162 T1v = T1t * T1u; | |
163 } | |
164 } | |
165 { | |
166 E T7V, TeX, T1s, T7K, T7M, T1y; | |
167 T7V = T7S - T7U; | |
168 TeX = T7S + T7U; | |
169 T1s = T1l + T1r; | |
170 T7K = T1l - T1r; | |
171 T7M = FNMS(T1w, T1u, T7L); | |
172 T1y = FMA(T1w, T1x, T1v); | |
173 { | |
174 E TeY, T7P, T7W, T1F; | |
175 TeY = T7M + T7O; | |
176 T7P = T7M - T7O; | |
177 T7W = T1y - T1E; | |
178 T1F = T1y + T1E; | |
179 T7Q = T7K - T7P; | |
180 TcI = T7K + T7P; | |
181 TeZ = TeX - TeY; | |
182 Thr = TeX + TeY; | |
183 T1G = T1s + T1F; | |
184 TeW = T1s - T1F; | |
185 TcJ = T7V - T7W; | |
186 T7X = T7V + T7W; | |
187 } | |
188 } | |
189 } | |
190 } | |
191 { | |
192 E T8p, T1O, T85, T27, T1X, T20, T1Z, T8r, T1U, T82, T1Y; | |
193 { | |
194 E T23, T26, T25, T84, T24; | |
195 { | |
196 E T1K, T1N, T1J, T1M, T8o, T1L, T22; | |
197 T1K = cr[WS(rs, 2)]; | |
198 T1N = ci[WS(rs, 2)]; | |
199 T1J = W[2]; | |
200 T1M = W[3]; | |
201 T23 = cr[WS(rs, 50)]; | |
202 T26 = ci[WS(rs, 50)]; | |
203 T8o = T1J * T1N; | |
204 T1L = T1J * T1K; | |
205 T22 = W[98]; | |
206 T25 = W[99]; | |
207 T8p = FNMS(T1M, T1K, T8o); | |
208 T1O = FMA(T1M, T1N, T1L); | |
209 T84 = T22 * T26; | |
210 T24 = T22 * T23; | |
211 } | |
212 { | |
213 E T1Q, T1T, T1P, T1S, T8q, T1R, T1W; | |
214 T1Q = cr[WS(rs, 34)]; | |
215 T1T = ci[WS(rs, 34)]; | |
216 T85 = FNMS(T25, T23, T84); | |
217 T27 = FMA(T25, T26, T24); | |
218 T1P = W[66]; | |
219 T1S = W[67]; | |
220 T1X = cr[WS(rs, 18)]; | |
221 T20 = ci[WS(rs, 18)]; | |
222 T8q = T1P * T1T; | |
223 T1R = T1P * T1Q; | |
224 T1W = W[34]; | |
225 T1Z = W[35]; | |
226 T8r = FNMS(T1S, T1Q, T8q); | |
227 T1U = FMA(T1S, T1T, T1R); | |
228 T82 = T1W * T20; | |
229 T1Y = T1W * T1X; | |
230 } | |
231 } | |
232 { | |
233 E T8s, Tf3, T1V, T81, T83, T21; | |
234 T8s = T8p - T8r; | |
235 Tf3 = T8p + T8r; | |
236 T1V = T1O + T1U; | |
237 T81 = T1O - T1U; | |
238 T83 = FNMS(T1Z, T1X, T82); | |
239 T21 = FMA(T1Z, T20, T1Y); | |
240 { | |
241 E Tf4, T86, T8t, T28; | |
242 Tf4 = T83 + T85; | |
243 T86 = T83 - T85; | |
244 T8t = T21 - T27; | |
245 T28 = T21 + T27; | |
246 T87 = T81 - T86; | |
247 TcN = T81 + T86; | |
248 Tf5 = Tf3 - Tf4; | |
249 Thw = Tf3 + Tf4; | |
250 T29 = T1V + T28; | |
251 Tf8 = T1V - T28; | |
252 TcQ = T8s - T8t; | |
253 T8u = T8s + T8t; | |
254 } | |
255 } | |
256 } | |
257 { | |
258 E Tbf, T5p, Tao, T5I, T5y, T5B, T5A, Tbh, T5v, Tal, T5z; | |
259 { | |
260 E T5E, T5H, T5G, Tan, T5F; | |
261 { | |
262 E T5l, T5o, T5k, T5n, Tbe, T5m, T5D; | |
263 T5l = cr[WS(rs, 63)]; | |
264 T5o = ci[WS(rs, 63)]; | |
265 T5k = W[124]; | |
266 T5n = W[125]; | |
267 T5E = cr[WS(rs, 47)]; | |
268 T5H = ci[WS(rs, 47)]; | |
269 Tbe = T5k * T5o; | |
270 T5m = T5k * T5l; | |
271 T5D = W[92]; | |
272 T5G = W[93]; | |
273 Tbf = FNMS(T5n, T5l, Tbe); | |
274 T5p = FMA(T5n, T5o, T5m); | |
275 Tan = T5D * T5H; | |
276 T5F = T5D * T5E; | |
277 } | |
278 { | |
279 E T5r, T5u, T5q, T5t, Tbg, T5s, T5x; | |
280 T5r = cr[WS(rs, 31)]; | |
281 T5u = ci[WS(rs, 31)]; | |
282 Tao = FNMS(T5G, T5E, Tan); | |
283 T5I = FMA(T5G, T5H, T5F); | |
284 T5q = W[60]; | |
285 T5t = W[61]; | |
286 T5y = cr[WS(rs, 15)]; | |
287 T5B = ci[WS(rs, 15)]; | |
288 Tbg = T5q * T5u; | |
289 T5s = T5q * T5r; | |
290 T5x = W[28]; | |
291 T5A = W[29]; | |
292 Tbh = FNMS(T5t, T5r, Tbg); | |
293 T5v = FMA(T5t, T5u, T5s); | |
294 Tal = T5x * T5B; | |
295 T5z = T5x * T5y; | |
296 } | |
297 } | |
298 { | |
299 E Tbi, Tga, T5w, Tak, Tam, T5C; | |
300 Tbi = Tbf - Tbh; | |
301 Tga = Tbf + Tbh; | |
302 T5w = T5p + T5v; | |
303 Tak = T5p - T5v; | |
304 Tam = FNMS(T5A, T5y, Tal); | |
305 T5C = FMA(T5A, T5B, T5z); | |
306 { | |
307 E Tgb, Tap, T5J, Tbd; | |
308 Tgb = Tam + Tao; | |
309 Tap = Tam - Tao; | |
310 T5J = T5C + T5I; | |
311 Tbd = T5I - T5C; | |
312 Taq = Tak - Tap; | |
313 Tdm = Tak + Tap; | |
314 Tgc = Tga - Tgb; | |
315 ThX = Tga + Tgb; | |
316 T5K = T5w + T5J; | |
317 TfS = T5w - T5J; | |
318 Tdx = Tbi + Tbd; | |
319 Tbj = Tbd - Tbi; | |
320 } | |
321 } | |
322 } | |
323 { | |
324 E T7z, T1d, T7G, TeS, T11, T7v, T7x, T17, T7r, T7m; | |
325 { | |
326 E T7h, Ts, T7q, TL, TB, TE, TD, T7j, Ty, T7n, TC; | |
327 { | |
328 E TH, TK, TJ, T7p, TI; | |
329 { | |
330 E To, Tr, Tn, Tq, T7g, Tp, TG; | |
331 To = cr[WS(rs, 8)]; | |
332 Tr = ci[WS(rs, 8)]; | |
333 Tn = W[14]; | |
334 Tq = W[15]; | |
335 TH = cr[WS(rs, 24)]; | |
336 TK = ci[WS(rs, 24)]; | |
337 T7g = Tn * Tr; | |
338 Tp = Tn * To; | |
339 TG = W[46]; | |
340 TJ = W[47]; | |
341 T7h = FNMS(Tq, To, T7g); | |
342 Ts = FMA(Tq, Tr, Tp); | |
343 T7p = TG * TK; | |
344 TI = TG * TH; | |
345 } | |
346 { | |
347 E Tu, Tx, Tt, Tw, T7i, Tv, TA; | |
348 Tu = cr[WS(rs, 40)]; | |
349 Tx = ci[WS(rs, 40)]; | |
350 T7q = FNMS(TJ, TH, T7p); | |
351 TL = FMA(TJ, TK, TI); | |
352 Tt = W[78]; | |
353 Tw = W[79]; | |
354 TB = cr[WS(rs, 56)]; | |
355 TE = ci[WS(rs, 56)]; | |
356 T7i = Tt * Tx; | |
357 Tv = Tt * Tu; | |
358 TA = W[110]; | |
359 TD = W[111]; | |
360 T7j = FNMS(Tw, Tu, T7i); | |
361 Ty = FMA(Tw, Tx, Tv); | |
362 T7n = TA * TE; | |
363 TC = TA * TB; | |
364 } | |
365 } | |
366 { | |
367 E T7k, TeO, Tz, T7f, T7o, TF, TeN, TM; | |
368 T7k = T7h - T7j; | |
369 TeO = T7h + T7j; | |
370 Tz = Ts + Ty; | |
371 T7f = Ts - Ty; | |
372 T7o = FNMS(TD, TB, T7n); | |
373 TF = FMA(TD, TE, TC); | |
374 T7r = T7o - T7q; | |
375 TeN = T7o + T7q; | |
376 TM = TF + TL; | |
377 T7m = TF - TL; | |
378 TcB = T7f + T7k; | |
379 T7l = T7f - T7k; | |
380 TiP = TeO + TeN; | |
381 TeP = TeN - TeO; | |
382 Tjl = Tz - TM; | |
383 TN = Tz + TM; | |
384 } | |
385 } | |
386 { | |
387 E T7D, TU, T13, T16, T7F, T10, T12, T15, T7w, T14; | |
388 { | |
389 E T19, T1c, T18, T1b; | |
390 { | |
391 E TQ, TT, TS, T7C, TR, TP; | |
392 TQ = cr[WS(rs, 4)]; | |
393 TT = ci[WS(rs, 4)]; | |
394 TP = W[6]; | |
395 TcC = T7m - T7r; | |
396 T7s = T7m + T7r; | |
397 TS = W[7]; | |
398 T7C = TP * TT; | |
399 TR = TP * TQ; | |
400 T19 = cr[WS(rs, 52)]; | |
401 T1c = ci[WS(rs, 52)]; | |
402 T7D = FNMS(TS, TQ, T7C); | |
403 TU = FMA(TS, TT, TR); | |
404 T18 = W[102]; | |
405 T1b = W[103]; | |
406 } | |
407 { | |
408 E TW, TZ, TY, T7E, TX, T7y, T1a, TV; | |
409 TW = cr[WS(rs, 36)]; | |
410 TZ = ci[WS(rs, 36)]; | |
411 T7y = T18 * T1c; | |
412 T1a = T18 * T19; | |
413 TV = W[70]; | |
414 TY = W[71]; | |
415 T7z = FNMS(T1b, T19, T7y); | |
416 T1d = FMA(T1b, T1c, T1a); | |
417 T7E = TV * TZ; | |
418 TX = TV * TW; | |
419 T13 = cr[WS(rs, 20)]; | |
420 T16 = ci[WS(rs, 20)]; | |
421 T7F = FNMS(TY, TW, T7E); | |
422 T10 = FMA(TY, TZ, TX); | |
423 T12 = W[38]; | |
424 T15 = W[39]; | |
425 } | |
426 } | |
427 T7G = T7D - T7F; | |
428 TeS = T7D + T7F; | |
429 T11 = TU + T10; | |
430 T7v = TU - T10; | |
431 T7w = T12 * T16; | |
432 T14 = T12 * T13; | |
433 T7x = FNMS(T15, T13, T7w); | |
434 T17 = FMA(T15, T16, T14); | |
435 } | |
436 { | |
437 E T8Y, T2H, T8E, T30, T2Q, T2T, T2S, T90, T2N, T8B, T2R; | |
438 { | |
439 E T2W, T2Z, T2Y, T8D, T2X; | |
440 { | |
441 E T2D, T2G, T2C, T2F, T8X, T2E, T2V; | |
442 T2D = cr[WS(rs, 62)]; | |
443 T2G = ci[WS(rs, 62)]; | |
444 { | |
445 E TeT, T7A, T1e, T7H; | |
446 TeT = T7x + T7z; | |
447 T7A = T7x - T7z; | |
448 T1e = T17 + T1d; | |
449 T7H = T17 - T1d; | |
450 T7B = T7v - T7A; | |
451 TcF = T7v + T7A; | |
452 TeU = TeS - TeT; | |
453 Ths = TeS + TeT; | |
454 T7I = T7G + T7H; | |
455 TcG = T7G - T7H; | |
456 T1f = T11 + T1e; | |
457 TeR = T11 - T1e; | |
458 T2C = W[122]; | |
459 } | |
460 T2F = W[123]; | |
461 T2W = cr[WS(rs, 46)]; | |
462 T2Z = ci[WS(rs, 46)]; | |
463 T8X = T2C * T2G; | |
464 T2E = T2C * T2D; | |
465 T2V = W[90]; | |
466 T2Y = W[91]; | |
467 T8Y = FNMS(T2F, T2D, T8X); | |
468 T2H = FMA(T2F, T2G, T2E); | |
469 T8D = T2V * T2Z; | |
470 T2X = T2V * T2W; | |
471 } | |
472 { | |
473 E T2J, T2M, T2I, T2L, T8Z, T2K, T2P; | |
474 T2J = cr[WS(rs, 30)]; | |
475 T2M = ci[WS(rs, 30)]; | |
476 T8E = FNMS(T2Y, T2W, T8D); | |
477 T30 = FMA(T2Y, T2Z, T2X); | |
478 T2I = W[58]; | |
479 T2L = W[59]; | |
480 T2Q = cr[WS(rs, 14)]; | |
481 T2T = ci[WS(rs, 14)]; | |
482 T8Z = T2I * T2M; | |
483 T2K = T2I * T2J; | |
484 T2P = W[26]; | |
485 T2S = W[27]; | |
486 T90 = FNMS(T2L, T2J, T8Z); | |
487 T2N = FMA(T2L, T2M, T2K); | |
488 T8B = T2P * T2T; | |
489 T2R = T2P * T2Q; | |
490 } | |
491 } | |
492 { | |
493 E T91, Tfe, T2O, T8A, T8C, T2U; | |
494 T91 = T8Y - T90; | |
495 Tfe = T8Y + T90; | |
496 T2O = T2H + T2N; | |
497 T8A = T2H - T2N; | |
498 T8C = FNMS(T2S, T2Q, T8B); | |
499 T2U = FMA(T2S, T2T, T2R); | |
500 { | |
501 E Tff, T8F, T92, T31; | |
502 Tff = T8C + T8E; | |
503 T8F = T8C - T8E; | |
504 T92 = T2U - T30; | |
505 T31 = T2U + T30; | |
506 T8G = T8A - T8F; | |
507 TcU = T8A + T8F; | |
508 Tfg = Tfe - Tff; | |
509 ThB = Tfe + Tff; | |
510 T32 = T2O + T31; | |
511 Tfj = T2O - T31; | |
512 TcX = T91 - T92; | |
513 T93 = T91 + T92; | |
514 } | |
515 } | |
516 } | |
517 { | |
518 E Ta5, T3C, T9f, T3V, T3L, T3O, T3N, Ta7, T3I, T9c, T3M; | |
519 { | |
520 E T3R, T3U, T3T, T9e, T3S; | |
521 { | |
522 E T3y, T3B, T3x, T3A, Ta4, T3z, T3Q; | |
523 T3y = cr[WS(rs, 1)]; | |
524 T3B = ci[WS(rs, 1)]; | |
525 T3x = W[0]; | |
526 T3A = W[1]; | |
527 T3R = cr[WS(rs, 49)]; | |
528 T3U = ci[WS(rs, 49)]; | |
529 Ta4 = T3x * T3B; | |
530 T3z = T3x * T3y; | |
531 T3Q = W[96]; | |
532 T3T = W[97]; | |
533 Ta5 = FNMS(T3A, T3y, Ta4); | |
534 T3C = FMA(T3A, T3B, T3z); | |
535 T9e = T3Q * T3U; | |
536 T3S = T3Q * T3R; | |
537 } | |
538 { | |
539 E T3E, T3H, T3D, T3G, Ta6, T3F, T3K; | |
540 T3E = cr[WS(rs, 33)]; | |
541 T3H = ci[WS(rs, 33)]; | |
542 T9f = FNMS(T3T, T3R, T9e); | |
543 T3V = FMA(T3T, T3U, T3S); | |
544 T3D = W[64]; | |
545 T3G = W[65]; | |
546 T3L = cr[WS(rs, 17)]; | |
547 T3O = ci[WS(rs, 17)]; | |
548 Ta6 = T3D * T3H; | |
549 T3F = T3D * T3E; | |
550 T3K = W[32]; | |
551 T3N = W[33]; | |
552 Ta7 = FNMS(T3G, T3E, Ta6); | |
553 T3I = FMA(T3G, T3H, T3F); | |
554 T9c = T3K * T3O; | |
555 T3M = T3K * T3L; | |
556 } | |
557 } | |
558 { | |
559 E Ta8, TfI, T3J, T9b, T9d, T3P; | |
560 Ta8 = Ta5 - Ta7; | |
561 TfI = Ta5 + Ta7; | |
562 T3J = T3C + T3I; | |
563 T9b = T3C - T3I; | |
564 T9d = FNMS(T3N, T3L, T9c); | |
565 T3P = FMA(T3N, T3O, T3M); | |
566 { | |
567 E TfJ, T9g, Ta9, T3W; | |
568 TfJ = T9d + T9f; | |
569 T9g = T9d - T9f; | |
570 Ta9 = T3P - T3V; | |
571 T3W = T3P + T3V; | |
572 T9h = T9b - T9g; | |
573 Td3 = T9b + T9g; | |
574 TfK = TfI - TfJ; | |
575 ThM = TfI + TfJ; | |
576 T3X = T3J + T3W; | |
577 Tfr = T3J - T3W; | |
578 Tde = Ta8 - Ta9; | |
579 Taa = Ta8 + Ta9; | |
580 } | |
581 } | |
582 } | |
583 } | |
584 { | |
585 E TaC, T69, Taw, TfU, T5X, Tar, TaA, T63; | |
586 { | |
587 E T8S, T3r, T8M, Tfl, T3f, T8H, T8Q, T3l; | |
588 { | |
589 E T8k, T8f, T8v, T8e; | |
590 { | |
591 E T8a, T2f, T8j, T2y, T2o, T2r, T2q, T8c, T2l, T8g, T2p; | |
592 { | |
593 E T2u, T2x, T2w, T8i, T2v; | |
594 { | |
595 E T2b, T2e, T2a, T2d, T89, T2c, T2t; | |
596 T2b = cr[WS(rs, 10)]; | |
597 T2e = ci[WS(rs, 10)]; | |
598 T2a = W[18]; | |
599 T2d = W[19]; | |
600 T2u = cr[WS(rs, 26)]; | |
601 T2x = ci[WS(rs, 26)]; | |
602 T89 = T2a * T2e; | |
603 T2c = T2a * T2b; | |
604 T2t = W[50]; | |
605 T2w = W[51]; | |
606 T8a = FNMS(T2d, T2b, T89); | |
607 T2f = FMA(T2d, T2e, T2c); | |
608 T8i = T2t * T2x; | |
609 T2v = T2t * T2u; | |
610 } | |
611 { | |
612 E T2h, T2k, T2g, T2j, T8b, T2i, T2n; | |
613 T2h = cr[WS(rs, 42)]; | |
614 T2k = ci[WS(rs, 42)]; | |
615 T8j = FNMS(T2w, T2u, T8i); | |
616 T2y = FMA(T2w, T2x, T2v); | |
617 T2g = W[82]; | |
618 T2j = W[83]; | |
619 T2o = cr[WS(rs, 58)]; | |
620 T2r = ci[WS(rs, 58)]; | |
621 T8b = T2g * T2k; | |
622 T2i = T2g * T2h; | |
623 T2n = W[114]; | |
624 T2q = W[115]; | |
625 T8c = FNMS(T2j, T2h, T8b); | |
626 T2l = FMA(T2j, T2k, T2i); | |
627 T8g = T2n * T2r; | |
628 T2p = T2n * T2o; | |
629 } | |
630 } | |
631 { | |
632 E T8d, Tfa, T2m, T88, T8h, T2s, Tf9, T2z; | |
633 T8d = T8a - T8c; | |
634 Tfa = T8a + T8c; | |
635 T2m = T2f + T2l; | |
636 T88 = T2f - T2l; | |
637 T8h = FNMS(T2q, T2o, T8g); | |
638 T2s = FMA(T2q, T2r, T2p); | |
639 T8k = T8h - T8j; | |
640 Tf9 = T8h + T8j; | |
641 T2z = T2s + T2y; | |
642 T8f = T2s - T2y; | |
643 T8v = T88 + T8d; | |
644 T8e = T88 - T8d; | |
645 Thx = Tfa + Tf9; | |
646 Tfb = Tf9 - Tfa; | |
647 Tf6 = T2m - T2z; | |
648 T2A = T2m + T2z; | |
649 } | |
650 } | |
651 { | |
652 E T38, T8J, T3h, T3k, T8L, T3e, T3g, T3j, T8P, T3i; | |
653 { | |
654 E T3n, T3q, T3m, T3p; | |
655 { | |
656 E T34, T37, T33, T8w, T8l, T36, T8I, T35; | |
657 T34 = cr[WS(rs, 6)]; | |
658 T37 = ci[WS(rs, 6)]; | |
659 T33 = W[10]; | |
660 T8w = T8k - T8f; | |
661 T8l = T8f + T8k; | |
662 T36 = W[11]; | |
663 T8I = T33 * T37; | |
664 T35 = T33 * T34; | |
665 T8x = T8v + T8w; | |
666 TcO = T8v - T8w; | |
667 T8m = T8e + T8l; | |
668 TcR = T8l - T8e; | |
669 T38 = FMA(T36, T37, T35); | |
670 T8J = FNMS(T36, T34, T8I); | |
671 } | |
672 T3n = cr[WS(rs, 22)]; | |
673 T3q = ci[WS(rs, 22)]; | |
674 T3m = W[42]; | |
675 T3p = W[43]; | |
676 { | |
677 E T3a, T3d, T3c, T8K, T3b, T8R, T3o, T39; | |
678 T3a = cr[WS(rs, 38)]; | |
679 T3d = ci[WS(rs, 38)]; | |
680 T8R = T3m * T3q; | |
681 T3o = T3m * T3n; | |
682 T39 = W[74]; | |
683 T3c = W[75]; | |
684 T8S = FNMS(T3p, T3n, T8R); | |
685 T3r = FMA(T3p, T3q, T3o); | |
686 T8K = T39 * T3d; | |
687 T3b = T39 * T3a; | |
688 T3h = cr[WS(rs, 54)]; | |
689 T3k = ci[WS(rs, 54)]; | |
690 T8L = FNMS(T3c, T3a, T8K); | |
691 T3e = FMA(T3c, T3d, T3b); | |
692 T3g = W[106]; | |
693 T3j = W[107]; | |
694 } | |
695 } | |
696 T8M = T8J - T8L; | |
697 Tfl = T8J + T8L; | |
698 T3f = T38 + T3e; | |
699 T8H = T38 - T3e; | |
700 T8P = T3g * T3k; | |
701 T3i = T3g * T3h; | |
702 T8Q = FNMS(T3j, T3h, T8P); | |
703 T3l = FMA(T3j, T3k, T3i); | |
704 } | |
705 } | |
706 { | |
707 E T9u, T9p, Tab, T9o; | |
708 { | |
709 E T9k, T43, T9t, T4m, T4c, T4f, T4e, T9m, T49, T9q, T4d; | |
710 { | |
711 E T4i, T4l, T4k, T9s, T4j; | |
