comparison fft/fftw/fftw-3.3.4/rdft/scalar/r2cf/hf_32.c @ 19:26056e866c29

Add FFTW to comparison table
author Chris Cannam
date Tue, 06 Oct 2015 13:08:39 +0100
parents
children
comparison
equal deleted inserted replaced
18:8db794ca3e0b 19:26056e866c29
1 /*
2 * Copyright (c) 2003, 2007-14 Matteo Frigo
3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
18 *
19 */
20
21 /* This file was automatically generated --- DO NOT EDIT */
22 /* Generated on Tue Mar 4 13:49:10 EST 2014 */
23
24 #include "codelet-rdft.h"
25
26 #ifdef HAVE_FMA
27
28 /* Generated by: ../../../genfft/gen_hc2hc.native -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -n 32 -dit -name hf_32 -include hf.h */
29
30 /*
31 * This function contains 434 FP additions, 260 FP multiplications,
32 * (or, 236 additions, 62 multiplications, 198 fused multiply/add),
33 * 135 stack variables, 7 constants, and 128 memory accesses
34 */
35 #include "hf.h"
36
37 static void hf_32(R *cr, R *ci, const R *W, stride rs, INT mb, INT me, INT ms)
38 {
39 DK(KP831469612, +0.831469612302545237078788377617905756738560812);
40 DK(KP980785280, +0.980785280403230449126182236134239036973933731);
41 DK(KP923879532, +0.923879532511286756128183189396788286822416626);
42 DK(KP668178637, +0.668178637919298919997757686523080761552472251);
43 DK(KP198912367, +0.198912367379658006911597622644676228597850501);
44 DK(KP414213562, +0.414213562373095048801688724209698078569671875);
45 DK(KP707106781, +0.707106781186547524400844362104849039284835938);
46 {
47 INT m;
48 for (m = mb, W = W + ((mb - 1) * 62); m < me; m = m + 1, cr = cr + ms, ci = ci - ms, W = W + 62, MAKE_VOLATILE_STRIDE(64, rs)) {
49 E T6D, T6A;
50 {
51 E T8y, T87, T8, T3w, T83, T3B, T8x, Tl, T6G, Tz, T3J, T5T, T6F, TM, T3Q;
52 E T5U, T46, T5X, T7E, T6M, T5Y, T3Z, T6J, T1f, T7D, T6R, T61, T4e, T6O, T1G;
53 E T60, T4l, T54, T6c, T7d, T7N, T32, T76, T6f, T5r, T4v, T65, T72, T7I, T29;
54 E T6V, T68, T4S, T5t, T5b, T7O, T79, T7