712 { | |
713 E T3Z, T42, T3Y, T41, T9j, T40, T4h; | |
714 { | |
715 E T94, T8N, T8T, Tfk, T8O, T3s, T8U, T95; | |
716 T3Z = cr[WS(rs, 9)]; | |
717 T94 = T8H + T8M; | |
718 T8N = T8H - T8M; | |
719 T8T = T8Q - T8S; | |
720 Tfk = T8Q + T8S; | |
721 T8O = T3l - T3r; | |
722 T3s = T3l + T3r; | |
723 T42 = ci[WS(rs, 9)]; | |
724 Tfm = Tfk - Tfl; | |
725 ThC = Tfl + Tfk; | |
726 T8U = T8O + T8T; | |
727 T95 = T8T - T8O; | |
728 T3t = T3f + T3s; | |
729 Tfh = T3f - T3s; | |
730 T96 = T94 + T95; | |
731 TcV = T94 - T95; | |
732 T8V = T8N + T8U; | |
733 TcY = T8U - T8N; | |
734 T3Y = W[16]; | |
735 } | |
736 T41 = W[17]; | |
737 T4i = cr[WS(rs, 25)]; | |
738 T4l = ci[WS(rs, 25)]; | |
739 T9j = T3Y * T42; | |
740 T40 = T3Y * T3Z; | |
741 T4h = W[48]; | |
742 T4k = W[49]; | |
743 T9k = FNMS(T41, T3Z, T9j); | |
744 T43 = FMA(T41, T42, T40); | |
745 T9s = T4h * T4l; | |
746 T4j = T4h * T4i; | |
747 } | |
748 { | |
749 E T45, T48, T44, T47, T9l, T46, T4b; | |
750 T45 = cr[WS(rs, 41)]; | |
751 T48 = ci[WS(rs, 41)]; | |
752 T9t = FNMS(T4k, T4i, T9s); | |
753 T4m = FMA(T4k, T4l, T4j); | |
754 T44 = W[80]; | |
755 T47 = W[81]; | |
756 T4c = cr[WS(rs, 57)]; | |
757 T4f = ci[WS(rs, 57)]; | |
758 T9l = T44 * T48; | |
759 T46 = T44 * T45; | |
760 T4b = W[112]; | |
761 T4e = W[113]; | |
762 T9m = FNMS(T47, T45, T9l); | |
763 T49 = FMA(T47, T48, T46); | |
764 T9q = T4b * T4f; | |
765 T4d = T4b * T4c; | |
766 } | |
767 } | |
768 { | |
769 E T9n, Tft, T4a, T9i, T9r, T4g, Tfs, T4n; | |
770 T9n = T9k - T9m; | |
771 Tft = T9k + T9m; | |
772 T4a = T43 + T49; | |
773 T9i = T43 - T49; | |
774 T9r = FNMS(T4e, T4c, T9q); | |
775 T4g = FMA(T4e, T4f, T4d); | |
776 T9u = T9r - T9t; | |
777 Tfs = T9r + T9t; | |
778 T4n = T4g + T4m; | |
779 T9p = T4g - T4m; | |
780 Tab = T9i + T9n; | |
781 T9o = T9i - T9n; | |
782 ThN = Tft + Tfs; | |
783 Tfu = Tfs - Tft; | |
784 TfL = T4a - T4n; | |
785 T4o = T4a + T4n; | |
786 } | |
787 } | |
788 { | |
789 E T5Q, Tat, T5Z, T62, Tav, T5W, T5Y, T61, Taz, T60; | |
790 { | |
791 E T65, T68, T64, T67; | |
792 { | |
793 E T5M, T5P, T5L, Tac, T9v, T5O, Tas, T5N; | |
794 T5M = cr[WS(rs, 7)]; | |
795 T5P = ci[WS(rs, 7)]; | |
796 T5L = W[12]; | |
797 Tac = T9u - T9p; | |
798 T9v = T9p + T9u; | |
799 T5O = W[13]; | |
800 Tas = T5L * T5P; | |
801 T5N = T5L * T5M; | |
802 Tad = Tab + Tac; | |
803 Td4 = Tab - Tac; | |
804 T9w = T9o + T9v; | |
805 Tdf = T9v - T9o; | |
806 T5Q = FMA(T5O, T5P, T5N); | |
807 Tat = FNMS(T5O, T5M, Tas); | |
808 } | |
809 T65 = cr[WS(rs, 23)]; | |
810 T68 = ci[WS(rs, 23)]; | |
811 T64 = W[44]; | |
812 T67 = W[45]; | |
813 { | |
814 E T5S, T5V, T5U, Tau, T5T, TaB, T66, T5R; | |
815 T5S = cr[WS(rs, 39)]; | |
816 T5V = ci[WS(rs, 39)]; | |
817 TaB = T64 * T68; | |
818 T66 = T64 * T65; | |
819 T5R = W[76]; | |
820 T5U = W[77]; | |
821 TaC = FNMS(T67, T65, TaB); | |
822 T69 = FMA(T67, T68, T66); | |
823 Tau = T5R * T5V; | |
824 T5T = T5R * T5S; | |
825 T5Z = cr[WS(rs, 55)]; | |
826 T62 = ci[WS(rs, 55)]; | |
827 Tav = FNMS(T5U, T5S, Tau); | |
828 T5W = FMA(T5U, T5V, T5T); | |
829 T5Y = W[108]; | |
830 T61 = W[109]; | |
831 } | |
832 } | |
833 Taw = Tat - Tav; | |
834 TfU = Tat + Tav; | |
835 T5X = T5Q + T5W; | |
836 Tar = T5Q - T5W; | |
837 Taz = T5Y * T62; | |
838 T60 = T5Y * T5Z; | |
839 TaA = FNMS(T61, T5Z, Taz); | |
840 T63 = FMA(T61, T62, T60); | |
841 } | |
842 } | |
843 } | |
844 { | |
845 E T9T, Td9, TfE, TfB, Tda, Ta0; | |
846 { | |
847 E T9E, Td6, Tfz, Tfw, Td7, T9L; | |
848 { | |
849 E T9G, T4v, T9C, T4O, T4E, T4H, T4G, T9I, T4B, T9z, T4F; | |
850 { | |
851 E T4K, T4N, T4M, T9B, T4L; | |
852 { | |
853 E T4r, T4u, T4q, T4t, T9F, T4s, T4J; | |
854 { | |
855 E Tbl, Tax, TaD, TfT, Tay, T6a, TaE, Tbk; | |
856 T4r = cr[WS(rs, 5)]; | |
857 Tbl = Tar + Taw; | |
858 Tax = Tar - Taw; | |
859 TaD = TaA - TaC; | |
860 TfT = TaA + TaC; | |
861 Tay = T63 - T69; | |
862 T6a = T63 + T69; | |
863 T4u = ci[WS(rs, 5)]; | |
864 TfV = TfT - TfU; | |
865 ThY = TfU + TfT; | |
866 TaE = Tay + TaD; | |
867 Tbk = Tay - TaD; | |
868 T6b = T5X + T6a; | |
869 Tg9 = T6a - T5X; | |
870 Tbm = Tbk - Tbl; | |
871 Tdn = Tbl + Tbk; | |
872 TaF = Tax + TaE; | |
873 Tdy = TaE - Tax; | |
874 T4q = W[8]; | |
875 } | |
876 T4t = W[9]; | |
877 T4K = cr[WS(rs, 53)]; | |
878 T4N = ci[WS(rs, 53)]; | |
879 T9F = T4q * T4u; | |
880 T4s = T4q * T4r; | |
881 T4J = W[104]; | |
882 T4M = W[105]; | |
883 T9G = FNMS(T4t, T4r, T9F); | |
884 T4v = FMA(T4t, T4u, T4s); | |
885 T9B = T4J * T4N; | |
886 T4L = T4J * T4K; | |
887 } | |
888 { | |
889 E T4x, T4A, T4w, T4z, T9H, T4y, T4D; | |
890 T4x = cr[WS(rs, 37)]; | |
891 T4A = ci[WS(rs, 37)]; | |
892 T9C = FNMS(T4M, T4K, T9B); | |
893 T4O = FMA(T4M, T4N, T4L); | |
894 T4w = W[72]; | |
895 T4z = W[73]; | |
896 T4E = cr[WS(rs, 21)]; | |
897 T4H = ci[WS(rs, 21)]; | |
898 T9H = T4w * T4A; | |
899 T4y = T4w * T4x; | |
900 T4D = W[40]; | |
901 T4G = W[41]; | |
902 T9I = FNMS(T4z, T4x, T9H); | |
903 T4B = FMA(T4z, T4A, T4y); | |
904 T9z = T4D * T4H; | |
905 T4F = T4D * T4E; | |
906 } | |
907 } | |
908 { | |
909 E T9J, Tfx, T4C, T9y, T9A, T4I; | |
910 T9J = T9G - T9I; | |
911 Tfx = T9G + T9I; | |
912 T4C = T4v + T4B; | |
913 T9y = T4v - T4B; | |
914 T9A = FNMS(T4G, T4E, T9z); | |
915 T4I = FMA(T4G, T4H, T4F); | |
916 { | |
917 E Tfy, T9D, T9K, T4P; | |
918 Tfy = T9A + T9C; | |
919 T9D = T9A - T9C; | |
920 T9K = T4I - T4O; | |
921 T4P = T4I + T4O; | |
922 T9E = T9y - T9D; | |
923 Td6 = T9y + T9D; | |
924 Tfz = Tfx - Tfy; | |
925 ThJ = Tfx + Tfy; | |
926 Tfw = T4C - T4P; | |
927 T4Q = T4C + T4P; | |
928 Td7 = T9J - T9K; | |
929 T9L = T9J + T9K; | |
930 } | |
931 } | |
932 } | |
933 { | |
934 E T9V, T4W, T9R, T5f, T55, T58, T57, T9X, T52, T9O, T56; | |
935 { | |
936 E T5b, T5e, T5d, T9Q, T5c; | |
937 { | |
938 E T4S, T4V, T4R, T4U, T9U, T4T, T5a; | |
939 T4S = cr[WS(rs, 61)]; | |
940 TfN = Tfw + Tfz; | |
941 TfA = Tfw - Tfz; | |
942 Taf = FMA(KP414213562, T9E, T9L); | |
943 T9M = FNMS(KP414213562, T9L, T9E); | |
944 Td8 = FMA(KP414213562, Td7, Td6); | |
945 Tdh = FNMS(KP414213562, Td6, Td7); | |
946 T4V = ci[WS(rs, 61)]; | |
947 T4R = W[120]; | |
948 T4U = W[121]; | |
949 T5b = cr[WS(rs, 45)]; | |
950 T5e = ci[WS(rs, 45)]; | |
951 T9U = T4R * T4V; | |
952 T4T = T4R * T4S; | |
953 T5a = W[88]; | |
954 T5d = W[89]; | |
955 T9V = FNMS(T4U, T4S, T9U); | |
956 T4W = FMA(T4U, T4V, T4T); | |
957 T9Q = T5a * T5e; | |
958 T5c = T5a * T5b; | |
959 } | |
960 { | |
961 E T4Y, T51, T4X, T50, T9W, T4Z, T54; | |
962 T4Y = cr[WS(rs, 29)]; | |
963 T51 = ci[WS(rs, 29)]; | |
964 T9R = FNMS(T5d, T5b, T9Q); | |
965 T5f = FMA(T5d, T5e, T5c); | |
966 T4X = W[56]; | |
967 T50 = W[57]; | |
968 T55 = cr[WS(rs, 13)]; | |
969 T58 = ci[WS(rs, 13)]; | |
970 T9W = T4X * T51; | |
971 T4Z = T4X * T4Y; | |
972 T54 = W[24]; | |
973 T57 = W[25]; | |
974 T9X = FNMS(T50, T4Y, T9W); | |
975 T52 = FMA(T50, T51, T4Z); | |
976 T9O = T54 * T58; | |
977 T56 = T54 * T55; | |
978 } | |
979 } | |
980 { | |
981 E T9Y, TfC, T53, T9N, T9P, T59; | |
982 T9Y = T9V - T9X; | |
983 TfC = T9V + T9X; | |
984 T53 = T4W + T52; | |
985 T9N = T4W - T52; | |
986 T9P = FNMS(T57, T55, T9O); | |
987 T59 = FMA(T57, T58, T56); | |
988 { | |
989 E TfD, T9S, T9Z, T5g; | |
990 TfD = T9P + T9R; | |
991 T9S = T9P - T9R; | |
992 T9Z = T59 - T5f; | |
993 T5g = T59 + T5f; | |
994 T9T = T9N - T9S; | |
995 Td9 = T9N + T9S; | |
996 TfE = TfC - TfD; | |
997 ThI = TfC + TfD; | |
998 TfB = T53 - T5g; | |
999 T5h = T53 + T5g; | |
1000 Tda = T9Y - T9Z; | |
1001 Ta0 = T9Y + T9Z; | |
1002 } | |
1003 } | |
1004 } | |
1005 } | |
1006 { | |
1007 E TaN, Tdp, Tg0, TfX, Tdq, TaU; | |
1008 { | |
1009 E TaQ, T6i, TaL, T6B, T6r, T6u, T6t, TaS, T6o, TaI, T6s; | |
1010 { | |
1011 E T6x, T6A, T6z, TaK, T6y; | |
1012 { | |
1013 E T6e, T6h, T6d, T6g, TaP, T6f, T6w; | |
1014 T6e = cr[WS(rs, 3)]; | |
1015 TfO = TfE - TfB; | |
1016 TfF = TfB + TfE; | |
1017 Tag = FNMS(KP414213562, T9T, Ta0); | |
1018 Ta1 = FMA(KP414213562, Ta0, T9T); | |
1019 Tdb = FNMS(KP414213562, Tda, Td9); | |
1020 Tdi = FMA(KP414213562, Td9, Tda); | |
1021 T6h = ci[WS(rs, 3)]; | |
1022 T6d = W[4]; | |
1023 T6g = W[5]; | |
1024 T6x = cr[WS(rs, 51)]; | |
1025 T6A = ci[WS(rs, 51)]; | |
1026 TaP = T6d * T6h; | |
1027 T6f = T6d * T6e; | |
1028 T6w = W[100]; | |
1029 T6z = W[101]; | |
1030 TaQ = FNMS(T6g, T6e, TaP); | |
1031 T6i = FMA(T6g, T6h, T6f); | |
1032 TaK = T6w * T6A; | |
1033 T6y = T6w * T6x; | |
1034 } | |
1035 { | |
1036 E T6k, T6n, T6j, T6m, TaR, T6l, T6q; | |
1037 T6k = cr[WS(rs, 35)]; | |
1038 T6n = ci[WS(rs, 35)]; | |
1039 TaL = FNMS(T6z, T6x, TaK); | |
1040 T6B = FMA(T6z, T6A, T6y); | |
1041 T6j = W[68]; | |
1042 T6m = W[69]; | |
1043 T6r = cr[WS(rs, 19)]; | |
1044 T6u = ci[WS(rs, 19)]; | |
1045 TaR = T6j * T6n; | |
1046 T6l = T6j * T6k; | |
1047 T6q = W[36]; | |
1048 T6t = W[37]; | |
1049 TaS = FNMS(T6m, T6k, TaR); | |
1050 T6o = FMA(T6m, T6n, T6l); | |
1051 TaI = T6q * T6u; | |
1052 T6s = T6q * T6r; | |
1053 } | |
1054 } | |
1055 { | |
1056 E TaT, TfY, T6p, TaH, TaJ, T6v; | |
1057 TaT = TaQ - TaS; | |
1058 TfY = TaQ + TaS; | |
1059 T6p = T6i + T6o; | |
1060 TaH = T6i - T6o; | |
1061 TaJ = FNMS(T6t, T6r, TaI); | |
1062 T6v = FMA(T6t, T6u, T6s); | |
1063 { | |
1064 E TfZ, TaM, T6C, TaO; | |
1065 TfZ = TaJ + TaL; | |
1066 TaM = TaJ - TaL; | |
1067 T6C = T6v + T6B; | |
1068 TaO = T6B - T6v; | |
1069 TaN = TaH - TaM; | |
1070 Tdp = TaH + TaM; | |
1071 Tg0 = TfY - TfZ; | |
1072 ThU = TfY + TfZ; | |
1073 TfX = T6p - T6C; | |
1074 T6D = T6p + T6C; | |
1075 Tdq = TaT + TaO; | |
1076 TaU = TaO - TaT; | |
1077 } | |
1078 } | |
1079 } | |
1080 { | |
1081 E Tb5, T6J, Tb0, T72, T6S, T6V, T6U, Tb7, T6P, TaX, T6T; | |
1082 { | |
1083 E T6Y, T71, T70, TaZ, T6Z; | |
1084 { | |
1085 E T6F, T6I, T6E, T6H, Tb4, T6G, T6X; | |
1086 T6F = cr[WS(rs, 59)]; | |
1087 Tgf = TfX + Tg0; | |
1088 Tg1 = TfX - Tg0; | |
1089 Tbo = FNMS(KP414213562, TaN, TaU); | |
1090 TaV = FMA(KP414213562, TaU, TaN); | |
1091 Tdr = FMA(KP414213562, Tdq, Tdp); | |
1092 TdA = FNMS(KP414213562, Tdp, Tdq); | |
1093 T6I = ci[WS(rs, 59)]; | |
1094 T6E = W[116]; | |
1095 T6H = W[117]; | |
1096 T6Y = cr[WS(rs, 43)]; | |
1097 T71 = ci[WS(rs, 43)]; | |
1098 Tb4 = T6E * T6I; | |
1099 T6G = T6E * T6F; | |
1100 T6X = W[84]; | |
1101 T70 = W[85]; | |
1102 Tb5 = FNMS(T6H, T6F, Tb4); | |
1103 T6J = FMA(T6H, T6I, T6G); | |
1104 TaZ = T6X * T71; | |
1105 T6Z = T6X * T6Y; | |
1106 } | |
1107 { | |
1108 E T6L, T6O, T6K, T6N, Tb6, T6M, T6R; | |
1109 T6L = cr[WS(rs, 27)]; | |
1110 T6O = ci[WS(rs, 27)]; | |
1111 Tb0 = FNMS(T70, T6Y, TaZ); | |
1112 T72 = FMA(T70, T71, T6Z); | |
1113 T6K = W[52]; | |
1114 T6N = W[53]; | |
1115 T6S = cr[WS(rs, 11)]; | |
1116 T6V = ci[WS(rs, 11)]; | |
1117 Tb6 = T6K * T6O; | |
1118 T6M = T6K * T6L; | |
1119 T6R = W[20]; | |
1120 T6U = W[21]; | |
1121 Tb7 = FNMS(T6N, T6L, Tb6); | |
1122 T6P = FMA(T6N, T6O, T6M); | |
1123 TaX = T6R * T6V; | |
1124 T6T = T6R * T6S; | |
1125 } | |
1126 } | |
1127 { | |
1128 E Tb8, Tg3, T6Q, TaW, TaY, T6W; | |
1129 Tb8 = Tb5 - Tb7; | |
1130 Tg3 = Tb5 + Tb7; | |
1131 T6Q = T6J + T6P; | |
1132 TaW = T6J - T6P; | |
1133 TaY = FNMS(T6U, T6S, TaX); | |
1134 T6W = FMA(T6U, T6V, T6T); | |
1135 { | |
1136 E Tg4, Tb1, T73, Tb3; | |
1137 Tg4 = TaY + Tb0; | |
1138 Tb1 = TaY - Tb0; | |
1139 T73 = T6W + T72; | |
1140 Tb3 = T72 - T6W; | |
1141 Tb2 = TaW - Tb1; | |
1142 Tds = TaW + Tb1; | |
1143 Tg5 = Tg3 - Tg4; | |
1144 ThT = Tg3 + Tg4; | |
1145 Tg2 = T6Q - T73; | |
1146 T74 = T6Q + T73; | |
1147 Tdt = Tb8 + Tb3; | |
1148 Tb9 = Tb3 - Tb8; | |
1149 } | |
1150 } | |
1151 } | |
1152 } | |
1153 } | |
1154 } | |
1155 { | |
1156 E Thq, Tge, Tg6, Tdu, TdB, Tj7, Thv, ThA, Tht, Tj8, ThD, Thy, ThS, Ti0, ThZ; | |
1157 E ThV, ThH, ThP, ThO, ThK, Tkm, TcD, Tk0, Tk4, TjZ, Tk3, Tik, Tin; | |
1158 { | |
1159 E Tbp, Tba, TiI, TiL; | |
1160 { | |
1161 E Tio, T1I, Tj1, T3v, Tj2, TiX, TiN, Tir, T76, TiJ, TiC, TiG, T5j, Tit, Tiw; | |
1162 E TiK; | |
1163 { | |
1164 E TiO, TiW, Tip, Tiq; | |
1165 { | |
1166 E TO, T1H, T2B, T3u; | |
1167 Thq = Tm - TN; | |
1168 TO = Tm + TN; | |
1169 Tge = Tg2 - Tg5; | |
1170 Tg6 = Tg2 + Tg5; | |
1171 Tbp = FMA(KP414213562, Tb2, Tb9); | |
1172 Tba = FNMS(KP414213562, Tb9, Tb2); | |
1173 Tdu = FNMS(KP414213562, Tdt, Tds); | |
1174 TdB = FMA(KP414213562, Tds, Tdt); | |
1175 T1H = T1f + T1G; | |
1176 Tj7 = T1f - T1G; | |
1177 Thv = T29 - T2A; | |
1178 T2B = T29 + T2A; | |
1179 T3u = T32 + T3t; | |
1180 ThA = T32 - T3t; | |
1181 Tht = Thr - Ths; | |
1182 TiO = Ths + Thr; | |
1183 Tio = TO - T1H; | |
1184 T1I = TO + T1H; | |
1185 Tj1 = T2B - T3u; | |
1186 T3v = T2B + T3u; | |
1187 TiW = TiP + TiV; | |
1188 Tj8 = TiV - TiP; | |
1189 } | |
1190 ThD = ThB - ThC; | |
1191 Tip = ThB + ThC; | |
1192 Tiq = Thw + Thx; | |
1193 Thy = Thw - Thx; | |
1194 { | |
1195 E T6c, T75, Tiz, TiA; | |
1196 ThS = T5K - T6b; | |
1197 T6c = T5K + T6b; | |
1198 Tj2 = TiW - TiO; | |
1199 TiX = TiO + TiW; | |
1200 TiN = Tiq + Tip; | |
1201 Tir = Tip - Tiq; | |
1202 T75 = T6D + T74; | |
1203 Ti0 = T74 - T6D; | |
1204 ThZ = ThX - ThY; | |
1205 Tiz = ThX + ThY; | |
1206 TiA = ThU + ThT; | |
1207 ThV = ThT - ThU; | |
1208 { | |
1209 E T4p, Tiy, TiB, T5i, Tiu, Tiv; | |
1210 ThH = T3X - T4o; | |
1211 T4p = T3X + T4o; | |
1212 T76 = T6c + T75; | |
1213 Tiy = T6c - T75; | |
1214 TiJ = Tiz + TiA; | |
1215 TiB = Tiz - TiA; | |
1216 T5i = T4Q + T5h; | |
1217 ThP = T4Q - T5h; | |
1218 ThO = ThM - ThN; | |
1219 Tiu = ThM + ThN; | |
1220 Tiv = ThJ + ThI; | |
1221 ThK = ThI - ThJ; | |
1222 TiC = Tiy - TiB; | |
1223 TiG = Tiy + TiB; | |
1224 T5j = T4p + T5i; | |
1225 Tit = T4p - T5i; | |
1226 Tiw = Tiu - Tiv; | |
1227 TiK = Tiu + Tiv; | |
1228 } | |
1229 } | |
1230 } | |
1231 { | |
1232 E TiZ, TiD, TiH, TiE, Tis, TiM, TiY, Tj0; | |
1233 { | |
1234 E T3w, TiF, Tix, T77, Tj5, Tj3, Tj6, Tj4; | |
1235 TiI = T1I - T3v; | |
1236 T3w = T1I + T3v; | |
1237 TiF = Tit - Tiw; | |
1238 Tix = Tit + Tiw; | |
1239 T77 = T5j + T76; | |
1240 TiZ = T76 - T5j; | |
1241 Tj5 = Tj2 - Tj1; | |
1242 Tj3 = Tj1 + Tj2; | |
1243 TiD = Tix + TiC; | |
1244 Tj4 = TiC - Tix; | |
1245 cr[0] = T3w + T77; | |
1246 ci[WS(rs, 31)] = T3w - T77; | |
1247 Tj6 = TiG - TiF; | |
1248 TiH = TiF + TiG; | |
1249 ci[WS(rs, 39)] = FMA(KP707106781, Tj4, Tj3); | |
1250 cr[WS(rs, 56)] = FMS(KP707106781, Tj4, Tj3); | |
1251 TiE = Tio + Tir; | |
1252 Tis = Tio - Tir; | |
1253 ci[WS(rs, 55)] = FMA(KP707106781, Tj6, Tj5); | |
1254 cr[WS(rs, 40)] = FMS(KP707106781, Tj6, Tj5); | |
1255 } | |
1256 TiL = TiJ - TiK; | |
1257 TiM = TiK + TiJ; | |
1258 cr[WS(rs, 8)] = FMA(KP707106781, TiD, Tis); | |
1259 ci[WS(rs, 23)] = FNMS(KP707106781, TiD, Tis); | |
1260 ci[WS(rs, 7)] = FMA(KP707106781, TiH, TiE); | |
1261 cr[WS(rs, 24)] = FNMS(KP707106781, TiH, TiE); | |
1262 TiY = TiN + TiX; | |
1263 Tj0 = TiX - TiN; | |
1264 ci[WS(rs, 63)] = TiM + TiY; | |
1265 cr[WS(rs, 32)] = TiM - TiY; | |
1266 ci[WS(rs, 47)] = TiZ + Tj0; | |
1267 cr[WS(rs, 48)] = TiZ - Tj0; | |
1268 } | |
1269 } | |
1270 { | |
1271 E TjW, TbB, Tk2, T99, TbF, TbL, Tbv, Taj, Tcu, Tcy, Tci, Tce, Tcr, Tcx, Tch; | |
1272 E Tc7, Tcn, Tkg, Tka, TbZ, TbP, T7J, TbO, T7u, Tk7, TjT, TbI, TbM, Tbw, Tbs; | |
1273 E T7Y, TbQ; | |
1274 { | |
1275 E TbX, TbW, TbU, TbT, Tc1, Tc5, Tc4, Tc2, TaG, Tbq, Tbn, Tcb, Tcs, Tca, Tcc; | |
1276 E Tbb, Tcm, TbV; | |
1277 { | |
1278 E T8W, Tbz, T8z, T97, T8n, T8y; | |
1279 TbX = FNMS(KP707106781, T8m, T87); | |
1280 T8n = FMA(KP707106781, T8m, T87); | |
1281 T8y = FMA(KP707106781, T8x, T8u); | |
1282 TbW = FNMS(KP707106781, T8x, T8u); | |
1283 TbU = FNMS(KP707106781, T8V, T8G); | |
1284 T8W = FMA(KP707106781, T8V, T8G); | |
1285 ci[WS(rs, 15)] = TiI + TiL; | |
1286 cr[WS(rs, 16)] = TiI - TiL; | |
1287 Tbz = FMA(KP198912367, T8n, T8y); | |
1288 T8z = FNMS(KP198912367, T8y, T8n); | |
1289 T97 = FMA(KP707106781, T96, T93); | |
1290 TbT = FNMS(KP707106781, T96, T93); | |
1291 { | |
1292 E Tae, TbD, Ta3, Tah; | |
1293 { | |
1294 E T9x, Ta2, TbA, T98; | |
1295 Tc1 = FNMS(KP707106781, T9w, T9h); | |
1296 T9x = FMA(KP707106781, T9w, T9h); | |
1297 Ta2 = T9M + Ta1; | |
1298 Tc5 = Ta1 - T9M; | |
1299 Tc4 = FNMS(KP707106781, Tad, Taa); | |
1300 Tae = FMA(KP707106781, Tad, Taa); | |
1301 TbA = FNMS(KP198912367, T8W, T97); | |
1302 T98 = FMA(KP198912367, T97, T8W); | |
1303 TbD = FNMS(KP923879532, Ta2, T9x); | |
1304 Ta3 = FMA(KP923879532, Ta2, T9x); | |
1305 TjW = Tbz + TbA; | |
1306 TbB = Tbz - TbA; | |
1307 Tk2 = T98 - T8z; | |
1308 T99 = T8z + T98; | |
1309 Tah = Taf + Tag; | |
1310 Tc2 = Taf - Tag; | |
1311 } | |
1312 { | |
1313 E Tc8, Tc9, TbE, Tai; | |
1314 TaG = FMA(KP707106781, TaF, Taq); | |
1315 Tc8 = FNMS(KP707106781, TaF, Taq); | |
1316 Tc9 = Tbp - Tbo; | |
1317 Tbq = Tbo + Tbp; | |
1318 Tbn = FMA(KP707106781, Tbm, Tbj); | |
1319 Tcb = FNMS(KP707106781, Tbm, Tbj); | |
1320 TbE = FNMS(KP923879532, Tah, Tae); | |
1321 Tai = FMA(KP923879532, Tah, Tae); | |
1322 Tcs = FMA(KP923879532, Tc9, Tc8); | |
1323 Tca = FNMS(KP923879532, Tc9, Tc8); | |
1324 TbF = FMA(KP820678790, TbE, TbD); | |
1325 TbL = FNMS(KP820678790, TbD, TbE); | |
1326 Tbv = FMA(KP098491403, Ta3, Tai); | |
1327 Taj = FNMS(KP098491403, Tai, Ta3); | |
1328 Tcc = Tba - TaV; | |
1329 Tbb = TaV + Tba; | |
1330 } | |
1331 } | |
1332 } | |
1333 { | |
1334 E Tcp, Tc3, Tct, Tcd, Tcq, Tc6; | |
1335 Tct = FNMS(KP923879532, Tcc, Tcb); | |
1336 Tcd = FMA(KP923879532, Tcc, Tcb); | |
1337 Tcp = FMA(KP923879532, Tc2, Tc1); | |
1338 Tc3 = FNMS(KP923879532, Tc2, Tc1); | |
1339 Tcu = FMA(KP303346683, Tct, Tcs); | |
1340 Tcy = FNMS(KP303346683, Tcs, Tct); | |
1341 Tci = FMA(KP534511135, Tca, Tcd); | |
1342 Tce = FNMS(KP534511135, Tcd, Tca); | |
1343 Tcq = FMA(KP923879532, Tc5, Tc4); | |
1344 Tc6 = FNMS(KP923879532, Tc5, Tc4); | |
1345 Tcm = FNMS(KP668178637, TbT, TbU); | |
1346 TbV = FMA(KP668178637, TbU, TbT); | |
1347 Tcr = FMA(KP303346683, Tcq, Tcp); | |
1348 Tcx = FNMS(KP303346683, Tcp, Tcq); | |
1349 Tch = FMA(KP534511135, Tc3, Tc6); | |
1350 Tc7 = FNMS(KP534511135, Tc6, Tc3); | |
1351 } | |
1352 { | |
1353 E TbG, Tbc, Tcl, TbY; | |
1354 Tcl = FMA(KP668178637, TbW, TbX); | |
1355 TbY = FNMS(KP668178637, TbX, TbW); | |
1356 TbG = FNMS(KP923879532, Tbb, TaG); | |
1357 Tbc = FMA(KP923879532, Tbb, TaG); | |
1358 Tcn = Tcl + Tcm; | |
1359 Tkg = Tcl - Tcm; | |
1360 Tka = TbY + TbV; | |
1361 TbZ = TbV - TbY; | |
1362 { | |
1363 E T7t, TjS, TbH, Tbr; | |
1364 Tkm = T7s - T7l; | |
1365 T7t = T7l + T7s; | |
1366 TjS = TcB - TcC; | |
1367 TcD = TcB + TcC; | |
1368 TbP = FMA(KP414213562, T7B, T7I); | |
1369 T7J = FNMS(KP414213562, T7I, T7B); | |
1370 TbH = FNMS(KP923879532, Tbq, Tbn); | |
1371 Tbr = FMA(KP923879532, Tbq, Tbn); | |
1372 TbO = FNMS(KP707106781, T7t, T7e); | |
1373 T7u = FMA(KP707106781, T7t, T7e); | |
1374 Tk7 = FNMS(KP707106781, TjS, TjR); | |
1375 TjT = FMA(KP707106781, TjS, TjR); | |
1376 TbI = FMA(KP820678790, TbH, TbG); | |
1377 TbM = FNMS(KP820678790, TbG, TbH); | |
1378 Tbw = FMA(KP098491403, Tbc, Tbr); | |
1379 Tbs = FNMS(KP098491403, Tbr, Tbc); | |
1380 T7Y = FMA(KP414213562, T7X, T7Q); | |
1381 TbQ = FNMS(KP414213562, T7Q, T7X); | |
1382 } | |
1383 } | |
1384 } | |
1385 { | |
1386 E Tk1, TjV, Tck, TbS, Tkd, Tcz, Tkh, Tcf, TjY, Tk6, Tke, Tcv, Tki, Tcj; | |
1387 { | |
1388 E Tbu, TbC, Tkb, Tkc, Tkj, Tkk, Tbx, TbJ; | |
1389 { | |
1390 E Tbt, Tkf, Tk9, T9a, TbK, TbN, Tby; | |
1391 Tk0 = Tbs - Taj; | |
1392 Tbt = Taj + Tbs; | |
1393 { | |
1394 E Tk8, T7Z, TjU, TbR, T80; | |
1395 Tk8 = T7Y - T7J; | |
1396 T7Z = T7J + T7Y; | |
1397 TjU = TbP + TbQ; | |
1398 TbR = TbP - TbQ; | |
1399 Tkf = FNMS(KP923879532, Tk8, Tk7); | |
1400 Tk9 = FMA(KP923879532, Tk8, Tk7); | |
1401 Tby = FNMS(KP923879532, T7Z, T7u); | |
1402 T80 = FMA(KP923879532, T7Z, T7u); | |
1403 Tk1 = FNMS(KP923879532, TjU, TjT); | |
1404 TjV = FMA(KP923879532, TjU, TjT); | |
1405 Tck = FMA(KP923879532, TbR, TbO); | |
1406 TbS = FNMS(KP923879532, TbR, TbO); | |
1407 T9a = FMA(KP980785280, T99, T80); | |
1408 Tbu = FNMS(KP980785280, T99, T80); | |
1409 } | |
1410 TbC = FMA(KP980785280, TbB, Tby); | |
1411 TbK = FNMS(KP980785280, TbB, Tby); | |
1412 TbN = TbL + TbM; | |
1413 Tk4 = TbL - TbM; | |
1414 Tkd = FNMS(KP831469612, Tka, Tk9); | |
1415 Tkb = FMA(KP831469612, Tka, Tk9); | |
1416 ci[0] = FMA(KP995184726, Tbt, T9a); | |
1417 cr[WS(rs, 31)] = FNMS(KP995184726, Tbt, T9a); | |
1418 ci[WS(rs, 8)] = FNMS(KP773010453, TbN, TbK); | |
1419 cr[WS(rs, 23)] = FMA(KP773010453, TbN, TbK); | |
1420 Tkc = Tcx - Tcy; | |
1421 Tcz = Tcx + Tcy; | |
1422 Tkh = FMA(KP831469612, Tkg, Tkf); | |
1423 Tkj = FNMS(KP831469612, Tkg, Tkf); | |
1424 Tkk = Tce - Tc7; | |
1425 Tcf = Tc7 + Tce; | |
1426 } | |
1427 ci[WS(rs, 60)] = FMA(KP956940335, Tkc, Tkb); | |
1428 cr[WS(rs, 35)] = FMS(KP956940335, Tkc, Tkb); | |
1429 ci[WS(rs, 52)] = FMA(KP881921264, Tkk, Tkj); | |
1430 cr[WS(rs, 43)] = FMS(KP881921264, Tkk, Tkj); | |
1431 Tbx = Tbv + Tbw; | |
1432 TjY = Tbw - Tbv; | |
1433 TbJ = TbF + TbI; | |
1434 Tk6 = TbI - TbF; | |
1435 cr[WS(rs, 15)] = FMA(KP995184726, Tbx, Tbu); | |
1436 ci[WS(rs, 16)] = FNMS(KP995184726, Tbx, Tbu); | |
1437 cr[WS(rs, 7)] = FMA(KP773010453, TbJ, TbC); | |
1438 ci[WS(rs, 24)] = FNMS(KP773010453, TbJ, TbC); | |
1439 Tke = Tcu - Tcr; | |
1440 Tcv = Tcr + Tcu; | |
1441 Tki = Tci - Tch; | |
1442 Tcj = Tch + Tci; | |
1443 } | |
1444 { | |
1445 E Tcg, Tco, TjX, Tk5, Tc0, Tcw; | |
1446 Tcg = FNMS(KP831469612, TbZ, TbS); | |
1447 Tc0 = FMA(KP831469612, TbZ, TbS); | |
1448 ci[WS(rs, 44)] = FMA(KP956940335, Tke, Tkd); | |
1449 cr[WS(rs, 51)] = FMS(KP956940335, Tke, Tkd); | |
1450 ci[WS(rs, 36)] = FMA(KP881921264, Tki, Tkh); | |
1451 cr[WS(rs, 59)] = FMS(KP881921264, Tki, Tkh); | |
1452 Tco = FMA(KP831469612, Tcn, Tck); | |
1453 Tcw = FNMS(KP831469612, Tcn, Tck); | |
1454 TjZ = FNMS(KP980785280, TjW, TjV); | |
1455 TjX = FMA(KP980785280, TjW, TjV); | |
1456 ci[WS(rs, 4)] = FMA(KP881921264, Tcf, Tc0); | |
1457 cr[WS(rs, 27)] = FNMS(KP881921264, Tcf, Tc0); | |
1458 ci[WS(rs, 12)] = FNMS(KP956940335, Tcz, Tcw); | |
1459 cr[WS(rs, 19)] = FMA(KP956940335, Tcz, Tcw); | |
1460 Tk3 = FMA(KP980785280, Tk2, Tk1); | |
1461 Tk5 = FNMS(KP980785280, Tk2, Tk1); | |
1462 ci[WS(rs, 32)] = FMA(KP995184726, TjY, TjX); | |
1463 cr[WS(rs, 63)] = FMS(KP995184726, TjY, TjX); | |
1464 ci[WS(rs, 40)] = FMA(KP773010453, Tk6, Tk5); | |
1465 cr[WS(rs, 55)] = FMS(KP773010453, Tk6, Tk5); | |
1466 cr[WS(rs, 11)] = FMA(KP881921264, Tcj, Tcg); | |
1467 ci[WS(rs, 20)] = FNMS(KP881921264, Tcj, Tcg); | |
1468 cr[WS(rs, 3)] = FMA(KP956940335, Tcv, Tco); | |
1469 ci[WS(rs, 28)] = FNMS(KP956940335, Tcv, Tco); | |
1470 } | |
1471 } | |
1472 } | |
1473 } | |
1474 { | |
1475 E Ti8, Thu, Tjf, Tj9, Tib, Tjg, Tja, ThF, Tig, ThW, Tif, Til, Ti6, ThR; | |
1476 ci[WS(rs, 48)] = FMA(KP995184726, Tk0, TjZ); | |
1477 cr[WS(rs, 47)] = FMS(KP995184726, Tk0, TjZ); | |
1478 ci[WS(rs, 56)] = FMA(KP773010453, Tk4, Tk3); | |
1479 cr[WS(rs, 39)] = FMS(KP773010453, Tk4, Tk3); | |
1480 Ti8 = Thq + Tht; | |
1481 Thu = Thq - Tht; | |
1482 Tjf = Tj8 - Tj7; | |
1483 Tj9 = Tj7 + Tj8; | |
1484 { | |
1485 E Tid, ThL, Tie, ThQ; | |
1486 { | |
1487 E Ti9, Thz, Tia, ThE; | |
1488 Ti9 = Thv - Thy; | |
1489 Thz = Thv + Thy; | |
1490 Tia = ThA + ThD; | |
1491 ThE = ThA - ThD; | |
1492 Tib = Ti9 + Tia; | |
1493 Tjg = Tia - Ti9; | |
1494 Tja = Thz - ThE; | |
1495 ThF = Thz + ThE; | |
1496 Tid = ThH + ThK; | |
1497 ThL = ThH - ThK; | |
1498 } | |
1499 Tie = ThO + ThP; | |
1500 ThQ = ThO - ThP; | |
1501 Tig = ThS + ThV; | |
1502 ThW = ThS - ThV; | |
1503 Tif = FNMS(KP414213562, Tie, Tid); | |
1504 Til = FMA(KP414213562, Tid, Tie); | |
1505 Ti6 = FNMS(KP414213562, ThL, ThQ); | |
1506 ThR = FMA(KP414213562, ThQ, ThL); | |
1507 } | |
1508 { | |
1509 E Ti4, ThG, Tjh, Tjj, Tih, Ti1; | |
1510 Ti4 = FNMS(KP707106781, ThF, Thu); | |
1511 ThG = FMA(KP707106781, ThF, Thu); | |
1512 Tjh = FMA(KP707106781, Tjg, Tjf); | |
1513 Tjj = FNMS(KP707106781, Tjg, Tjf); | |
1514 Tih = Ti0 - ThZ; | |
1515 Ti1 = ThZ + Ti0; | |
1516 { | |
1517 E Tje, Tjd, Tjb, Tjc; | |
1518 { | |
1519 E Tic, Tim, Ti5, Ti2, Tij, Tii; | |
1520 Tik = FNMS(KP707106781, Tib, Ti8); | |
1521 Tic = FMA(KP707106781, Tib, Ti8); | |
1522 Tii = FNMS(KP414213562, Tih, Tig); | |
1523 Tim = FMA(KP414213562, Tig, Tih); | |
1524 Ti5 = FMA(KP414213562, ThW, Ti1); | |
1525 Ti2 = FNMS(KP414213562, Ti1, ThW); | |
1526 Tij = Tif + Tii; | |
1527 Tje = Tii - Tif; | |
1528 Tjd = FNMS(KP707106781, Tja, Tj9); | |
1529 Tjb = FMA(KP707106781, Tja, Tj9); | |
1530 { | |
1531 E Ti7, Tji, Tjk, Ti3; | |
1532 Ti7 = Ti5 - Ti6; | |
1533 Tji = Ti6 + Ti5; | |
1534 Tjk = Ti2 - ThR; | |
1535 Ti3 = ThR + Ti2; | |
1536 ci[WS(rs, 3)] = FMA(KP923879532, Tij, Tic); | |
1537 cr[WS(rs, 28)] = FNMS(KP923879532, Tij, Tic); | |
1538 ci[WS(rs, 11)] = FMA(KP923879532, Ti7, Ti4); | |
1539 cr[WS(rs, 20)] = FNMS(KP923879532, Ti7, Ti4); | |
1540 ci[WS(rs, 59)] = FMA(KP923879532, Tji, Tjh); | |
1541 cr[WS(rs, 36)] = FMS(KP923879532, Tji, Tjh); | |
1542 ci[WS(rs, 43)] = FMA(KP923879532, Tjk, Tjj); | |
1543 cr[WS(rs, 52)] = FMS(KP923879532, Tjk, Tjj); | |
1544 cr[WS(rs, 4)] = FMA(KP923879532, Ti3, ThG); | |
1545 ci[WS(rs, 27)] = FNMS(KP923879532, Ti3, ThG); | |
1546 Tjc = Tim - Til; | |
1547 Tin = Til + Tim; | |
1548 } | |
1549 } | |
1550 ci[WS(rs, 35)] = FMA(KP923879532, Tjc, Tjb); | |
1551 cr[WS(rs, 60)] = FMS(KP923879532, Tjc, Tjb); | |
1552 ci[WS(rs, 51)] = FMA(KP923879532, Tje, Tjd); | |
1553 cr[WS(rs, 44)] = FMS(KP923879532, Tje, Tjd); | |
1554 } | |
1555 } | |
1556 } | |
1557 { | |
1558 E Tjy, Tju, Tjt, Tjx; | |
1559 { | |
1560 E TjD, TjJ, Tgo, Tf2, Tjp, Tjv, Tha, TgI, Tgg, Tgd, Tgr, Tjw, Tjq, Tfp, Thk; | |
1561 E Tho, Th7, Th4, Tgv, TgB, Tgl, TfR, TjE, Thd, TjK, TgP, Tgw, Tg8, Thh, Thn; | |
1562 E Th8, TgX; | |
1563 { | |
1564 E TgK, TgJ, TgN, TgM, TfW, Th1, Thi, Th0, Th2, Tg7; | |
1565 { | |
1566 E TgE, TeQ, TjB, Tjn, TgF, TgG, TjC, Tf1, TeV, Tf0; | |
1567 TgE = TeM - TeP; | |
1568 TeQ = TeM + TeP; | |
1569 TjB = Tjm - Tjl; | |
1570 Tjn = Tjl + Tjm; | |
1571 TgF = TeR + TeU; | |
1572 TeV = TeR - TeU; | |
1573 cr[WS(rs, 12)] = FMA(KP923879532, Tin, Tik); | |
1574 ci[WS(rs, 19)] = FNMS(KP923879532, Tin, Tik); | |
1575 Tf0 = TeW + TeZ; | |
1576 TgG = TeW - TeZ; | |
1577 TjC = Tf0 - TeV; | |
1578 Tf1 = TeV + Tf0; | |
1579 { | |
1580 E Tfi, Tgp, Tfd, Tfn; | |
1581 { | |
1582 E Tf7, Tjo, TgH, Tfc; | |
1583 TgK = Tf5 - Tf6; | |
1584 Tf7 = Tf5 + Tf6; | |
1585 TjD = FMA(KP707106781, TjC, TjB); | |
1586 TjJ = FNMS(KP707106781, TjC, TjB); | |
1587 Tgo = FMA(KP707106781, Tf1, TeQ); | |
1588 Tf2 = FNMS(KP707106781, Tf1, TeQ); | |
1589 Tjo = TgF - TgG; | |
1590 TgH = TgF + TgG; | |
1591 Tfc = Tf8 + Tfb; | |
1592 TgJ = Tf8 - Tfb; | |
1593 TgN = Tfg - Tfh; | |
1594 Tfi = Tfg + Tfh; | |
1595 Tjp = FMA(KP707106781, Tjo, Tjn); | |
1596 Tjv = FNMS(KP707106781, Tjo, Tjn); | |
1597 Tha = FNMS(KP707106781, TgH, TgE); | |
1598 TgI = FMA(KP707106781, TgH, TgE); | |
1599 Tgp = FNMS(KP414213562, Tf7, Tfc); | |
1600 Tfd = FMA(KP414213562, Tfc, Tf7); | |
1601 Tfn = Tfj + Tfm; | |
1602 TgM = Tfj - Tfm; | |
1603 } | |
1604 { | |
1605 E TgY, TgZ, Tgq, Tfo; | |
1606 TfW = TfS + TfV; | |
1607 TgY = TfS - TfV; | |
1608 TgZ = Tgf + Tge; | |
1609 Tgg = Tge - Tgf; | |
1610 Tgd = Tg9 - Tgc; | |
1611 Th1 = Tgc + Tg9; | |
1612 Tgq = FMA(KP414213562, Tfi, Tfn); | |
1613 Tfo = FNMS(KP414213562, Tfn, Tfi); | |
1614 Thi = FNMS(KP707106781, TgZ, TgY); | |
1615 Th0 = FMA(KP707106781, TgZ, TgY); | |
1616 Tgr = Tgp + Tgq; | |
1617 Tjw = Tgq - Tgp; | |
1618 Tjq = Tfd + Tfo; | |
1619 Tfp = Tfd - Tfo; | |
1620 Th2 = Tg6 - Tg1; | |
1621 Tg7 = Tg1 + Tg6; | |
1622 } | |
1623 } | |
1624 } | |
1625 { | |
1626 E TgR, TgV, TgU, TgS, Thc, TgL; | |
1627 { | |
1628 E TfM, Tgt, TfH, TfP, Tgu, TfQ; | |
1629 { | |
1630 E Tfv, TfG, Thj, Th3; | |
1631 TgR = Tfr - Tfu; | |
1632 Tfv = Tfr + Tfu; | |
1633 TfG = TfA + TfF; | |
1634 TgV = TfF - TfA; | |
1635 TgU = TfK - TfL; | |
1636 TfM = TfK + TfL; | |
1637 Thj = FNMS(KP707106781, Th2, Th1); | |
1638 Th3 = FMA(KP707106781, Th2, Th1); | |
1639 Tgt = FMA(KP707106781, TfG, Tfv); | |
1640 TfH = FNMS(KP707106781, TfG, Tfv); | |
1641 Thk = FMA(KP668178637, Thj, Thi); | |
1642 Tho = FNMS(KP668178637, Thi, Thj); | |
1643 Th7 = FMA(KP198912367, Th0, Th3); | |
1644 Th4 = FNMS(KP198912367, Th3, Th0); | |
1645 TfP = TfN + TfO; | |
1646 TgS = TfN - TfO; | |
1647 } | |
1648 Tgu = FMA(KP707106781, TfP, TfM); | |
1649 TfQ = FNMS(KP707106781, TfP, TfM); | |
1650 Thc = FNMS(KP414213562, TgJ, TgK); | |
1651 TgL = FMA(KP414213562, TgK, TgJ); | |
1652 Tgv = FNMS(KP198912367, Tgu, Tgt); | |
1653 TgB = FMA(KP198912367, Tgt, Tgu); | |
1654 Tgl = FNMS(KP668178637, TfH, TfQ); | |
1655 TfR = FMA(KP668178637, TfQ, TfH); | |
1656 } | |
1657 { | |
1658 E Thf, TgT, Thb, TgO, Thg, TgW; | |
1659 Thb = FMA(KP414213562, TgM, TgN); | |
1660 TgO = FNMS(KP414213562, TgN, TgM); | |
1661 Thf = FNMS(KP707106781, TgS, TgR); | |
1662 TgT = FMA(KP707106781, TgS, TgR); | |
1663 TjE = Thc + Thb; | |
1664 Thd = Thb - Thc; | |
1665 TjK = TgL - TgO; | |
1666 TgP = TgL + TgO; | |
1667 Thg = FNMS(KP707106781, TgV, TgU); | |
1668 TgW = FMA(KP707106781, TgV, TgU); | |
1669 Tgw = FMA(KP707106781, Tg7, TfW); | |
1670 Tg8 = FNMS(KP707106781, Tg7, TfW); | |
1671 Thh = FNMS(KP668178637, Thg, Thf); | |
1672 Thn = FMA(KP668178637, Thf, Thg); | |
1673 Th8 = FNMS(KP198912367, TgT, TgW); | |
1674 TgX = FMA(KP198912367, TgW, TgT); | |
1675 } | |
1676 } | |
1677 } | |
1678 { | |
1679 E TjH, Th9, TjL, Tjs, TjA, Thl, TjI, Th5, TjM, Thp; | |
1680 { | |
1681 E Tgk, Tfq, TgA, Tgs, TjN, Tgy, Tgm, TgD, Tgj, TjO, Tgn, Tgz; | |
1682 Tgk = FNMS(KP923879532, Tfp, Tf2); | |
1683 Tfq = FMA(KP923879532, Tfp, Tf2); | |
1684 TgA = FNMS(KP923879532, Tgr, Tgo); | |
1685 Tgs = FMA(KP923879532, Tgr, Tgo); | |
1686 { | |
1687 E TjF, Tgx, Tgh, TjG, TgC, Tgi; | |
1688 TjH = FNMS(KP923879532, TjE, TjD); | |
1689 TjF = FMA(KP923879532, TjE, TjD); | |
1690 Tgx = FMA(KP707106781, Tgg, Tgd); | |
1691 Tgh = FNMS(KP707106781, Tgg, Tgd); | |
1692 TjG = Th8 + Th7; | |
1693 Th9 = Th7 - Th8; | |
1694 TjL = FMA(KP923879532, TjK, TjJ); | |
1695 TjN = FNMS(KP923879532, TjK, TjJ); | |
1696 Tgy = FNMS(KP198912367, Tgx, Tgw); | |
1697 TgC = FMA(KP198912367, Tgw, Tgx); | |
1698 Tgm = FNMS(KP668178637, Tg8, Tgh); | |
1699 Tgi = FMA(KP668178637, Tgh, Tg8); | |
1700 ci[WS(rs, 61)] = FMA(KP980785280, TjG, TjF); | |
1701 cr[WS(rs, 34)] = FMS(KP980785280, TjG, TjF); | |
1702 TgD = TgB + TgC; | |
1703 Tjs = TgC - TgB; | |
1704 TjA = Tgi - TfR; | |
1705 Tgj = TfR + Tgi; | |
1706 TjO = Thk - Thh; | |
1707 Thl = Thh + Thk; | |
1708 } | |
1709 cr[WS(rs, 14)] = FMA(KP980785280, TgD, TgA); | |
1710 ci[WS(rs, 17)] = FNMS(KP980785280, TgD, TgA); | |
1711 cr[WS(rs, 6)] = FMA(KP831469612, Tgj, Tfq); | |
1712 ci[WS(rs, 25)] = FNMS(KP831469612, Tgj, Tfq); | |
1713 ci[WS(rs, 53)] = FMA(KP831469612, TjO, TjN); | |
1714 cr[WS(rs, 42)] = FMS(KP831469612, TjO, TjN); | |
1715 Tgn = Tgl + Tgm; | |
1716 Tjy = Tgl - Tgm; | |
1717 Tgz = Tgv + Tgy; | |
1718 Tju = Tgy - Tgv; | |
1719 ci[WS(rs, 9)] = FNMS(KP831469612, Tgn, Tgk); | |
1720 cr[WS(rs, 22)] = FMA(KP831469612, Tgn, Tgk); | |
1721 ci[WS(rs, 1)] = FMA(KP980785280, Tgz, Tgs); | |
1722 cr[WS(rs, 30)] = FNMS(KP980785280, Tgz, Tgs); | |
1723 TjI = Th4 - TgX; | |
1724 Th5 = TgX + Th4; | |
1725 TjM = Thn + Tho; | |
1726 Thp = Thn - Tho; | |
1727 } | |
1728 { | |
1729 E Th6, The, Tjr, Tjz, TgQ, Thm; | |
1730 Th6 = FNMS(KP923879532, TgP, TgI); | |
1731 TgQ = FMA(KP923879532, TgP, TgI); | |
1732 ci[WS(rs, 45)] = FMA(KP980785280, TjI, TjH); | |
1733 cr[WS(rs, 50)] = FMS(KP980785280, TjI, TjH); | |
1734 ci[WS(rs, 37)] = FNMS(KP831469612, TjM, TjL); | |
1735 cr[WS(rs, 58)] = -(FMA(KP831469612, TjM, TjL)); | |
1736 The = FMA(KP923879532, Thd, Tha); | |
1737 Thm = FNMS(KP923879532, Thd, Tha); | |
1738 Tjt = FNMS(KP923879532, Tjq, Tjp); | |
1739 Tjr = FMA(KP923879532, Tjq, Tjp); | |
1740 cr[WS(rs, 2)] = FMA(KP980785280, Th5, TgQ); | |
1741 ci[WS(rs, 29)] = FNMS(KP980785280, Th5, TgQ); | |
1742 cr[WS(rs, 10)] = FMA(KP831469612, Thp, Thm); | |
1743 ci[WS(rs, 21)] = FNMS(KP831469612, Thp, Thm); | |
1744 Tjx = FMA(KP923879532, Tjw, Tjv); | |
1745 Tjz = FNMS(KP923879532, Tjw, Tjv); | |
1746 ci[WS(rs, 33)] = FMA(KP980785280, Tjs, Tjr); | |
1747 cr[WS(rs, 62)] = FMS(KP980785280, Tjs, Tjr); | |
1748 ci[WS(rs, 41)] = FMA(KP831469612, TjA, Tjz); | |
1749 cr[WS(rs, 54)] = FMS(KP831469612, TjA, Tjz); | |
1750 ci[WS(rs, 13)] = FMA(KP980785280, Th9, Th6); | |
1751 cr[WS(rs, 18)] = FNMS(KP980785280, Th9, Th6); | |
1752 ci[WS(rs, 5)] = FMA(KP831469612, Thl, The); | |
1753 cr[WS(rs, 26)] = FNMS(KP831469612, Thl, The); | |
1754 } | |
1755 } | |
1756 } | |
1757 { | |
1758 E Tkq, TdN, Tkw, Td1, TdR, TdX, TdI, Tdl, TeG, TeK, Tet, Teq, TeD, TeJ, Teu; | |
1759 E Tej, Tez, TkK, TkE, Teb, Te2, TcH, Te0, TcE, TkB, Tkn, TdU, TdY, TdH, TdE; | |
1760 E TcK, Te1; | |
1761 { | |
1762 E Te6, Te5, Te9, Te8, Ted, Teh, Teg, Tee, Tdo, TdC, Tdz, Ten, TeE, Tem, Teo; | |
1763 E Tdv, Tex, Te7; | |
1764 { | |
1765 E TcP, TcS, TcW, TcZ; | |
1766 Te6 = FNMS(KP707106781, TcO, TcN); | |
1767 TcP = FMA(KP707106781, TcO, TcN); | |
1768 ci[WS(rs, 49)] = FMA(KP980785280, Tju, Tjt); | |
1769 cr[WS(rs, 46)] = FMS(KP980785280, Tju, Tjt); | |
1770 ci[WS(rs, 57)] = FMA(KP831469612, Tjy, Tjx); | |
1771 cr[WS(rs, 38)] = FMS(KP831469612, Tjy, Tjx); | |
1772 TcS = FMA(KP707106781, TcR, TcQ); | |
1773 Te5 = FNMS(KP707106781, TcR, TcQ); | |
1774 Te9 = FNMS(KP707106781, TcV, TcU); | |
1775 TcW = FMA(KP707106781, TcV, TcU); | |
1776 TcZ = FMA(KP707106781, TcY, TcX); | |
1777 Te8 = FNMS(KP707106781, TcY, TcX); | |
1778 { | |
1779 E Tdg, TdP, Tdd, Tdj; | |
1780 { | |
1781 E Td5, TdM, TcT, TdL, Td0, Tdc; | |
1782 Ted = FNMS(KP707106781, Td4, Td3); | |
1783 Td5 = FMA(KP707106781, Td4, Td3); | |
1784 TdM = FNMS(KP198912367, TcP, TcS); | |
1785 TcT = FMA(KP198912367, TcS, TcP); | |
1786 TdL = FMA(KP198912367, TcW, TcZ); | |
1787 Td0 = FNMS(KP198912367, TcZ, TcW); | |
1788 Tdc = Td8 + Tdb; | |
1789 Teh = Td8 - Tdb; | |
1790 Teg = FNMS(KP707106781, Tdf, Tde); | |
1791 Tdg = FMA(KP707106781, Tdf, Tde); | |
1792 Tkq = TdM + TdL; | |
1793 TdN = TdL - TdM; | |
1794 Tkw = TcT - Td0; | |
1795 Td1 = TcT + Td0; | |
1796 TdP = FNMS(KP923879532, Tdc, Td5); | |
1797 Tdd = FMA(KP923879532, Tdc, Td5); | |
1798 Tdj = Tdh + Tdi; | |
1799 Tee = Tdi - Tdh; | |
1800 } | |
1801 { | |
1802 E Tek, Tel, TdQ, Tdk; | |
1803 Tdo = FMA(KP707106781, Tdn, Tdm); | |
1804 Tek = FNMS(KP707106781, Tdn, Tdm); | |
1805 Tel = TdB - TdA; | |
1806 TdC = TdA + TdB; | |
1807 Tdz = FMA(KP707106781, Tdy, Tdx); | |
1808 Ten = FNMS(KP707106781, Tdy, Tdx); | |
1809 TdQ = FNMS(KP923879532, Tdj, Tdg); | |
1810 Tdk = FMA(KP923879532, Tdj, Tdg); | |
1811 TeE = FMA(KP923879532, Tel, Tek); | |
1812 Tem = FNMS(KP923879532, Tel, Tek); | |
1813 TdR = FNMS(KP820678790, TdQ, TdP); | |
1814 TdX = FMA(KP820678790, TdP, TdQ); | |
1815 TdI = FNMS(KP098491403, Tdd, Tdk); | |
1816 Tdl = FMA(KP098491403, Tdk, Tdd); | |
1817 Teo = Tdu - Tdr; | |
1818 Tdv = Tdr + Tdu; | |
1819 } | |
1820 } | |
1821 } | |
1822 { | |
1823 E TeB, Tef, TeF, Tep, TeC, Tei; | |
1824 TeF = FNMS(KP923879532, Teo, Ten); | |
1825 Tep = FMA(KP923879532, Teo, Ten); | |
1826 TeB = FMA(KP923879532, Tee, Ted); | |
1827 Tef = FNMS(KP923879532, Tee, Ted); | |
1828 TeG = FMA(KP303346683, TeF, TeE); | |
1829 TeK = FNMS(KP303346683, TeE, TeF); | |
1830 Tet = FMA(KP534511135, Tem, Tep); | |
1831 Teq = FNMS(KP534511135, Tep, Tem); | |
1832 TeC = FMA(KP923879532, Teh, Teg); | |
1833 Tei = FNMS(KP923879532, Teh, Teg); | |
1834 Tex = FNMS(KP668178637, Te5, Te6); | |
1835 Te7 = FMA(KP668178637, Te6, Te5); | |
1836 TeD = FNMS(KP303346683, TeC, TeB); | |
1837 TeJ = FMA(KP303346683, TeB, TeC); | |
1838 Teu = FNMS(KP534511135, Tef, Tei); | |
1839 Tej = FMA(KP534511135, Tei, Tef); | |
1840 } | |
1841 { | |
1842 E TdS, Tdw, Tey, Tea, TdT, TdD; | |
1843 Tey = FMA(KP668178637, Te8, Te9); | |
1844 Tea = FNMS(KP668178637, Te9, Te8); | |
1845 TdS = FNMS(KP923879532, Tdv, Tdo); | |
1846 Tdw = FMA(KP923879532, Tdv, Tdo); | |
1847 Tez = Tex + Tey; | |
1848 TkK = Tey - Tex; | |
1849 TkE = Te7 + Tea; | |
1850 Teb = Te7 - Tea; | |
1851 Te2 = FNMS(KP414213562, TcF, TcG); | |
1852 TcH = FMA(KP414213562, TcG, TcF); | |
1853 TdT = FNMS(KP923879532, TdC, Tdz); | |
1854 TdD = FMA(KP923879532, TdC, Tdz); | |
1855 Te0 = FNMS(KP707106781, TcD, TcA); | |
1856 TcE = FMA(KP707106781, TcD, TcA); | |
1857 TkB = FNMS(KP707106781, Tkm, Tkl); | |
1858 Tkn = FMA(KP707106781, Tkm, Tkl); | |
1859 TdU = FMA(KP820678790, TdT, TdS); | |
1860 TdY = FNMS(KP820678790, TdS, TdT); | |
1861 TdH = FMA(KP098491403, Tdw, TdD); | |
1862 TdE = FNMS(KP098491403, TdD, Tdw); | |
1863 TcK = FNMS(KP414213562, TcJ, TcI); | |
1864 Te1 = FMA(KP414213562, TcI, TcJ); | |
1865 } | |
1866 } | |
1867 { | |
1868 E Tkv, Tkp, Tew, Te4, TkH, TeL, TkL, Ter, Tks, TkA, TkI, TeH, TkM, Tev; | |
1869 { | |
1870 E TdG, TdO, TkF, TkG, TkN, TkO, TdJ, TdV; | |
1871 { | |
1872 E TdF, TkJ, TkD, Td2, TdW, TdZ, TdK; | |
1873 Tku = TdE - Tdl; | |
1874 TdF = Tdl + TdE; | |
1875 { | |
1876 E TkC, TcL, Tko, Te3, TcM; | |
1877 TkC = TcH - TcK; | |
1878 TcL = TcH + TcK; | |
1879 Tko = Te2 + Te1; | |
1880 Te3 = Te1 - Te2; | |
1881 TkJ = FNMS(KP923879532, TkC, TkB); | |
1882 TkD = FMA(KP923879532, TkC, TkB); | |
1883 TdK = FNMS(KP923879532, TcL, TcE); | |
1884 TcM = FMA(KP923879532, TcL, TcE); | |
1885 Tkv = FNMS(KP923879532, Tko, Tkn); | |
1886 Tkp = FMA(KP923879532, Tko, Tkn); | |
1887 Tew = FMA(KP923879532, Te3, Te0); | |
1888 Te4 = FNMS(KP923879532, Te3, Te0); | |
1889 Td2 = FMA(KP980785280, Td1, TcM); | |
1890 TdG = FNMS(KP980785280, Td1, TcM); | |
1891 } | |
1892 TdO = FMA(KP980785280, TdN, TdK); | |
1893 TdW = FNMS(KP980785280, TdN, TdK); | |
1894 TdZ = TdX - TdY; | |
1895 Tky = TdX + TdY; | |
1896 TkH = FNMS(KP831469612, TkE, TkD); | |
1897 TkF = FMA(KP831469612, TkE, TkD); | |
1898 cr[WS(rs, 1)] = FMA(KP995184726, TdF, Td2); | |
1899 ci[WS(rs, 30)] = FNMS(KP995184726, TdF, Td2); | |
1900 cr[WS(rs, 9)] = FMA(KP773010453, TdZ, TdW); | |
1901 ci[WS(rs, 22)] = FNMS(KP773010453, TdZ, TdW); | |
1902 TkG = TeJ + TeK; | |
1903 TeL = TeJ - TeK; | |
1904 TkL = FMA(KP831469612, TkK, TkJ); | |
1905 TkN = FNMS(KP831469612, TkK, TkJ); | |
1906 TkO = Teq - Tej; | |
1907 Ter = Tej + Teq; | |
1908 } | |
1909 ci[WS(rs, 34)] = FNMS(KP956940335, TkG, TkF); | |
1910 cr[WS(rs, 61)] = -(FMA(KP956940335, TkG, TkF)); | |
1911 ci[WS(rs, 42)] = FMA(KP881921264, TkO, TkN); | |
1912 cr[WS(rs, 53)] = FMS(KP881921264, TkO, TkN); | |
1913 TdJ = TdH - TdI; | |
1914 Tks = TdI + TdH; | |
1915 TdV = TdR + TdU; | |
1916 TkA = TdU - TdR; | |
1917 ci[WS(rs, 14)] = FMA(KP995184726, TdJ, TdG); | |
1918 cr[WS(rs, 17)] = FNMS(KP995184726, TdJ, TdG); | |
1919 ci[WS(rs, 6)] = FMA(KP773010453, TdV, TdO); | |
1920 cr[WS(rs, 25)] = FNMS(KP773010453, TdV, TdO); | |
1921 TkI = TeG - TeD; | |
1922 TeH = TeD + TeG; | |
1923 TkM = Teu + Tet; | |
1924 Tev = Tet - Teu; | |
1925 } | |
1926 { | |
1927 E Tes, TeA, Tkr, Tkz, Tec, TeI; | |
1928 Tes = FNMS(KP831469612, Teb, Te4); | |
1929 Tec = FMA(KP831469612, Teb, Te4); | |
1930 ci[WS(rs, 50)] = FMA(KP956940335, TkI, TkH); | |
1931 cr[WS(rs, 45)] = FMS(KP956940335, TkI, TkH); | |
1932 ci[WS(rs, 58)] = FMA(KP881921264, TkM, TkL); | |
1933 cr[WS(rs, 37)] = FMS(KP881921264, TkM, TkL); | |
1934 TeA = FMA(KP831469612, Tez, Tew); | |
1935 TeI = FNMS(KP831469612, Tez, Tew); | |
1936 Tkt = FNMS(KP980785280, Tkq, Tkp); | |
1937 Tkr = FMA(KP980785280, Tkq, Tkp); | |
1938 cr[WS(rs, 5)] = FMA(KP881921264, Ter, Tec); | |
1939 ci[WS(rs, 26)] = FNMS(KP881921264, Ter, Tec); | |
1940 cr[WS(rs, 13)] = FMA(KP956940335, TeL, TeI); | |
1941 ci[WS(rs, 18)] = FNMS(KP956940335, TeL, TeI); | |
1942 Tkx = FMA(KP980785280, Tkw, Tkv); | |
1943 Tkz = FNMS(KP980785280, Tkw, Tkv); | |
1944 ci[WS(rs, 62)] = FMA(KP995184726, Tks, Tkr); | |
1945 cr[WS(rs, 33)] = FMS(KP995184726, Tks, Tkr); | |
1946 ci[WS(rs, 54)] = FMA(KP773010453, TkA, Tkz); | |
1947 cr[WS(rs, 41)] = FMS(KP773010453, TkA, Tkz); | |
1948 ci[WS(rs, 10)] = FMA(KP881921264, Tev, Tes); | |
1949 cr[WS(rs, 21)] = FNMS(KP881921264, Tev, Tes); | |
1950 ci[WS(rs, 2)] = FMA(KP956940335, TeH, TeA); | |
1951 cr[WS(rs, 29)] = FNMS(KP956940335, TeH, TeA); | |
1952 } | |
1953 } | |
1954 } | |
1955 } | |
1956 } | |
1957 } | |
1958 ci[WS(rs, 46)] = FMA(KP995184726, Tku, Tkt); | |
1959 cr[WS(rs, 49)] = FMS(KP995184726, Tku, Tkt); | |
1960 ci[WS(rs, 38)] = FNMS(KP773010453, Tky, Tkx); | |
1961 cr[WS(rs, 57)] = -(FMA(KP773010453, Tky, Tkx)); | |
1962 } | |
1963 } | |
1964 } | |
1965 | |
1966 static const tw_instr twinstr[] = { | |
1967 {TW_FULL, 1, 64}, | |
1968 {TW_NEXT, 1, 0} | |
1969 }; | |
1970 | |
1971 static const hc2hc_desc desc = { 64, "hf_64", twinstr, &GENUS, {520, 126, 518, 0} }; | |
1972 | |
1973 void X(codelet_hf_64) (planner *p) { | |
1974 X(khc2hc_register) (p, hf_64, &desc); | |
1975 } | |
1976 #else /* HAVE_FMA */ | |
1977 | |
1978 /* Generated by: ../../../genfft/gen_hc2hc.native -compact -variables 4 -pipeline-latency 4 -n 64 -dit -name hf_64 -include hf.h */ | |
1979 | |
1980 /* | |
1981 * This function contains 1038 FP additions, 500 FP multiplications, | |
1982 * (or, 808 additions, 270 multiplications, 230 fused multiply/add), | |
1983 * 176 stack variables, 15 constants, and 256 memory accesses | |
1984 */ | |
1985 #include "hf.h" | |
1986 | |
1987 static void hf_64(R *cr, R *ci, const R *W, stride rs, INT mb, INT me, INT ms) | |
1988 { | |
1989 DK(KP290284677, +0.290284677254462367636192375817395274691476278); | |
1990 DK(KP956940335, +0.956940335732208864935797886980269969482849206); | |
1991 DK(KP881921264, +0.881921264348355029712756863660388349508442621); | |
1992 DK(KP471396736, +0.471396736825997648556387625905254377657460319); | |
1993 DK(KP555570233, +0.555570233019602224742830813948532874374937191); | |
1994 DK(KP831469612, +0.831469612302545237078788377617905756738560812); | |
1995 DK(KP098017140, +0.098017140329560601994195563888641845861136673); | |
1996 DK(KP995184726, +0.995184726672196886244836953109479921575474869); | |
1997 DK(KP773010453, +0.773010453362736960810906609758469800971041293); | |
1998 DK(KP634393284, +0.634393284163645498215171613225493370675687095); | |
1999 DK(KP980785280, +0.980785280403230449126182236134239036973933731); | |
2000 DK(KP195090322, +0.195090322016128267848284868477022240927691618); | |
2001 DK(KP382683432, +0.382683432365089771728459984030398866761344562); | |
2002 DK(KP923879532, +0.923879532511286756128183189396788286822416626); | |
2003 DK(KP707106781, +0.707106781186547524400844362104849039284835938); | |
2004 { | |
2005 INT m; | |
2006 for (m = mb, W = W + ((mb - 1) * 126); m < me; m = m + 1, cr = cr + ms, ci = ci - ms, W = W + 126, MAKE_VOLATILE_STRIDE(128, rs)) { | |
2007 E Tj, TcL, ThT, Tin, T6b, Taz, TgT, Thn, TG, Thm, TcO, TgO, T6m, Tim, TaC; | |
2008 E ThQ, T14, Tfr, T6y, T9O, TaG, Tc0, TcU, TeE, T1r, Tfq, T6J, T9P, TaJ, Tc1; | |
2009 E TcZ, TeF, T1Q, T2d, Tfu, Tfv, Tfw, Tfx, T6Q, TaM, Tdb, TeI, T71, TaQ, T7a; | |
2010 E TaN, Td6, TeJ, T77, TaP, T2B, T2Y, Tfz, TfA, TfB, TfC, T7h, TaW, Tdm, TeL; | |
2011 E T7s, TaU, T7B, TaX, Tdh, TeM, T7y, TaT, T5j, TfR, Tec, TeX, TfY, Tgy, T8D; | |
2012 E Tbl, T8O, Tbx, T9l, Tbm, TdV, Tf0, T9i, Tbw, T3M, TfL, TdL, TeT, TfI, Tgt; | |
2013 E T7K, Tbd, T7V, Tb3, T8s, Tbe, Tdu, TeQ, T8p, Tb2, T4x, TfJ, TdE, TdM, TfO; | |
2014 E Tgu, T87, T8u, T8i, T8v, Tba, Tbh, Tdz, TdN, Tb7, Tbg, T64, TfZ, Te5, Ted; | |
2015 E TfU, Tgz, T90, T9n, T9b, T9o, Tbt, TbA, Te0, Tee, Tbq, Tbz; | |
2016 { | |
2017 E T1, TgR, T6, TgQ, Tc, T68, Th, T69; | |
2018 T1 = cr[0]; | |
2019 TgR = ci[0]; | |
2020 { | |
2021 E T3, T5, T2, T4; | |
2022 T3 = cr[WS(rs, 32)]; | |
2023 T5 = ci[WS(rs, 32)]; | |
2024 T2 = W[62]; | |
2025 T4 = W[63]; | |
2026 T6 = FMA(T2, T3, T4 * T5); | |
2027 TgQ = FNMS(T4, T3, T2 * T5); | |
2028 } | |
2029 { | |
2030 E T9, Tb, T8, Ta; | |
2031 T9 = cr[WS(rs, 16)]; | |
2032 Tb = ci[WS(rs, 16)]; | |
2033 T8 = W[30]; | |
2034 Ta = W[31]; | |
2035 Tc = FMA(T8, T9, Ta * Tb); | |
2036 T68 = FNMS(Ta, T9, T8 * Tb); | |
2037 } | |
2038 { | |
2039 E Te, Tg, Td, Tf; | |
2040 Te = cr[WS(rs, 48)]; | |
2041 Tg = ci[WS(rs, 48)]; | |
2042 Td = W[94]; | |
2043 Tf = W[95]; | |
2044 Th = FMA(Td, Te, Tf * Tg); | |
2045 T69 = FNMS(Tf, Te, Td * Tg); | |
2046 } | |
2047 { | |
2048 E T7, Ti, ThR, ThS; | |
2049 T7 = T1 + T6; | |
2050 Ti = Tc + Th; | |
2051 Tj = T7 + Ti; | |
2052 TcL = T7 - Ti; | |
2053 ThR = Tc - Th; | |
2054 ThS = TgR - TgQ; | |
2055 ThT = ThR + ThS; | |
2056 Tin = ThS - ThR; | |
2057 } | |
2058 { | |
2059 E T67, T6a, TgP, TgS; | |
2060 T67 = T1 - T6; | |
2061 T6a = T68 - T69; | |
2062 T6b = T67 - T6a; | |
2063 Taz = T67 + T6a; | |
2064 TgP = T68 + T69; | |
2065 TgS = TgQ + TgR; | |
2066 TgT = TgP + TgS; | |
2067 Thn = TgS - TgP; | |
2068 } | |
2069 } | |
2070 { | |
2071 E To, T6d, Tt, T6e, T6c, T6f, Tz, T6i, TE, T6j, T6h, T6k; | |
2072 { | |
2073 E Tl, Tn, Tk, Tm; | |
2074 Tl = cr[WS(rs, 8)]; | |
2075 Tn = ci[WS(rs, 8)]; | |
2076 Tk = W[14]; | |
2077 Tm = W[15]; | |
2078 To = FMA(Tk, Tl, Tm * Tn); | |
2079 T6d = FNMS(Tm, Tl, Tk * Tn); | |
2080 } | |
2081 { | |
2082 E Tq, Ts, Tp, Tr; | |
2083 Tq = cr[WS(rs, 40)]; | |
2084 Ts = ci[WS(rs, 40)]; | |
2085 Tp = W[78]; | |
2086 Tr = W[79]; | |
2087 Tt = FMA(Tp, Tq, Tr * Ts); | |
2088 T6e = FNMS(Tr, Tq, Tp * Ts); | |
2089 } | |
2090 T6c = To - Tt; | |
2091 T6f = T6d - T6e; | |
2092 { | |
2093 E Tw, Ty, Tv, Tx; | |
2094 Tw = cr[WS(rs, 56)]; | |
2095 Ty = ci[WS(rs, 56)]; | |
2096 Tv = W[110]; | |
2097 Tx = W[111]; | |
2098 Tz = FMA(Tv, Tw, Tx * Ty); | |
2099 T6i = FNMS(Tx, Tw, Tv * Ty); | |
2100 } | |
2101 { | |
2102 E TB, TD, TA, TC; | |
2103 TB = cr[WS(rs, 24)]; | |
2104 TD = ci[WS(rs, 24)]; | |
2105 TA = W[46]; | |
2106 TC = W[47]; | |
2107 TE = FMA(TA, TB, TC * TD); | |
2108 T6j = FNMS(TC, TB, TA * TD); | |
2109 } | |
2110 T6h = Tz - TE; | |
2111 T6k = T6i - T6j; | |
2112 { | |
2113 E Tu, TF, TcM, TcN; | |
2114 Tu = To + Tt; | |
2115 TF = Tz + TE; | |
2116 TG = Tu + TF; | |
2117 Thm = Tu - TF; | |
2118 TcM = T6i + T6j; | |
2119 TcN = T6d + T6e; | |
2120 TcO = TcM - TcN; | |
2121 TgO = TcN + TcM; | |
2122 } | |
2123 { | |
2124 E T6g, T6l, TaA, TaB; | |
2125 T6g = T6c - T6f; | |
2126 T6l = T6h + T6k; | |
2127 T6m = KP707106781 * (T6g + T6l); | |
2128 Tim = KP707106781 * (T6l - T6g); | |
2129 TaA = T6c + T6f; | |
2130 TaB = T6h - T6k; | |
2131 TaC = KP707106781 * (TaA + TaB); | |
2132 ThQ = KP707106781 * (TaA - TaB); | |
2133 } | |
2134 } | |
2135 { | |
2136 E TS, TcR, T6o, T6v, T13, TcS, T6r, T6w, T6s, T6x; | |
2137 { | |
2138 E TM, T6t, TR, T6u; | |
2139 { | |
2140 E TJ, TL, TI, TK; | |
2141 TJ = cr[WS(rs, 4)]; | |
2142 TL = ci[WS(rs, 4)]; | |
2143 TI = W[6]; | |
2144 TK = W[7]; | |
2145 TM = FMA(TI, TJ, TK * TL); | |
2146 T6t = FNMS(TK, TJ, TI * TL); | |
2147 } | |
2148 { | |
2149 E TO, TQ, TN, TP; | |
2150 TO = cr[WS(rs, 36)]; | |
2151 TQ = ci[WS(rs, 36)]; | |
2152 TN = W[70]; | |
2153 TP = W[71]; | |
2154 TR = FMA(TN, TO, TP * TQ); | |
2155 T6u = FNMS(TP, TO, TN * TQ); | |
2156 } | |
2157 TS = TM + TR; | |
2158 TcR = T6t + T6u; | |
2159 T6o = TM - TR; | |
2160 T6v = T6t - T6u; | |
2161 } | |
2162 { | |
2163 E TX, T6p, T12, T6q; | |
2164 { | |
2165 E TU, TW, TT, TV; | |
2166 TU = cr[WS(rs, 20)]; | |
2167 TW = ci[WS(rs, 20)]; | |
2168 TT = W[38]; | |
2169 TV = W[39]; | |
2170 TX = FMA(TT, TU, TV * TW); | |
2171 T6p = FNMS(TV, TU, TT * TW); | |
2172 } | |
2173 { | |
2174 E TZ, T11, TY, T10; | |
2175 TZ = cr[WS(rs, 52)]; | |
2176 T11 = ci[WS(rs, 52)]; | |
2177 TY = W[102]; | |
2178 T10 = W[103]; | |
2179 T12 = FMA(TY, TZ, T10 * T11); | |
2180 T6q = FNMS(T10, TZ, TY * T11); | |
2181 } | |
2182 T13 = TX + T12; | |
2183 TcS = T6p + T6q; | |
2184 T6r = T6p - T6q; | |
2185 T6w = TX - T12; | |
2186 } | |
2187 T14 = TS + T13; | |
2188 Tfr = TcR + TcS; | |
2189 T6s = T6o - T6r; | |
2190 T6x = T6v + T6w; | |
2191 T6y = FNMS(KP382683432, T6x, KP923879532 * T6s); | |
2192 T9O = FMA(KP923879532, T6x, KP382683432 * T6s); | |
2193 { | |
2194 E TaE, TaF, TcQ, TcT; | |
2195 TaE = T6v - T6w; | |
2196 TaF = T6o + T6r; | |
2197 TaG = FMA(KP382683432, TaE, KP923879532 * TaF); | |
2198 Tc0 = FNMS(KP923879532, TaE, KP382683432 * TaF); | |
2199 TcQ = TS - T13; | |
2200 TcT = TcR - TcS; | |
2201 TcU = TcQ + TcT; | |
2202 TeE = TcQ - TcT; | |
2203 } | |
2204 } | |
2205 { | |
2206 E T1f, TcW, T6B, T6E, T1q, TcX, T6C, T6H, T6D, T6I; | |
2207 { | |
2208 E T19, T6z, T1e, T6A; | |
2209 { | |
2210 E T16, T18, T15, T17; | |
2211 T16 = cr[WS(rs, 60)]; | |
2212 T18 = ci[WS(rs, 60)]; | |
2213 T15 = W[118]; | |
2214 T17 = W[119]; | |
2215 T19 = FMA(T15, T16, T17 * T18); | |
2216 T6z = FNMS(T17, T16, T15 * T18); | |
2217 } | |
2218 { | |
2219 E T1b, T1d, T1a, T1c; | |
2220 T1b = cr[WS(rs, 28)]; | |
2221 T1d = ci[WS(rs, 28)]; | |
2222 T1a = W[54]; | |
2223 T1c = W[55]; | |
2224 T1e = FMA(T1a, T1b, T1c * T1d); | |
2225 T6A = FNMS(T1c, T1b, T1a * T1d); | |
2226 } | |
2227 T1f = T19 + T1e; | |
2228 TcW = T6z + T6A; | |
2229 T6B = T6z - T6A; | |
2230 T6E = T19 - T1e; | |
2231 } | |
2232 { | |
2233 E T1k, T6F, T1p, T6G; | |
2234 { | |
2235 E T1h, T1j, T1g, T1i; | |
2236 T1h = cr[WS(rs, 12)]; | |
2237 T1j = ci[WS(rs, 12)]; | |
2238 T1g = W[22]; | |
2239 T1i = W[23]; | |
2240 T1k = FMA(T1g, T1h, T1i * T1j); | |
2241 T6F = FNMS(T1i, T1h, T1g * T1j); | |
2242 } | |
2243 { | |
2244 E T1m, T1o, T1l, T1n; | |
2245 T1m = cr[WS(rs, 44)]; | |
2246 T1o = ci[WS(rs, 44)]; | |
2247 T1l = W[86]; | |
2248 T1n = W[87]; | |
2249 T1p = FMA(T1l, T1m, T1n * T1o); | |
2250 T6G = FNMS(T1n, T1m, T1l * T1o); | |
2251 } | |
2252 T1q = T1k + T1p; | |
2253 TcX = T6F + T6G; | |
2254 T6C = T1k - T1p; | |
2255 T6H = T6F - T6G; | |
2256 } | |
2257 T1r = T1f + T1q; | |
2258 Tfq = TcW + TcX; | |
2259 T6D = T6B + T6C; | |
2260 T6I = T6E - T6H; | |
2261 T6J = FMA(KP382683432, T6D, KP923879532 * T6I); | |
2262 T9P = FNMS(KP923879532, T6D, KP382683432 * T6I); | |
2263 { | |
2264 E TaH, TaI, TcV, TcY; | |
2265 TaH = T6E + T6H; | |
2266 TaI = T6B - T6C; | |
2267 TaJ = FNMS(KP382683432, TaI, KP923879532 * TaH); | |
2268 Tc1 = FMA(KP923879532, TaI, KP382683432 * TaH); | |
2269 TcV = T1f - T1q; | |
2270 TcY = TcW - TcX; | |
2271 TcZ = TcV - TcY; | |
2272 TeF = TcV + TcY; | |
2273 } | |
2274 } | |
2275 { | |
2276 E T1y, T73, T1D, T74, T1E, Td7, T1J, T6N, T1O, T6O, T1P, Td8, T21, Td4, T6R; | |
2277 E T6U, T2c, Td3, T6W, T6Z; | |
2278 { | |
2279 E T1v, T1x, T1u, T1w; | |
2280 T1v = cr[WS(rs, 2)]; | |
2281 T1x = ci[WS(rs, 2)]; | |
2282 T1u = W[2]; | |
2283 T1w = W[3]; | |
2284 T1y = FMA(T1u, T1v, T1w * T1x); | |
2285 T73 = FNMS(T1w, T1v, T1u * T1x); | |
2286 } | |
2287 { | |
2288 E T1A, T1C, T1z, T1B; | |
2289 T1A = cr[WS(rs, 34)]; | |
2290 T1C = ci[WS(rs, 34)]; | |
2291 T1z = W[66]; | |
2292 T1B = W[67]; | |
2293 T1D = FMA(T1z, T1A, T1B * T1C); | |
2294 T74 = FNMS(T1B, T1A, T1z * T1C); | |
2295 } | |
2296 T1E = T1y + T1D; | |
2297 Td7 = T73 + T74; | |
2298 { | |
2299 E T1G, T1I, T1F, T1H; | |
2300 T1G = cr[WS(rs, 18)]; | |
2301 T1I = ci[WS(rs, 18)]; | |
2302 T1F = W[34]; | |
2303 T1H = W[35]; | |
2304 T1J = FMA(T1F, T1G, T1H * T1I); | |
2305 T6N = FNMS(T1H, T1G, T1F * T1I); | |
2306 } | |
2307 { | |
2308 E T1L, T1N, T1K, T1M; | |
2309 T1L = cr[WS(rs, 50)]; | |
2310 T1N = ci[WS(rs, 50)]; | |
2311 T1K = W[98]; | |
2312 T1M = W[99]; | |
2313 T1O = FMA(T1K, T1L, T1M * T1N); | |
2314 T6O = FNMS(T1M, T1L, T1K * T1N); | |
2315 } | |
2316 T1P = T1J + T1O; | |
2317 Td8 = T6N + T6O; | |
2318 { | |
2319 E T1V, T6S, T20, T6T; | |
2320 { | |
2321 E T1S, T1U, T1R, T1T; | |
2322 T1S = cr[WS(rs, 10)]; | |
2323 T1U = ci[WS(rs, 10)]; | |
2324 T1R = W[18]; | |
2325 T1T = W[19]; | |
2326 T1V = FMA(T1R, T1S, T1T * T1U); | |
2327 T6S = FNMS(T1T, T1S, T1R * T1U); | |
2328 } | |
2329 { | |
2330 E T1X, T1Z, T1W, T1Y; | |
2331 T1X = cr[WS(rs, 42)]; | |
2332 T1Z = ci[WS(rs, 42)]; | |
2333 T1W = W[82]; | |
2334 T1Y = W[83]; | |
2335 T20 = FMA(T1W, T1X, T1Y * T1Z); | |
2336 T6T = FNMS(T1Y, T1X, T1W * T1Z); | |
2337 } | |
2338 T21 = T1V + T20; | |
2339 Td4 = T6S + T6T; | |
2340 T6R = T1V - T20; | |
2341 T6U = T6S - T6T; | |
2342 } | |
2343 { | |
2344 E T26, T6X, T2b, T6Y; | |
2345 { | |
2346 E T23, T25, T22, T24; | |
2347 T23 = cr[WS(rs, 58)]; | |
2348 T25 = ci[WS(rs, 58)]; | |
2349 T22 = W[114]; | |
2350 T24 = W[115]; | |
2351 T26 = FMA(T22, T23, T24 * T25); | |
2352 T6X = FNMS(T24, T23, T22 * T25); | |
2353 } | |
2354 { | |
2355 E T28, T2a, T27, T29; | |
2356 T28 = cr[WS(rs, 26)]; | |
2357 T2a = ci[WS(rs, 26)]; | |
2358 T27 = W[50]; | |
2359 T29 = W[51]; | |
2360 T2b = FMA(T27, T28, T29 * T2a); | |
2361 T6Y = FNMS(T29, T28, T27 * T2a); | |
2362 } | |
2363 T2c = T26 + T2b; | |
2364 Td3 = T6X + T6Y; | |
2365 T6W = T26 - T2b; | |
2366 T6Z = T6X - T6Y; | |
2367 } | |
2368 T1Q = T1E + T1P; | |
2369 T2d = T21 + T2c; | |
2370 Tfu = T1Q - T2d; | |
2371 Tfv = Td7 + Td8; | |
2372 Tfw = Td4 + Td3; | |
2373 Tfx = Tfv - Tfw; | |
2374 { | |
2375 E T6M, T6P, Td9, Tda; | |
2376 T6M = T1y - T1D; | |
2377 T6P = T6N - T6O; | |
2378 T6Q = T6M - T6P; | |
2379 TaM = T6M + T6P; | |
2380 Td9 = Td7 - Td8; | |
2381 Tda = T21 - T2c; | |
2382 Tdb = Td9 - Tda; | |
2383 TeI = Td9 + Tda; | |
2384 } | |
2385 { | |
2386 E T6V, T70, T78, T79; | |
2387 T6V = T6R - T6U; | |
2388 T70 = T6W + T6Z; | |
2389 T71 = KP707106781 * (T6V + T70); | |
2390 TaQ = KP707106781 * (T70 - T6V); | |
2391 T78 = T6R + T6U; | |
2392 T79 = T6Z - T6W; | |
2393 T7a = KP707106781 * (T78 + T79); | |
2394 TaN = KP707106781 * (T78 - T79); | |
2395 } | |
2396 { | |
2397 E Td2, Td5, T75, T76; | |
2398 Td2 = T1E - T1P; | |
2399 Td5 = Td3 - Td4; | |
2400 Td6 = Td2 - Td5; | |
2401 TeJ = Td2 + Td5; | |
2402 T75 = T73 - T74; | |
2403 T76 = T1J - T1O; | |
2404 T77 = T75 + T76; | |
2405 TaP = T75 - T76; | |
2406 } | |
2407 } | |
2408 { | |
2409 E T2j, T7u, T2o, T7v, T2p, Tdd, T2u, T7e, T2z, T7f, T2A, Tde, T2M, Tdk, T7i; | |
2410 E T7l, T2X, Tdj, T7n, T7q; | |
2411 { | |
2412 E T2g, T2i, T2f, T2h; | |
2413 T2g = cr[WS(rs, 62)]; | |
2414 T2i = ci[WS(rs, 62)]; | |
2415 T2f = W[122]; | |
2416 T2h = W[123]; | |
2417 T2j = FMA(T2f, T2g, T2h * T2i); | |
2418 T7u = FNMS(T2h, T2g, T2f * T2i); | |
2419 } | |
2420 { | |
2421 E T2l, T2n, T2k, T2m; | |
2422 T2l = cr[WS(rs, 30)]; | |
2423 T2n = ci[WS(rs, 30)]; | |
2424 T2k = W[58]; | |
2425 T2m = W[59]; | |
2426 T2o = FMA(T2k, T2l, T2m * T2n); | |
2427 T7v = FNMS(T2m, T2l, T2k * T2n); | |
2428 } | |
2429 T2p = T2j + T2o; | |
2430 Tdd = T7u + T7v; | |
2431 { | |
2432 E T2r, T2t, T2q, T2s; | |
2433 T2r = cr[WS(rs, 14)]; | |
2434 T2t = ci[WS(rs, 14)]; | |
2435 T2q = W[26]; | |
2436 T2s = W[27]; | |
2437 T2u = FMA(T2q, T2r, T2s * T2t); | |
2438 T7e = FNMS(T2s, T2r, T2q * T2t); | |
2439 } | |
2440 { | |
2441 E T2w, T2y, T2v, T2x; | |
2442 T2w = cr[WS(rs, 46)]; | |
2443 T2y = ci[WS(rs, 46)]; | |
2444 T2v = W[90]; | |
2445 T2x = W[91]; | |
2446 T2z = FMA(T2v, T2w, T2x * T2y); | |
2447 T7f = FNMS(T2x, T2w, T2v * T2y); | |
2448 } | |
2449 T2A = T2u + T2z; | |
2450 Tde = T7e + T7f; | |
2451 { | |
2452 E T2G, T7j, T2L, T7k; | |
2453 { | |
2454 E T2D, T2F, T2C, T2E; | |
2455 T2D = cr[WS(rs, 6)]; | |
2456 T2F = ci[WS(rs, 6)]; | |
2457 T2C = W[10]; | |
2458 T2E = W[11]; | |
2459 T2G = FMA(T2C, T2D, T2E * T2F); | |
2460 T7j = FNMS(T2E, T2D, T2C * T2F); | |
2461 } | |
2462 { | |
2463 E T2I, T2K, T2H, T2J; | |
2464 T2I = cr[WS(rs, 38)]; | |
2465 T2K = ci[WS(rs, 38)]; | |
2466 T2H = W[74]; | |
2467 T2J = W[75]; | |
2468 T2L = FMA(T2H, T2I, T2J * T2K); | |
2469 T7k = FNMS(T2J, T2I, T2H * T2K); | |
2470 } | |
2471 T2M = T2G + T2L; | |
2472 Tdk = T7j + T7k; | |
2473 T7i = T2G - T2L; | |
2474 T7l = T7j - T7k; | |
2475 } | |
2476 { | |
2477 E T2R, T7o, T2W, T7p; | |
2478 { | |
2479 E T2O, T2Q, T2N, T2P; | |
2480 T2O = cr[WS(rs, 54)]; | |
2481 T2Q = ci[WS(rs, 54)]; | |
2482 T2N = W[106]; | |
2483 T2P = W[107]; | |
2484 T2R = FMA(T2N, T2O, T2P * T2Q); | |
2485 T7o = FNMS(T2P, T2O, T2N * T2Q); | |
2486 } | |
2487 { | |
2488 E T2T, T2V, T2S, T2U; | |
2489 T2T = cr[WS(rs, 22)]; | |
2490 T2V = ci[WS(rs, 22)]; | |
2491 T2S = W[42]; | |
2492 T2U = W[43]; | |
2493 T2W = FMA(T2S, T2T, T2U * T2V); | |
2494 T7p = FNMS(T2U, T2T, T2S * T2V); | |
2495 } | |
2496 T2X = T2R + T2W; | |
2497 Tdj = T7o + T7p; | |
2498 T7n = T2R - T2W; | |
2499 T7q = T7o - T7p; | |
2500 } | |
2501 T2B = T2p + T2A; | |
2502 T2Y = T2M + T2X; | |
2503 Tfz = T2B - T2Y; | |
2504 TfA = Tdd + Tde; | |
2505 TfB = Tdk + Tdj; | |
2506 TfC = TfA - TfB; | |
2507 { | |
2508 E T7d, T7g, Tdi, Tdl; | |
2509 T7d = T2j - T2o; | |
2510 T7g = T7e - T7f; | |
2511 T7h = T7d - T7g; | |
2512 TaW = T7d + T7g; | |
2513 Tdi = T2p - T2A; | |
2514 Tdl = Tdj - Tdk; | |
2515 Tdm = Tdi - Tdl; | |
2516 TeL = Tdi + Tdl; | |
2517 } | |
2518 { | |
2519 E T7m, T7r, T7z, T7A; | |
2520 T7m = T7i - T7l; | |
2521 T7r = T7n + T7q; | |
2522 T7s = KP707106781 * (T7m + T7r); | |
2523 TaU = KP707106781 * (T7r - T7m); | |
2524 T7z = T7i + T7l; | |
2525 T7A = T7q - T7n; | |
2526 T7B = KP707106781 * (T7z + T7A); | |
2527 TaX = KP707106781 * (T7z - T7A); | |
2528 } | |
2529 { | |
2530 E Tdf, Tdg, T7w, T7x; | |
2531 Tdf = Tdd - Tde; | |
2532 Tdg = T2M - T2X; | |
2533 Tdh = Tdf - Tdg; | |
2534 TeM = Tdf + Tdg; | |
2535 T7w = T7u - T7v; | |
2536 T7x = T2u - T2z; | |
2537 T7y = T7w + T7x; | |
2538 TaT = T7w - T7x; | |
2539 } | |
2540 } | |
2541 { | |
2542 E T4D, T9e, T4I, T9f, T4J, TdR, T4O, T8A, T4T, T8B, T4U, TdS, T56, Tea, T8E; | |
2543 E T8H, T5h, Te9, T8J, T8M; | |
2544 { | |
2545 E T4A, T4C, T4z, T4B; | |
2546 T4A = cr[WS(rs, 63)]; | |
2547 T4C = ci[WS(rs, 63)]; | |
2548 T4z = W[124]; | |
2549 T4B = W[125]; | |
2550 T4D = FMA(T4z, T4A, T4B * T4C); | |
2551 T9e = FNMS(T4B, T4A, T4z * T4C); | |
2552 } | |
2553 { | |
2554 E T4F, T4H, T4E, T4G; | |
2555 T4F = cr[WS(rs, 31)]; | |
2556 T4H = ci[WS(rs, 31)]; | |
2557 T4E = W[60]; | |
2558 T4G = W[61]; | |
2559 T4I = FMA(T4E, T4F, T4G * T4H); | |
2560 T9f = FNMS(T4G, T4F, T4E * T4H); | |
2561 } | |
2562 T4J = T4D + T4I; | |
2563 TdR = T9e + T9f; | |
2564 { | |
2565 E T4L, T4N, T4K, T4M; | |
2566 T4L = cr[WS(rs, 15)]; | |
2567 T4N = ci[WS(rs, 15)]; | |
2568 T4K = W[28]; | |
2569 T4M = W[29]; | |
2570 T4O = FMA(T4K, T4L, T4M * T4N); | |
2571 T8A = FNMS(T4M, T4L, T4K * T4N); | |
2572 } | |
2573 { | |
2574 E T4Q, T4S, T4P, T4R; | |
2575 T4Q = cr[WS(rs, 47)]; | |
2576 T4S = ci[WS(rs, 47)]; | |
2577 T4P = W[92]; | |
2578 T4R = W[93]; | |
2579 T4T = FMA(T4P, T4Q, T4R * T4S); | |
2580 T8B = FNMS(T4R, T4Q, T4P * T4S); | |
2581 } | |
2582 T4U = T4O + T4T; | |
2583 TdS = T8A + T8B; | |
2584 { | |
2585 E T50, T8F, T55, T8G; | |
2586 { | |
2587 E T4X, T4Z, T4W, T4Y; | |
2588 T4X = cr[WS(rs, 7)]; | |
2589 T4Z = ci[WS(rs, 7)]; | |
2590 T4W = W[12]; | |
2591 T4Y = W[13]; | |
2592 T50 = FMA(T4W, T4X, T4Y * T4Z); | |
2593 T8F = FNMS(T4Y, T4X, T4W * T4Z); | |
2594 } | |
2595 { | |
2596 E T52, T54, T51, T53; | |
2597 T52 = cr[WS(rs, 39)]; | |
2598 T54 = ci[WS(rs, 39)]; | |
2599 T51 = W[76]; | |
2600 T53 = W[77]; | |
2601 T55 = FMA(T51, T52, T53 * T54); | |
2602 T8G = FNMS(T53, T52, T51 * T54); | |
2603 } | |
2604 T56 = T50 + T55; | |
2605 Tea = T8F + T8G; | |
2606 T8E = T50 - T55; | |
2607 T8H = T8F - T8G; | |
2608 } | |
2609 { | |
2610 E T5b, T8K, T5g, T8L; | |
2611 { | |
2612 E T58, T5a, T57, T59; | |
2613 T58 = cr[WS(rs, 55)]; | |
2614 T5a = ci[WS(rs, 55)]; | |
2615 T57 = W[108]; | |
2616 T59 = W[109]; | |
2617 T5b = FMA(T57, T58, T59 * T5a); | |
2618 T8K = FNMS(T59, T58, T57 * T5a); | |
2619 } | |
2620 { | |
2621 E T5d, T5f, T5c, T5e; | |
2622 T5d = cr[WS(rs, 23)]; | |
2623 T5f = ci[WS(rs, 23)]; | |
2624 T5c = W[44]; | |
2625 T5e = W[45]; | |
2626 T5g = FMA(T5c, T5d, T5e * T5f); | |
2627 T8L = FNMS(T5e, T5d, T5c * T5f); | |
2628 } | |
2629 T5h = T5b + T5g; | |
2630 Te9 = T8K + T8L; | |
2631 T8J = T5b - T5g; | |
2632 T8M = T8K - T8L; | |
2633 } | |
2634 { | |
2635 E T4V, T5i, Te8, Teb; | |
2636 T4V = T4J + T4U; | |
2637 T5i = T56 + T5h; | |
2638 T5j = T4V + T5i; | |
2639 TfR = T4V - T5i; | |
2640 Te8 = T4J - T4U; | |
2641 Teb = Te9 - Tea; | |
2642 Tec = Te8 - Teb; | |
2643 TeX = Te8 + Teb; | |
2644 } | |
2645 { | |
2646 E TfW, TfX, T8z, T8C; | |
2647 TfW = TdR + TdS; | |
2648 TfX = Tea + Te9; | |
2649 TfY = TfW - TfX; | |
2650 Tgy = TfW + TfX; | |
2651 T8z = T4D - T4I; | |
2652 T8C = T8A - T8B; | |
2653 T8D = T8z - T8C; | |
2654 Tbl = T8z + T8C; | |
2655 } | |
2656 { | |
2657 E T8I, T8N, T9j, T9k; | |
2658 T8I = T8E - T8H; | |
2659 T8N = T8J + T8M; | |
2660 T8O = KP707106781 * (T8I + T8N); | |
2661 Tbx = KP707106781 * (T8N - T8I); | |
2662 T9j = T8E + T8H; | |
2663 T9k = T8M - T8J; | |
2664 T9l = KP707106781 * (T9j + T9k); | |
2665 Tbm = KP707106781 * (T9j - T9k); | |
2666 } | |
2667 { | |
2668 E TdT, TdU, T9g, T9h; | |
2669 TdT = TdR - TdS; | |
2670 TdU = T56 - T5h; | |
2671 TdV = TdT - TdU; | |
2672 Tf0 = TdT + TdU; | |
2673 T9g = T9e - T9f; | |
2674 T9h = T4O - T4T; | |
2675 T9i = T9g + T9h; | |
2676 Tbw = T9g - T9h; | |
2677 } | |
2678 } | |
2679 { | |
2680 E T36, T7G, T3b, T7H, T3c, TdH, T3h, T8m, T3m, T8n, T3n, TdI, T3z, Tds, T7L; | |
2681 E T7O, T3K, Tdr, T7S, T7T; | |
2682 { | |
2683 E T33, T35, T32, T34; | |
2684 T33 = cr[WS(rs, 1)]; | |
2685 T35 = ci[WS(rs, 1)]; | |
2686 T32 = W[0]; | |
2687 T34 = W[1]; | |
2688 T36 = FMA(T32, T33, T34 * T35); | |
2689 T7G = FNMS(T34, T33, T32 * T35); | |
2690 } | |
2691 { | |
2692 E T38, T3a, T37, T39; | |
2693 T38 = cr[WS(rs, 33)]; | |
2694 T3a = ci[WS(rs, 33)]; | |
2695 T37 = W[64]; | |
2696 T39 = W[65]; | |
2697 T3b = FMA(T37, T38, T39 * T3a); | |
2698 T7H = FNMS(T39, T38, T37 * T3a); | |
2699 } | |
2700 T3c = T36 + T3b; | |
2701 TdH = T7G + T7H; | |
2702 { | |
2703 E T3e, T3g, T3d, T3f; | |
2704 T3e = cr[WS(rs, 17)]; | |
2705 T3g = ci[WS(rs, 17)]; | |
2706 T3d = W[32]; | |
2707 T3f = W[33]; | |
2708 T3h = FMA(T3d, T3e, T3f * T3g); | |
2709 T8m = FNMS(T3f, T3e, T3d * T3g); | |
2710 } | |
2711 { | |
2712 E T3j, T3l, T3i, T3k; | |
2713 T3j = cr[WS(rs, 49)]; | |
2714 T3l = ci[WS(rs, 49)]; | |
2715 T3i = W[96]; | |
2716 T3k = W[97]; | |
2717 T3m = FMA(T3i, T3j, T3k * T3l); | |
2718 T8n = FNMS(T3k, T3j, T3i * T3l); | |
2719 } | |
2720 T3n = T3h + T3m; | |
2721 TdI = T8m + T8n; | |
2722 { | |
2723 E T3t, T7M, T3y, T7N; | |
2724 { | |
2725 E T3q, T3s, T3p, T3r; | |
2726 T3q = cr[WS(rs, 9)]; | |
2727 T3s = ci[WS(rs, 9)]; | |
2728 T3p = W[16]; | |
2729 T3r = W[17]; | |
2730 T3t = FMA(T3p, T3q, T3r * T3s); | |
2731 T7M = FNMS(T3r, T3q, T3p * T3s); | |
2732 } | |
2733 { | |
2734 E T3v, T3x, T3u, T3w; | |
2735 T3v = cr[WS(rs, 41)]; | |
2736 T3x = ci[WS(rs, 41)]; | |
2737 T3u = W[80]; | |
2738 T3w = W[81]; | |
2739 T3y = FMA(T3u, T3v, T3w * T3x); | |
2740 T7N = FNMS(T3w, T3v, T3u * T3x); | |
2741 } | |
2742 T3z = T3t + T3y; | |
2743 Tds = T7M + T7N; | |
2744 T7L = T3t - T3y; | |
2745 T7O = T7M - T7N; | |
2746 } | |
2747 { | |
2748 E T3E, T7Q, T3J, T7R; | |
2749 { | |
2750 E T3B, T3D, T3A, T3C; | |
2751 T3B = cr[WS(rs, 57)]; | |
2752 T3D = ci[WS(rs, 57)]; | |
2753 T3A = W[112]; | |
2754 T3C = W[113]; | |
2755 T3E = FMA(T3A, T3B, T3C * T3D); | |
2756 T7Q = FNMS(T3C, T3B, T3A * T3D); | |
2757 } | |
2758 { | |
2759 E T3G, T3I, T3F, T3H; | |
2760 T3G = cr[WS(rs, 25)]; | |
2761 T3I = ci[WS(rs, 25)]; | |
2762 T3F = W[48]; | |
2763 T3H = W[49]; | |
2764 T3J = FMA(T3F, T3G, T3H * T3I); | |
2765 T7R = FNMS(T3H, T3G, T3F * T3I); | |
2766 } | |
2767 T3K = T3E + T3J; | |
2768 Tdr = T7Q + T7R; | |
2769 T7S = T7Q - T7R; | |
2770 T7T = T3E - T3J; | |
2771 } | |
2772 { | |
2773 E T3o, T3L, TdJ, TdK; | |
2774 T3o = T3c + T3n; | |
2775 T3L = T3z + T3K; | |
2776 T3M = T3o + T3L; | |
2777 TfL = T3o - T3L; | |
2778 TdJ = TdH - TdI; | |
2779 TdK = T3z - T3K; | |
2780 TdL = TdJ - TdK; | |
2781 TeT = TdJ + TdK; | |
2782 } | |
2783 { | |
2784 E TfG, TfH, T7I, T7J; | |
2785 TfG = TdH + TdI; | |
2786 TfH = Tds + Tdr; | |
2787 TfI = TfG - TfH; | |
2788 Tgt = TfG + TfH; | |
2789 T7I = T7G - T7H; | |
2790 T7J = T3h - T3m; | |
2791 T7K = T7I + T7J; | |
2792 Tbd = T7I - T7J; | |
2793 } | |
2794 { | |
2795 E T7P, T7U, T8q, T8r; | |
2796 T7P = T7L + T7O; | |
2797 T7U = T7S - T7T; | |
2798 T7V = KP707106781 * (T7P + T7U); | |
2799 Tb3 = KP707106781 * (T7P - T7U); | |
2800 T8q = T7L - T7O; | |
2801 T8r = T7T + T7S; | |
2802 T8s = KP707106781 * (T8q + T8r); | |
2803 Tbe = KP707106781 * (T8r - T8q); | |
2804 } | |
2805 { | |
2806 E Tdq, Tdt, T8l, T8o; | |
2807 Tdq = T3c - T3n; | |
2808 Tdt = Tdr - Tds; | |
2809 Tdu = Tdq - Tdt; | |
2810 TeQ = Tdq + Tdt; | |
2811 T8l = T36 - T3b; | |
2812 T8o = T8m - T8n; | |
2813 T8p = T8l - T8o; | |
2814 Tb2 = T8l + T8o; | |
2815 } | |
2816 } | |
2817 { | |
2818 E T3X, Tdw, T7Z, T82, T4v, TdB, T8b, T8g, T48, Tdx, T80, T85, T4k, TdA, T8a; | |
2819 E T8d; | |
2820 { | |
2821 E T3R, T7X, T3W, T7Y; | |
2822 { | |
2823 E T3O, T3Q, T3N, T3P; | |
2824 T3O = cr[WS(rs, 5)]; | |
2825 T3Q = ci[WS(rs, 5)]; | |
2826 T3N = W[8]; | |
2827 T3P = W[9]; | |
2828 T3R = FMA(T3N, T3O, T3P * T3Q); | |
2829 T7X = FNMS(T3P, T3O, T3N * T3Q); | |
2830 } | |
2831 { | |
2832 E T3T, T3V, T3S, T3U; | |
2833 T3T = cr[WS(rs, 37)]; | |
2834 T3V = ci[WS(rs, 37)]; | |
2835 T3S = W[72]; | |
2836 T3U = W[73]; | |
2837 T3W = FMA(T3S, T3T, T3U * T3V); | |
2838 T7Y = FNMS(T3U, T3T, T3S * T3V); | |
2839 } | |
2840 T3X = T3R + T3W; | |
2841 Tdw = T7X + T7Y; | |
2842 T7Z = T7X - T7Y; | |
2843 T82 = T3R - T3W; | |
2844 } | |
2845 { | |
2846 E T4p, T8e, T4u, T8f; | |
2847 { | |
2848 E T4m, T4o, T4l, T4n; | |
2849 T4m = cr[WS(rs, 13)]; | |
2850 T4o = ci[WS(rs, 13)]; | |
2851 T4l = W[24]; | |
2852 T4n = W[25]; | |
2853 T4p = FMA(T4l, T4m, T4n * T4o); | |
2854 T8e = FNMS(T4n, T4m, T4l * T4o); | |
2855 } | |
2856 { | |
2857 E T4r, T4t, T4q, T4s; | |
2858 T4r = cr[WS(rs, 45)]; | |
2859 T4t = ci[WS(rs, 45)]; | |
2860 T4q = W[88]; | |
2861 T4s = W[89]; | |
2862 T4u = FMA(T4q, T4r, T4s * T4t); | |
2863 T8f = FNMS(T4s, T4r, T4q * T4t); | |
2864 } | |
2865 T4v = T4p + T4u; | |
2866 TdB = T8e + T8f; | |
2867 T8b = T4p - T4u; | |
2868 T8g = T8e - T8f; | |
2869 } | |
2870 { | |
2871 E T42, T83, T47, T84; | |
2872 { | |
2873 E T3Z, T41, T3Y, T40; | |
2874 T3Z = cr[WS(rs, 21)]; | |
2875 T41 = ci[WS(rs, 21)]; | |
2876 T3Y = W[40]; | |
2877 T40 = W[41]; | |
2878 T42 = FMA(T3Y, T3Z, T40 * T41); | |
2879 T83 = FNMS(T40, T3Z, T3Y * T41); | |
2880 } | |
2881 { | |
2882 E T44, T46, T43, T45; | |
2883 T44 = cr[WS(rs, 53)]; | |
2884 T46 = ci[WS(rs, 53)]; | |
2885 T43 = W[104]; | |
2886 T45 = W[105]; | |
2887 T47 = FMA(T43, T44, T45 * T46); | |
2888 T84 = FNMS(T45, T44, T43 * T46); | |
2889 } | |
2890 T48 = T42 + T47; | |
2891 Tdx = T83 + T84; | |
2892 T80 = T42 - T47; | |
2893 T85 = T83 - T84; | |
2894 } | |
2895 { | |
2896 E T4e, T88, T4j, T89; | |
2897 { | |
2898 E T4b, T4d, T4a, T4c; | |
2899 T4b = cr[WS(rs, 61)]; | |
2900 T4d = ci[WS(rs, 61)]; | |
2901 T4a = W[120]; | |
2902 T4c = W[121]; | |
2903 T4e = FMA(T4a, T4b, T4c * T4d); | |
2904 T88 = FNMS(T4c, T4b, T4a * T4d); | |
2905 } | |
2906 { | |
2907 E T4g, T4i, T4f, T4h; | |
2908 T4g = cr[WS(rs, 29)]; | |
2909 T4i = ci[WS(rs, 29)]; | |
2910 T4f = W[56]; | |
2911 T4h = W[57]; | |
2912 T4j = FMA(T4f, T4g, T4h * T4i); | |
2913 T89 = FNMS(T4h, T4g, T4f * T4i); | |
2914 } | |
2915 T4k = T4e + T4j; | |
2916 TdA = T88 + T89; | |
2917 T8a = T88 - T89; | |
2918 T8d = T4e - T4j; | |
2919 } | |
2920 { | |
2921 E T49, T4w, TdC, TdD; | |
2922 T49 = T3X + T48; | |
2923 T4w = T4k + T4v; | |
2924 T4x = T49 + T4w; | |
2925 TfJ = T49 - T4w; | |
2926 TdC = TdA - TdB; | |
2927 TdD = T4k - T4v; | |
2928 TdE = TdC - TdD; | |
2929 TdM = TdD + TdC; | |
2930 } | |
2931 { | |
2932 E TfM, TfN, T81, T86; | |
2933 TfM = TdA + TdB; | |
2934 TfN = Tdw + Tdx; | |
2935 TfO = TfM - TfN; | |
2936 Tgu = TfN + TfM; | |
2937 T81 = T7Z + T80; | |
2938 T86 = T82 - T85; | |
2939 T87 = FMA(KP923879532, T81, KP382683432 * T86); | |
2940 T8u = FNMS(KP382683432, T81, KP923879532 * T86); | |
2941 } | |
2942 { | |
2943 E T8c, T8h, Tb8, Tb9; | |
2944 T8c = T8a + T8b; | |
2945 T8h = T8d - T8g; | |
2946 T8i = FNMS(KP382683432, T8h, KP923879532 * T8c); | |
2947 T8v = FMA(KP382683432, T8c, KP923879532 * T8h); | |
2948 Tb8 = T8d + T8g; | |
2949 Tb9 = T8a - T8b; | |
2950 Tba = FNMS(KP382683432, Tb9, KP923879532 * Tb8); | |
2951 Tbh = FMA(KP923879532, Tb9, KP382683432 * Tb8); | |
2952 } | |
2953 { | |
2954 E Tdv, Tdy, Tb5, Tb6; | |
2955 Tdv = T3X - T48; | |
2956 Tdy = Tdw - Tdx; | |
2957 Tdz = Tdv + Tdy; | |
2958 TdN = Tdv - Tdy; | |
2959 Tb5 = T7Z - T80; | |
2960 Tb6 = T82 + T85; | |
2961 Tb7 = FMA(KP382683432, Tb5, KP923879532 * Tb6); | |
2962 Tbg = FNMS(KP382683432, Tb6, KP923879532 * Tb5); | |
2963 } | |
2964 } | |
2965 { | |
2966 E T5u, Te2, T8Q, T8X, T62, TdY, T94, T99, T5F, Te3, T8T, T8Y, T5R, TdX, T93; | |
2967 E T96; | |
2968 { | |
2969 E T5o, T8V, T5t, T8W; | |
2970 { | |
2971 E T5l, T5n, T5k, T5m; | |
2972 T5l = cr[WS(rs, 3)]; | |
2973 T5n = ci[WS(rs, 3)]; | |
2974 T5k = W[4]; | |
2975 T5m = W[5]; | |
2976 T5o = FMA(T5k, T5l, T5m * T5n); | |
2977 T8V = FNMS(T5m, T5l, T5k * T5n); | |
2978 } | |
2979 { | |
2980 E T5q, T5s, T5p, T5r; | |
2981 T5q = cr[WS(rs, 35)]; | |
2982 T5s = ci[WS(rs, 35)]; | |
2983 T5p = W[68]; | |
2984 T5r = W[69]; | |
2985 T5t = FMA(T5p, T5q, T5r * T5s); | |
2986 T8W = FNMS(T5r, T5q, T5p * T5s); | |
2987 } | |
2988 T5u = T5o + T5t; | |
2989 Te2 = T8V + T8W; | |
2990 T8Q = T5o - T5t; | |
2991 T8X = T8V - T8W; | |
2992 } | |
2993 { | |
2994 E T5W, T97, T61, T98; | |
2995 { | |
2996 E T5T, T5V, T5S, T5U; | |
2997 T5T = cr[WS(rs, 11)]; | |
2998 T5V = ci[WS(rs, 11)]; | |
2999 T5S = W[20]; | |
3000 T5U = W[21]; | |
3001 T5W = FMA(T5S, T5T, T5U * T5V); | |
3002 T97 = FNMS(T5U, T5T, T5S * T5V); | |
3003 } | |
3004 { | |
3005 E T5Y, T60, T5X, T5Z; | |
3006 T5Y = cr[WS(rs, 43)]; | |
3007 T60 = ci[WS(rs, 43)]; | |
3008 T5X = W[84]; | |
3009 T5Z = W[85]; | |
3010 T61 = FMA(T5X, T5Y, T5Z * T60); | |
3011 T98 = FNMS(T5Z, T5Y, T5X * T60); | |
3012 } | |
3013 T62 = T5W + T61; | |
3014 TdY = T97 + T98; | |
3015 T94 = T5W - T61; | |
3016 T99 = T97 - T98; | |
3017 } | |
3018 { | |
3019 E T5z, T8R, T5E, T8S; | |
3020 { | |
3021 E T5w, T5y, T5v, T5x; | |
3022 T5w = cr[WS(rs, 19)]; | |
3023 T5y = ci[WS(rs, 19)]; | |
3024 T5v = W[36]; | |
3025 T5x = W[37]; | |
3026 T5z = FMA(T5v, T5w, T5x * T5y); | |
3027 T8R = FNMS(T5x, T5w, T5v * T5y); | |
3028 } | |
3029 { | |
3030 E T5B, T5D, T5A, T5C; | |
3031 T5B = cr[WS(rs, 51)]; | |
3032 T5D = ci[WS(rs, 51)]; | |
3033 T5A = W[100]; | |
3034 T5C = W[101]; | |
3035 T5E = FMA(T5A, T5B, T5C * T5D); | |
3036 T8S = FNMS(T5C, T5B, T5A * T5D); | |
3037 } | |
3038 T5F = T5z + T5E; | |
3039 Te3 = T8R + T8S; | |
3040 T8T = T8R - T8S; | |
3041 T8Y = T5z - T5E; | |
3042 } | |
3043 { | |
3044 E T5L, T91, T5Q, T92; | |
3045 { | |
3046 E T5I, T5K, T5H, T5J; | |
3047 T5I = cr[WS(rs, 59)]; | |
3048 T5K = ci[WS(rs, 59)]; | |
3049 T5H = W[116]; | |
3050 T5J = W[117]; | |
3051 T5L = FMA(T5H, T5I, T5J * T5K); | |
3052 T91 = FNMS(T5J, T5I, T5H * T5K); | |
3053 } | |
3054 { | |
3055 E T5N, T5P, T5M, T5O; | |
3056 T5N = cr[WS(rs, 27)]; | |
3057 T5P = ci[WS(rs, 27)]; | |
3058 T5M = W[52]; | |
3059 T5O = W[53]; | |
3060 T5Q = FMA(T5M, T5N, T5O * T5P); | |
3061 T92 = FNMS(T5O, T5N, T5M * T5P); | |
3062 } | |
3063 T5R = T5L + T5Q; | |
3064 TdX = T91 + T92; | |
3065 T93 = T91 - T92; | |
3066 T96 = T5L - T5Q; | |
3067 } | |
3068 { | |
3069 E T5G, T63, Te1, Te4; | |
3070 T5G = T5u + T5F; | |
3071 T63 = T5R + T62; | |
3072 T64 = T5G + T63; | |
3073 TfZ = T5G - T63; | |
3074 Te1 = T5u - T5F; | |
3075 Te4 = Te2 - Te3; | |
3076 Te5 = Te1 - Te4; | |
3077 Ted = Te1 + Te4; | |
3078 } | |
3079 { | |
3080 E TfS, TfT, T8U, T8Z; | |
3081 TfS = TdX + TdY; | |
3082 TfT = Te2 + Te3; | |
3083 TfU = TfS - TfT; | |
3084 Tgz = TfT + TfS; | |
3085 T8U = T8Q - T8T; | |
3086 T8Z = T8X + T8Y; | |
3087 T90 = FNMS(KP382683432, T8Z, KP923879532 * T8U); | |
3088 T9n = FMA(KP923879532, T8Z, KP382683432 * T8U); | |
3089 } | |
3090 { | |
3091 E T95, T9a, Tbr, Tbs; | |
3092 T95 = T93 + T94; | |
3093 T9a = T96 - T99; | |
3094 T9b = FMA(KP382683432, T95, KP923879532 * T9a); | |
3095 T9o = FNMS(KP382683432, T9a, KP923879532 * T95); | |
3096 Tbr = T96 + T99; | |
3097 Tbs = T93 - T94; | |
3098 Tbt = FNMS(KP382683432, Tbs, KP923879532 * Tbr); | |
3099 TbA = FMA(KP923879532, Tbs, KP382683432 * Tbr); | |
3100 } | |
3101 { | |
3102 E TdW, TdZ, Tbo, Tbp; | |
3103 TdW = T5R - T62; | |
3104 TdZ = TdX - TdY; | |
3105 Te0 = TdW + TdZ; | |
3106 Tee = TdZ - TdW; | |
3107 Tbo = T8X - T8Y; | |
3108 Tbp = T8Q + T8T; | |
3109 Tbq = FMA(KP382683432, Tbo, KP923879532 * Tbp); | |
3110 Tbz = FNMS(KP382683432, Tbp, KP923879532 * Tbo); | |
3111 } | |
3112 } | |
3113 { | |
3114 E T1t, Tgn, TgK, TgL, TgV, Th1, T30, Th0, T66, TgX, Tgw, TgE, TgB, TgF, Tgq; | |
3115 E TgM; | |
3116 { | |
3117 E TH, T1s, TgI, TgJ; | |
3118 TH = Tj + TG; | |
3119 T1s = T14 + T1r; | |
3120 T1t = TH + T1s; | |
3121 Tgn = TH - T1s; | |
3122 TgI = Tgy + Tgz; | |
3123 TgJ = Tgt + Tgu; | |
3124 TgK = TgI - TgJ; | |
3125 TgL = TgJ + TgI; | |
3126 } | |
3127 { | |
3128 E TgN, TgU, T2e, T2Z; | |
3129 TgN = Tfr + Tfq; | |
3130 TgU = TgO + TgT; | |
3131 TgV = TgN + TgU; | |
3132 Th1 = TgU - TgN; | |
3133 T2e = T1Q + T2d; | |
3134 T2Z = T2B + T2Y; | |
3135 T30 = T2e + T2Z; | |
3136 Th0 = T2e - T2Z; | |
3137 } | |
3138 { | |
3139 E T4y, T65, Tgs, Tgv; | |
3140 T4y = T3M + T4x; | |
3141 T65 = T5j + T64; | |
3142 T66 = T4y + T65; | |
3143 TgX = T65 - T4y; | |
3144 Tgs = T3M - T4x; | |
3145 Tgv = Tgt - Tgu; | |
3146 Tgw = Tgs + Tgv; | |
3147 TgE = Tgs - Tgv; | |
3148 } | |
3149 { | |
3150 E Tgx, TgA, Tgo, Tgp; | |
3151 Tgx = T5j - T64; | |
3152 TgA = Tgy - Tgz; | |
3153 TgB = Tgx - TgA; | |
3154 TgF = Tgx + TgA; | |
3155 Tgo = TfA + TfB; | |
3156 Tgp = Tfv + Tfw; | |
3157 Tgq = Tgo - Tgp; | |
3158 TgM = Tgp + Tgo; | |
3159 } | |
3160 { | |
3161 E T31, TgW, TgY, TgH; | |
3162 T31 = T1t + T30; | |
3163 ci[WS(rs, 31)] = T31 - T66; | |
3164 cr[0] = T31 + T66; | |
3165 TgW = TgM + TgV; | |
3166 cr[WS(rs, 32)] = TgL - TgW; | |
3167 ci[WS(rs, 63)] = TgL + TgW; | |
3168 TgY = TgV - TgM; | |
3169 cr[WS(rs, 48)] = TgX - TgY; | |
3170 ci[WS(rs, 47)] = TgX + TgY; | |
3171 TgH = T1t - T30; | |
3172 cr[WS(rs, 16)] = TgH - TgK; | |
3173 ci[WS(rs, 15)] = TgH + TgK; | |
3174 } | |
3175 { | |
3176 E Tgr, TgC, TgZ, Th2; | |
3177 Tgr = Tgn - Tgq; | |
3178 TgC = KP707106781 * (Tgw + TgB); | |
3179 ci[WS(rs, 23)] = Tgr - TgC; | |
3180 cr[WS(rs, 8)] = Tgr + TgC; | |
3181 TgZ = KP707106781 * (TgB - Tgw); | |
3182 Th2 = Th0 + Th1; | |
3183 cr[WS(rs, 56)] = TgZ - Th2; | |
3184 ci[WS(rs, 39)] = TgZ + Th2; | |
3185 } | |
3186 { | |
3187 E Th3, Th4, TgD, TgG; | |
3188 Th3 = KP707106781 * (TgF - TgE); | |
3189 Th4 = Th1 - Th0; | |
3190 cr[WS(rs, 40)] = Th3 - Th4; | |
3191 ci[WS(rs, 55)] = Th3 + Th4; | |
3192 TgD = Tgn + Tgq; | |
3193 TgG = KP707106781 * (TgE + TgF); | |
3194 cr[WS(rs, 24)] = TgD - TgG; | |
3195 ci[WS(rs, 7)] = TgD + TgG; | |
3196 } | |
3197 } | |
3198 { | |
3199 E T6L, T9x, ThV, Ti1, T7E, Ti0, T9A, ThO, T8y, T9K, T9u, T9E, T9r, T9L, T9v; | |
3200 E T9H; | |
3201 { | |
3202 E T6n, T6K, ThP, ThU; | |
3203 T6n = T6b + T6m; | |
3204 T6K = T6y + T6J; | |
3205 T6L = T6n - T6K; | |
3206 T9x = T6n + T6K; | |
3207 ThP = T9O - T9P; | |
3208 ThU = ThQ + ThT; | |
3209 ThV = ThP + ThU; | |
3210 Ti1 = ThU - ThP; | |
3211 } | |
3212 { | |
3213 E T7c, T9y, T7D, T9z; | |
3214 { | |
3215 E T72, T7b, T7t, T7C; | |
3216 T72 = T6Q + T71; | |
3217 T7b = T77 + T7a; | |
3218 T7c = FMA(KP195090322, T72, KP980785280 * T7b); | |
3219 T9y = FNMS(KP195090322, T7b, KP980785280 * T72); | |
3220 T7t = T7h + T7s; | |
3221 T7C = T7y + T7B; | |
3222 T7D = FNMS(KP980785280, T7C, KP195090322 * T7t); | |
3223 T9z = FMA(KP980785280, T7t, KP195090322 * T7C); | |
3224 } | |
3225 T7E = T7c + T7D; | |
3226 Ti0 = T9z - T9y; | |
3227 T9A = T9y + T9z; | |
3228 ThO = T7c - T7D; | |
3229 } | |
3230 { | |
3231 E T8k, T9D, T8x, T9C; | |
3232 { | |
3233 E T7W, T8j, T8t, T8w; | |
3234 T7W = T7K + T7V; | |
3235 T8j = T87 + T8i; | |
3236 T8k = T7W - T8j; | |
3237 T9D = T7W + T8j; | |
3238 T8t = T8p + T8s; | |
3239 T8w = T8u + T8v; | |
3240 T8x = T8t - T8w; | |
3241 T9C = T8t + T8w; | |
3242 } | |
3243 T8y = FMA(KP634393284, T8k, KP773010453 * T8x); | |
3244 T9K = FMA(KP995184726, T9D, KP098017140 * T9C); | |
3245 T9u = FNMS(KP773010453, T8k, KP634393284 * T8x); | |
3246 T9E = FNMS(KP098017140, T9D, KP995184726 * T9C); | |
3247 } | |
3248 { | |
3249 E T9d, T9G, T9q, T9F; | |
3250 { | |
3251 E T8P, T9c, T9m, T9p; | |
3252 T8P = T8D + T8O; | |
3253 T9c = T90 + T9b; | |
3254 T9d = T8P - T9c; | |
3255 T9G = T8P + T9c; | |
3256 T9m = T9i + T9l; | |
3257 T9p = T9n + T9o; | |
3258 T9q = T9m - T9p; | |
3259 T9F = T9m + T9p; | |
3260 } | |
3261 T9r = FNMS(KP634393284, T9q, KP773010453 * T9d); | |
3262 T9L = FNMS(KP995184726, T9F, KP098017140 * T9G); | |
3263 T9v = FMA(KP773010453, T9q, KP634393284 * T9d); | |
3264 T9H = FMA(KP098017140, T9F, KP995184726 * T9G); | |
3265 } | |
3266 { | |
3267 E T7F, T9s, ThZ, Ti2; | |
3268 T7F = T6L + T7E; | |
3269 T9s = T8y + T9r; | |
3270 ci[WS(rs, 24)] = T7F - T9s; | |
3271 cr[WS(rs, 7)] = T7F + T9s; | |
3272 ThZ = T9v - T9u; | |
3273 Ti2 = Ti0 + Ti1; | |
3274 cr[WS(rs, 39)] = ThZ - Ti2; | |
3275 ci[WS(rs, 56)] = ThZ + Ti2; | |
3276 } | |
3277 { | |
3278 E Ti3, Ti4, T9t, T9w; | |
3279 Ti3 = T9r - T8y; | |
3280 Ti4 = Ti1 - Ti0; | |
3281 cr[WS(rs, 55)] = Ti3 - Ti4; | |
3282 ci[WS(rs, 40)] = Ti3 + Ti4; | |
3283 T9t = T6L - T7E; | |
3284 T9w = T9u + T9v; | |
3285 cr[WS(rs, 23)] = T9t - T9w; | |
3286 ci[WS(rs, 8)] = T9t + T9w; | |
3287 } | |
3288 { | |
3289 E T9B, T9I, ThN, ThW; | |
3290 T9B = T9x + T9A; | |
3291 T9I = T9E + T9H; | |
3292 cr[WS(rs, 31)] = T9B - T9I; | |
3293 ci[0] = T9B + T9I; | |
3294 ThN = T9L - T9K; | |
3295 ThW = ThO + ThV; | |
3296 cr[WS(rs, 63)] = ThN - ThW; | |
3297 ci[WS(rs, 32)] = ThN + ThW; | |
3298 } | |
3299 { | |
3300 E ThX, ThY, T9J, T9M; | |
3301 ThX = T9H - T9E; | |
3302 ThY = ThV - ThO; | |
3303 cr[WS(rs, 47)] = ThX - ThY; | |
3304 ci[WS(rs, 48)] = ThX + ThY; | |
3305 T9J = T9x - T9A; | |
3306 T9M = T9K + T9L; | |
3307 ci[WS(rs, 16)] = T9J - T9M; | |
3308 cr[WS(rs, 15)] = T9J + T9M; | |
3309 } | |
3310 } | |
3311 { | |
3312 E Tft, Tg7, Tgh, Tgl, Th9, Thf, TfE, Th6, TfQ, Tg4, Tga, The, Tge, Tgk, Tg1; | |
3313 E Tg5; | |
3314 { | |
3315 E Tfp, Tfs, Tgf, Tgg; | |
3316 Tfp = Tj - TG; | |
3317 Tfs = Tfq - Tfr; | |
3318 Tft = Tfp - Tfs; | |
3319 Tg7 = Tfp + Tfs; | |
3320 Tgf = TfY + TfZ; | |
3321 Tgg = TfR + TfU; | |
3322 Tgh = FMA(KP382683432, Tgf, KP923879532 * Tgg); | |
3323 Tgl = FNMS(KP923879532, Tgf, KP382683432 * Tgg); | |
3324 } | |
3325 { | |
3326 E Th7, Th8, Tfy, TfD; | |
3327 Th7 = T14 - T1r; | |
3328 Th8 = TgT - TgO; | |
3329 Th9 = Th7 + Th8; | |
3330 Thf = Th8 - Th7; | |
3331 Tfy = Tfu + Tfx; | |
3332 TfD = Tfz - TfC; | |
3333 TfE = KP707106781 * (Tfy + TfD); | |
3334 Th6 = KP707106781 * (Tfy - TfD); | |
3335 } | |
3336 { | |
3337 E TfK, TfP, Tg8, Tg9; | |
3338 TfK = TfI - TfJ; | |
3339 TfP = TfL - TfO; | |
3340 TfQ = FMA(KP382683432, TfK, KP923879532 * TfP); | |
3341 Tg4 = FNMS(KP923879532, TfK, KP382683432 * TfP); | |
3342 Tg8 = Tfu - Tfx; | |
3343 Tg9 = Tfz + TfC; | |
3344 Tga = KP707106781 * (Tg8 + Tg9); | |
3345 The = KP707106781 * (Tg9 - Tg8); | |
3346 } | |
3347 { | |
3348 E Tgc, Tgd, TfV, Tg0; | |
3349 Tgc = TfL + TfO; | |
3350 Tgd = TfI + TfJ; | |
3351 Tge = FNMS(KP382683432, Tgd, KP923879532 * Tgc); | |
3352 Tgk = FMA(KP923879532, Tgd, KP382683432 * Tgc); | |
3353 TfV = TfR - TfU; | |
3354 Tg0 = TfY - TfZ; | |
3355 Tg1 = FNMS(KP382683432, Tg0, KP923879532 * TfV); | |
3356 Tg5 = FMA(KP923879532, Tg0, KP382683432 * TfV); | |
3357 } | |
3358 { | |
3359 E TfF, Tg2, Thd, Thg; | |
3360 TfF = Tft + TfE; | |
3361 Tg2 = TfQ + Tg1; | |
3362 ci[WS(rs, 27)] = TfF - Tg2; | |
3363 cr[WS(rs, 4)] = TfF + Tg2; | |
3364 Thd = Tg5 - Tg4; | |
3365 Thg = The + Thf; | |
3366 cr[WS(rs, 36)] = Thd - Thg; | |
3367 ci[WS(rs, 59)] = Thd + Thg; | |
3368 } | |
3369 { | |
3370 E Thh, Thi, Tg3, Tg6; | |
3371 Thh = Tg1 - TfQ; | |
3372 Thi = Thf - The; | |
3373 cr[WS(rs, 52)] = Thh - Thi; | |
3374 ci[WS(rs, 43)] = Thh + Thi; | |
3375 Tg3 = Tft - TfE; | |
3376 Tg6 = Tg4 + Tg5; | |
3377 cr[WS(rs, 20)] = Tg3 - Tg6; | |
3378 ci[WS(rs, 11)] = Tg3 + Tg6; | |
3379 } | |
3380 { | |
3381 E Tgb, Tgi, Th5, Tha; | |
3382 Tgb = Tg7 + Tga; | |
3383 Tgi = Tge + Tgh; | |
3384 cr[WS(rs, 28)] = Tgb - Tgi; | |
3385 ci[WS(rs, 3)] = Tgb + Tgi; | |
3386 Th5 = Tgl - Tgk; | |
3387 Tha = Th6 + Th9; | |
3388 cr[WS(rs, 60)] = Th5 - Tha; | |
3389 ci[WS(rs, 35)] = Th5 + Tha; | |
3390 } | |
3391 { | |
3392 E Thb, Thc, Tgj, Tgm; | |
3393 Thb = Tgh - Tge; | |
3394 Thc = Th9 - Th6; | |
3395 cr[WS(rs, 44)] = Thb - Thc; | |
3396 ci[WS(rs, 51)] = Thb + Thc; | |
3397 Tgj = Tg7 - Tga; | |
3398 Tgm = Tgk + Tgl; | |
3399 ci[WS(rs, 19)] = Tgj - Tgm; | |
3400 cr[WS(rs, 12)] = Tgj + Tgm; | |
3401 } | |
3402 } | |
3403 { | |
3404 E TeH, Tf9, TeO, Thk, Thp, Thv, Tfc, Thu, Tf3, Tfn, Tf7, Tfj, TeW, Tfm, Tf6; | |
3405 E Tfg; | |
3406 { | |
3407 E TeD, TeG, Tfa, Tfb; | |
3408 TeD = TcL + TcO; | |
3409 TeG = KP707106781 * (TeE + TeF); | |
3410 TeH = TeD - TeG; | |
3411 Tf9 = TeD + TeG; | |
3412 { | |
3413 E TeK, TeN, Thl, Tho; | |
3414 TeK = FMA(KP923879532, TeI, KP382683432 * TeJ); | |
3415 TeN = FNMS(KP923879532, TeM, KP382683432 * TeL); | |
3416 TeO = TeK + TeN; | |
3417 Thk = TeK - TeN; | |
3418 Thl = KP707106781 * (TcU - TcZ); | |
3419 Tho = Thm + Thn; | |
3420 Thp = Thl + Tho; | |
3421 Thv = Tho - Thl; | |
3422 } | |
3423 Tfa = FNMS(KP382683432, TeI, KP923879532 * TeJ); | |
3424 Tfb = FMA(KP382683432, TeM, KP923879532 * TeL); | |
3425 Tfc = Tfa + Tfb; | |
3426 Thu = Tfb - Tfa; | |
3427 { | |
3428 E TeZ, Tfh, Tf2, Tfi, TeY, Tf1; | |
3429 TeY = KP707106781 * (Te5 + Te0); | |
3430 TeZ = TeX - TeY; | |
3431 Tfh = TeX + TeY; | |
3432 Tf1 = KP707106781 * (Ted + Tee); | |
3433 Tf2 = Tf0 - Tf1; | |
3434 Tfi = Tf0 + Tf1; | |
3435 Tf3 = FNMS(KP555570233, Tf2, KP831469612 * TeZ); | |
3436 Tfn = FMA(KP980785280, Tfh, KP195090322 * Tfi); | |
3437 Tf7 = FMA(KP555570233, TeZ, KP831469612 * Tf2); | |
3438 Tfj = FNMS(KP980785280, Tfi, KP195090322 * Tfh); | |
3439 } | |
3440 { | |
3441 E TeS, Tfe, TeV, Tff, TeR, TeU; | |
3442 TeR = KP707106781 * (TdN + TdM); | |
3443 TeS = TeQ - TeR; | |
3444 Tfe = TeQ + TeR; | |
3445 TeU = KP707106781 * (Tdz + TdE); | |
3446 TeV = TeT - TeU; | |
3447 Tff = TeT + TeU; | |
3448 TeW = FMA(KP831469612, TeS, KP555570233 * TeV); | |
3449 Tfm = FNMS(KP195090322, Tff, KP980785280 * Tfe); | |
3450 Tf6 = FNMS(KP831469612, TeV, KP555570233 * TeS); | |
3451 Tfg = FMA(KP195090322, Tfe, KP980785280 * Tff); | |
3452 } | |
3453 } | |
3454 { | |
3455 E TeP, Tf4, Tht, Thw; | |
3456 TeP = TeH + TeO; | |
3457 Tf4 = TeW + Tf3; | |
3458 ci[WS(rs, 25)] = TeP - Tf4; | |
3459 cr[WS(rs, 6)] = TeP + Tf4; | |
3460 Tht = Tf7 - Tf6; | |
3461 Thw = Thu + Thv; | |
3462 cr[WS(rs, 38)] = Tht - Thw; | |
3463 ci[WS(rs, 57)] = Tht + Thw; | |
3464 } | |
3465 { | |
3466 E Thx, Thy, Tf5, Tf8; | |
3467 Thx = Tf3 - TeW; | |
3468 Thy = Thv - Thu; | |
3469 cr[WS(rs, 54)] = Thx - Thy; | |
3470 ci[WS(rs, 41)] = Thx + Thy; | |
3471 Tf5 = TeH - TeO; | |
3472 Tf8 = Tf6 + Tf7; | |
3473 cr[WS(rs, 22)] = Tf5 - Tf8; | |
3474 ci[WS(rs, 9)] = Tf5 + Tf8; | |
3475 } | |
3476 { | |
3477 E Tfd, Tfk, Thj, Thq; | |
3478 Tfd = Tf9 - Tfc; | |
3479 Tfk = Tfg + Tfj; | |
3480 ci[WS(rs, 17)] = Tfd - Tfk; | |
3481 cr[WS(rs, 14)] = Tfd + Tfk; | |
3482 Thj = Tfj - Tfg; | |
3483 Thq = Thk + Thp; | |
3484 cr[WS(rs, 62)] = Thj - Thq; | |
3485 ci[WS(rs, 33)] = Thj + Thq; | |
3486 } | |
3487 { | |
3488 E Thr, Ths, Tfl, Tfo; | |
3489 Thr = Tfn - Tfm; | |
3490 Ths = Thp - Thk; | |
3491 cr[WS(rs, 46)] = Thr - Ths; | |
3492 ci[WS(rs, 49)] = Thr + Ths; | |
3493 Tfl = Tf9 + Tfc; | |
3494 Tfo = Tfm + Tfn; | |
3495 cr[WS(rs, 30)] = Tfl - Tfo; | |
3496 ci[WS(rs, 1)] = Tfl + Tfo; | |
3497 } | |
3498 } | |
3499 { | |
3500 E Td1, Ten, Tdo, ThA, ThD, ThJ, Teq, ThI, Teh, TeB, Tel, Tex, TdQ, TeA, Tek; | |
3501 E Teu; | |
3502 { | |
3503 E TcP, Td0, Teo, Tep; | |
3504 TcP = TcL - TcO; | |
3505 Td0 = KP707106781 * (TcU + TcZ); | |
3506 Td1 = TcP - Td0; | |
3507 Ten = TcP + Td0; | |
3508 { | |
3509 E Tdc, Tdn, ThB, ThC; | |
3510 Tdc = FNMS(KP923879532, Tdb, KP382683432 * Td6); | |
3511 Tdn = FMA(KP923879532, Tdh, KP382683432 * Tdm); | |
3512 Tdo = Tdc + Tdn; | |
3513 ThA = Tdn - Tdc; | |
3514 ThB = KP707106781 * (TeF - TeE); | |
3515 ThC = Thn - Thm; | |
3516 ThD = ThB + ThC; | |
3517 ThJ = ThC - ThB; | |
3518 } | |
3519 Teo = FMA(KP382683432, Tdb, KP923879532 * Td6); | |
3520 Tep = FNMS(KP382683432, Tdh, KP923879532 * Tdm); | |
3521 Teq = Teo + Tep; | |
3522 ThI = Teo - Tep; | |
3523 { | |
3524 E Te7, Tew, Teg, Tev, Te6, Tef; | |
3525 Te6 = KP707106781 * (Te0 - Te5); | |
3526 Te7 = TdV - Te6; | |
3527 Tew = TdV + Te6; | |
3528 Tef = KP707106781 * (Ted - Tee); | |
3529 Teg = Tec - Tef; | |
3530 Tev = Tec + Tef; | |
3531 Teh = FMA(KP555570233, Te7, KP831469612 * Teg); | |
3532 TeB = FMA(KP980785280, Tew, KP195090322 * Tev); | |
3533 Tel = FNMS(KP831469612, Te7, KP555570233 * Teg); | |
3534 Tex = FNMS(KP195090322, Tew, KP980785280 * Tev); | |
3535 } | |
3536 { | |
3537 E TdG, Tet, TdP, Tes, TdF, TdO; | |
3538 TdF = KP707106781 * (Tdz - TdE); | |
3539 TdG = Tdu - TdF; | |
3540 Tet = Tdu + TdF; | |
3541 TdO = KP707106781 * (TdM - TdN); | |
3542 TdP = TdL - TdO; | |
3543 Tes = TdL + TdO; | |
3544 TdQ = FNMS(KP555570233, TdP, KP831469612 * TdG); | |
3545 TeA = FNMS(KP980785280, Tes, KP195090322 * Tet); | |
3546 Tek = FMA(KP831469612, TdP, KP555570233 * TdG); | |
3547 Teu = FMA(KP195090322, Tes, KP980785280 * Tet); | |
3548 } | |
3549 } | |
3550 { | |
3551 E Tdp, Tei, ThH, ThK; | |
3552 Tdp = Td1 + Tdo; | |
3553 Tei = TdQ + Teh; | |
3554 cr[WS(rs, 26)] = Tdp - Tei; | |
3555 ci[WS(rs, 5)] = Tdp + Tei; | |
3556 ThH = Tel - Tek; | |
3557 ThK = ThI + ThJ; | |
3558 cr[WS(rs, 58)] = ThH - ThK; | |
3559 ci[WS(rs, 37)] = ThH + ThK; | |
3560 } | |
3561 { | |
3562 E ThL, ThM, Tej, Tem; | |
3563 ThL = Teh - TdQ; | |
3564 ThM = ThJ - ThI; | |
3565 cr[WS(rs, 42)] = ThL - ThM; | |
3566 ci[WS(rs, 53)] = ThL + ThM; | |
3567 Tej = Td1 - Tdo; | |
3568 Tem = Tek + Tel; | |
3569 ci[WS(rs, 21)] = Tej - Tem; | |
3570 cr[WS(rs, 10)] = Tej + Tem; | |
3571 } | |
3572 { | |
3573 E Ter, Tey, Thz, ThE; | |
3574 Ter = Ten + Teq; | |
3575 Tey = Teu + Tex; | |
3576 ci[WS(rs, 29)] = Ter - Tey; | |
3577 cr[WS(rs, 2)] = Ter + Tey; | |
3578 Thz = TeB - TeA; | |
3579 ThE = ThA + ThD; | |
3580 cr[WS(rs, 34)] = Thz - ThE; | |
3581 ci[WS(rs, 61)] = Thz + ThE; | |
3582 } | |
3583 { | |
3584 E ThF, ThG, Tez, TeC; | |
3585 ThF = Tex - Teu; | |
3586 ThG = ThD - ThA; | |
3587 cr[WS(rs, 50)] = ThF - ThG; | |
3588 ci[WS(rs, 45)] = ThF + ThG; | |
3589 Tez = Ten - Teq; | |
3590 TeC = TeA + TeB; | |
3591 cr[WS(rs, 18)] = Tez - TeC; | |
3592 ci[WS(rs, 13)] = Tez + TeC; | |
3593 } | |
3594 } | |
3595 { | |
3596 E Tc3, Tcv, TiD, TiJ, Tca, TiI, Tcy, TiA, Tci, TcI, Tcs, TcC, Tcp, TcJ, Tct; | |
3597 E TcF; | |
3598 { | |
3599 E TbZ, Tc2, TiB, TiC; | |
3600 TbZ = Taz - TaC; | |
3601 Tc2 = Tc0 + Tc1; | |
3602 Tc3 = TbZ - Tc2; | |
3603 Tcv = TbZ + Tc2; | |
3604 TiB = TaG - TaJ; | |
3605 TiC = Tin - Tim; | |
3606 TiD = TiB + TiC; | |
3607 TiJ = TiC - TiB; | |
3608 } | |
3609 { | |
3610 E Tc6, Tcw, Tc9, Tcx; | |
3611 { | |
3612 E Tc4, Tc5, Tc7, Tc8; | |
3613 Tc4 = TaP - TaQ; | |
3614 Tc5 = TaM - TaN; | |
3615 Tc6 = FMA(KP831469612, Tc4, KP555570233 * Tc5); | |
3616 Tcw = FNMS(KP555570233, Tc4, KP831469612 * Tc5); | |
3617 Tc7 = TaW - TaX; | |
3618 Tc8 = TaT - TaU; | |
3619 Tc9 = FNMS(KP831469612, Tc8, KP555570233 * Tc7); | |
3620 Tcx = FMA(KP555570233, Tc8, KP831469612 * Tc7); | |
3621 } | |
3622 Tca = Tc6 + Tc9; | |
3623 TiI = Tcx - Tcw; | |
3624 Tcy = Tcw + Tcx; | |
3625 TiA = Tc6 - Tc9; | |
3626 } | |
3627 { | |
3628 E Tce, TcB, Tch, TcA; | |
3629 { | |
3630 E Tcc, Tcd, Tcf, Tcg; | |
3631 Tcc = Tbd - Tbe; | |
3632 Tcd = Tb7 - Tba; | |
3633 Tce = Tcc - Tcd; | |
3634 TcB = Tcc + Tcd; | |
3635 Tcf = Tb2 - Tb3; | |
3636 Tcg = Tbh - Tbg; | |
3637 Tch = Tcf - Tcg; | |
3638 TcA = Tcf + Tcg; | |
3639 } | |
3640 Tci = FMA(KP471396736, Tce, KP881921264 * Tch); | |
3641 TcI = FMA(KP956940335, TcB, KP290284677 * TcA); | |
3642 Tcs = FNMS(KP881921264, Tce, KP471396736 * Tch); | |
3643 TcC = FNMS(KP290284677, TcB, KP956940335 * TcA); | |
3644 } | |
3645 { | |
3646 E Tcl, TcE, Tco, TcD; | |
3647 { | |
3648 E Tcj, Tck, Tcm, Tcn; | |
3649 Tcj = Tbl - Tbm; | |
3650 Tck = TbA - Tbz; | |
3651 Tcl = Tcj - Tck; | |
3652 TcE = Tcj + Tck; | |
3653 Tcm = Tbw - Tbx; | |
3654 Tcn = Tbq - Tbt; | |
3655 Tco = Tcm - Tcn; | |
3656 TcD = Tcm + Tcn; | |
3657 } | |
3658 Tcp = FNMS(KP471396736, Tco, KP881921264 * Tcl); | |
3659 TcJ = FNMS(KP956940335, TcD, KP290284677 * TcE); | |
3660 Tct = FMA(KP881921264, Tco, KP471396736 * Tcl); | |
3661 TcF = FMA(KP290284677, TcD, KP956940335 * TcE); | |
3662 } | |
3663 { | |
3664 E Tcb, Tcq, TiH, TiK; | |
3665 Tcb = Tc3 + Tca; | |
3666 Tcq = Tci + Tcp; | |
3667 ci[WS(rs, 26)] = Tcb - Tcq; | |
3668 cr[WS(rs, 5)] = Tcb + Tcq; | |
3669 TiH = Tct - Tcs; | |
3670 TiK = TiI + TiJ; | |
3671 cr[WS(rs, 37)] = TiH - TiK; | |
3672 ci[WS(rs, 58)] = TiH + TiK; | |
3673 } | |
3674 { | |
3675 E TiL, TiM, Tcr, Tcu; | |
3676 TiL = Tcp - Tci; | |
3677 TiM = TiJ - TiI; | |
3678 cr[WS(rs, 53)] = TiL - TiM; | |
3679 ci[WS(rs, 42)] = TiL + TiM; | |
3680 Tcr = Tc3 - Tca; | |
3681 Tcu = Tcs + Tct; | |
3682 cr[WS(rs, 21)] = Tcr - Tcu; | |
3683 ci[WS(rs, 10)] = Tcr + Tcu; | |
3684 } | |
3685 { | |
3686 E Tcz, TcG, Tiz, TiE; | |
3687 Tcz = Tcv + Tcy; | |
3688 TcG = TcC + TcF; | |
3689 cr[WS(rs, 29)] = Tcz - TcG; | |
3690 ci[WS(rs, 2)] = Tcz + TcG; | |
3691 Tiz = TcJ - TcI; | |
3692 TiE = TiA + TiD; | |
3693 cr[WS(rs, 61)] = Tiz - TiE; | |
3694 ci[WS(rs, 34)] = Tiz + TiE; | |
3695 } | |
3696 { | |
3697 E TiF, TiG, TcH, TcK; | |
3698 TiF = TcF - TcC; | |
3699 TiG = TiD - TiA; | |
3700 cr[WS(rs, 45)] = TiF - TiG; | |
3701 ci[WS(rs, 50)] = TiF + TiG; | |
3702 TcH = Tcv - Tcy; | |
3703 TcK = TcI + TcJ; | |
3704 ci[WS(rs, 18)] = TcH - TcK; | |
3705 cr[WS(rs, 13)] = TcH + TcK; | |
3706 } | |
3707 } | |
3708 { | |
3709 E TaL, TbJ, Tip, Tiv, Tb0, Tiu, TbM, Tik, Tbk, TbW, TbG, TbQ, TbD, TbX, TbH; | |
3710 E TbT; | |
3711 { | |
3712 E TaD, TaK, Til, Tio; | |
3713 TaD = Taz + TaC; | |
3714 TaK = TaG + TaJ; | |
3715 TaL = TaD - TaK; | |
3716 TbJ = TaD + TaK; | |
3717 Til = Tc1 - Tc0; | |
3718 Tio = Tim + Tin; | |
3719 Tip = Til + Tio; | |
3720 Tiv = Tio - Til; | |
3721 } | |
3722 { | |
3723 E TaS, TbK, TaZ, TbL; | |
3724 { | |
3725 E TaO, TaR, TaV, TaY; | |
3726 TaO = TaM + TaN; | |
3727 TaR = TaP + TaQ; | |
3728 TaS = FNMS(KP980785280, TaR, KP195090322 * TaO); | |
3729 TbK = FMA(KP195090322, TaR, KP980785280 * TaO); | |
3730 TaV = TaT + TaU; | |
3731 TaY = TaW + TaX; | |
3732 TaZ = FMA(KP980785280, TaV, KP195090322 * TaY); | |
3733 TbL = FNMS(KP195090322, TaV, KP980785280 * TaY); | |
3734 } | |
3735 Tb0 = TaS + TaZ; | |
3736 Tiu = TbK - TbL; | |
3737 TbM = TbK + TbL; | |
3738 Tik = TaZ - TaS; | |
3739 } | |
3740 { | |
3741 E Tbc, TbO, Tbj, TbP; | |
3742 { | |
3743 E Tb4, Tbb, Tbf, Tbi; | |
3744 Tb4 = Tb2 + Tb3; | |
3745 Tbb = Tb7 + Tba; | |
3746 Tbc = Tb4 - Tbb; | |
3747 TbO = Tb4 + Tbb; | |
3748 Tbf = Tbd + Tbe; | |
3749 Tbi = Tbg + Tbh; | |
3750 Tbj = Tbf - Tbi; | |
3751 TbP = Tbf + Tbi; | |
3752 } | |
3753 Tbk = FMA(KP634393284, Tbc, KP773010453 * Tbj); | |
3754 TbW = FNMS(KP995184726, TbP, KP098017140 * TbO); | |
3755 TbG = FNMS(KP634393284, Tbj, KP773010453 * Tbc); | |
3756 TbQ = FMA(KP995184726, TbO, KP098017140 * TbP); | |
3757 } | |
3758 { | |
3759 E Tbv, TbR, TbC, TbS; | |
3760 { | |
3761 E Tbn, Tbu, Tby, TbB; | |
3762 Tbn = Tbl + Tbm; | |
3763 Tbu = Tbq + Tbt; | |
3764 Tbv = Tbn - Tbu; | |
3765 TbR = Tbn + Tbu; | |
3766 Tby = Tbw + Tbx; | |
3767 TbB = Tbz + TbA; | |
3768 TbC = Tby - TbB; | |
3769 TbS = Tby + TbB; | |
3770 } | |
3771 TbD = FNMS(KP773010453, TbC, KP634393284 * Tbv); | |
3772 TbX = FMA(KP098017140, TbR, KP995184726 * TbS); | |
3773 TbH = FMA(KP773010453, Tbv, KP634393284 * TbC); | |
3774 TbT = FNMS(KP098017140, TbS, KP995184726 * TbR); | |
3775 } | |
3776 { | |
3777 E Tb1, TbE, Tit, Tiw; | |
3778 Tb1 = TaL - Tb0; | |
3779 TbE = Tbk + TbD; | |
3780 ci[WS(rs, 22)] = Tb1 - TbE; | |
3781 cr[WS(rs, 9)] = Tb1 + TbE; | |
3782 Tit = TbD - Tbk; | |
3783 Tiw = Tiu + Tiv; | |
3784 cr[WS(rs, 57)] = Tit - Tiw; | |
3785 ci[WS(rs, 38)] = Tit + Tiw; | |
3786 } | |
3787 { | |
3788 E Tix, Tiy, TbF, TbI; | |
3789 Tix = TbH - TbG; | |
3790 Tiy = Tiv - Tiu; | |
3791 cr[WS(rs, 41)] = Tix - Tiy; | |
3792 ci[WS(rs, 54)] = Tix + Tiy; | |
3793 TbF = TaL + Tb0; | |
3794 TbI = TbG + TbH; | |
3795 cr[WS(rs, 25)] = TbF - TbI; | |
3796 ci[WS(rs, 6)] = TbF + TbI; | |
3797 } | |
3798 { | |
3799 E TbN, TbU, Tij, Tiq; | |
3800 TbN = TbJ + TbM; | |
3801 TbU = TbQ + TbT; | |
3802 ci[WS(rs, 30)] = TbN - TbU; | |
3803 cr[WS(rs, 1)] = TbN + TbU; | |
3804 Tij = TbX - TbW; | |
3805 Tiq = Tik + Tip; | |
3806 cr[WS(rs, 33)] = Tij - Tiq; | |
3807 ci[WS(rs, 62)] = Tij + Tiq; | |
3808 } | |
3809 { | |
3810 E Tir, Tis, TbV, TbY; | |
3811 Tir = TbT - TbQ; | |
3812 Tis = Tip - Tik; | |
3813 cr[WS(rs, 49)] = Tir - Tis; | |
3814 ci[WS(rs, 46)] = Tir + Tis; | |
3815 TbV = TbJ - TbM; | |
3816 TbY = TbW + TbX; | |
3817 cr[WS(rs, 17)] = TbV - TbY; | |
3818 ci[WS(rs, 14)] = TbV + TbY; | |
3819 } | |
3820 } | |
3821 { | |
3822 E T9R, Taj, Ti9, Tif, T9Y, Tie, Tam, Ti6, Ta6, Taw, Tag, Taq, Tad, Tax, Tah; | |
3823 E Tat; | |
3824 { | |
3825 E T9N, T9Q, Ti7, Ti8; | |
3826 T9N = T6b - T6m; | |
3827 T9Q = T9O + T9P; | |
3828 T9R = T9N - T9Q; | |
3829 Taj = T9N + T9Q; | |
3830 Ti7 = T6J - T6y; | |
3831 Ti8 = ThT - ThQ; | |
3832 Ti9 = Ti7 + Ti8; | |
3833 Tif = Ti8 - Ti7; | |
3834 } | |
3835 { | |
3836 E T9U, Tak, T9X, Tal; | |
3837 { | |
3838 E T9S, T9T, T9V, T9W; | |
3839 T9S = T6Q - T71; | |
3840 T9T = T77 - T7a; | |
3841 T9U = FNMS(KP831469612, T9T, KP555570233 * T9S); | |
3842 Tak = FMA(KP831469612, T9S, KP555570233 * T9T); | |
3843 T9V = T7h - T7s; | |
3844 T9W = T7y - T7B; | |
3845 T9X = FMA(KP555570233, T9V, KP831469612 * T9W); | |
3846 Tal = FNMS(KP555570233, T9W, KP831469612 * T9V); | |
3847 } | |
3848 T9Y = T9U + T9X; | |
3849 Tie = Tak - Tal; | |
3850 Tam = Tak + Tal; | |
3851 Ti6 = T9X - T9U; | |
3852 } | |
3853 { | |
3854 E Ta2, Tao, Ta5, Tap; | |
3855 { | |
3856 E Ta0, Ta1, Ta3, Ta4; | |
3857 Ta0 = T8p - T8s; | |
3858 Ta1 = T87 - T8i; | |
3859 Ta2 = Ta0 - Ta1; | |
3860 Tao = Ta0 + Ta1; | |
3861 Ta3 = T7K - T7V; | |
3862 Ta4 = T8v - T8u; | |
3863 Ta5 = Ta3 - Ta4; | |
3864 Tap = Ta3 + Ta4; | |
3865 } | |
3866 Ta6 = FMA(KP471396736, Ta2, KP881921264 * Ta5); | |
3867 Taw = FNMS(KP956940335, Tap, KP290284677 * Tao); | |
3868 Tag = FNMS(KP471396736, Ta5, KP881921264 * Ta2); | |
3869 Taq = FMA(KP956940335, Tao, KP290284677 * Tap); | |
3870 } | |
3871 { | |
3872 E Ta9, Tar, Tac, Tas; | |
3873 { | |
3874 E Ta7, Ta8, Taa, Tab; | |
3875 Ta7 = T8D - T8O; | |
3876 Ta8 = T9n - T9o; | |
3877 Ta9 = Ta7 - Ta8; | |
3878 Tar = Ta7 + Ta8; | |
3879 Taa = T9i - T9l; | |
3880 Tab = T9b - T90; | |
3881 Tac = Taa - Tab; | |
3882 Tas = Taa + Tab; | |
3883 } | |
3884 Tad = FNMS(KP881921264, Tac, KP471396736 * Ta9); | |
3885 Tax = FMA(KP290284677, Tar, KP956940335 * Tas); | |
3886 Tah = FMA(KP881921264, Ta9, KP471396736 * Tac); | |
3887 Tat = FNMS(KP290284677, Tas, KP956940335 * Tar); | |
3888 } | |
3889 { | |
3890 E T9Z, Tae, Tid, Tig; | |
3891 T9Z = T9R - T9Y; | |
3892 Tae = Ta6 + Tad; | |
3893 ci[WS(rs, 20)] = T9Z - Tae; | |
3894 cr[WS(rs, 11)] = T9Z + Tae; | |
3895 Tid = Tad - Ta6; | |
3896 Tig = Tie + Tif; | |
3897 cr[WS(rs, 59)] = Tid - Tig; | |
3898 ci[WS(rs, 36)] = Tid + Tig; | |
3899 } | |
3900 { | |
3901 E Tih, Tii, Taf, Tai; | |
3902 Tih = Tah - Tag; | |
3903 Tii = Tif - Tie; | |
3904 cr[WS(rs, 43)] = Tih - Tii; | |
3905 ci[WS(rs, 52)] = Tih + Tii; | |
3906 Taf = T9R + T9Y; | |
3907 Tai = Tag + Tah; | |
3908 cr[WS(rs, 27)] = Taf - Tai; | |
3909 ci[WS(rs, 4)] = Taf + Tai; | |
3910 } | |
3911 { | |
3912 E Tan, Tau, Ti5, Tia; | |
3913 Tan = Taj + Tam; | |
3914 Tau = Taq + Tat; | |
3915 ci[WS(rs, 28)] = Tan - Tau; | |
3916 cr[WS(rs, 3)] = Tan + Tau; | |
3917 Ti5 = Tax - Taw; | |
3918 Tia = Ti6 + Ti9; | |
3919 cr[WS(rs, 35)] = Ti5 - Tia; | |
3920 ci[WS(rs, 60)] = Ti5 + Tia; | |
3921 } | |
3922 { | |
3923 E Tib, Tic, Tav, Tay; | |
3924 Tib = Tat - Taq; | |
3925 Tic = Ti9 - Ti6; | |
3926 cr[WS(rs, 51)] = Tib - Tic; | |
3927 ci[WS(rs, 44)] = Tib + Tic; | |
3928 Tav = Taj - Tam; | |
3929 Tay = Taw + Tax; | |
3930 cr[WS(rs, 19)] = Tav - Tay; | |
3931 ci[WS(rs, 12)] = Tav + Tay; | |
3932 } | |
3933 } | |
3934 } | |
3935 } | |
3936 } | |
3937 | |
3938 static const tw_instr twinstr[] = { | |
3939 {TW_FULL, 1, 64}, | |
3940 {TW_NEXT, 1, 0} | |
3941 }; | |
3942 | |
3943 static const hc2hc_desc desc = { 64, "hf_64", twinstr, &GENUS, {808, 270, 230, 0} }; | |
3944 | |
3945 void X(codelet_hf_64) (planner *p) { | |
3946 X(khc2hc_register) (p, hf_64, &desc); | |
3947 } | |
3948 #endif /* HAVE_FMA */ |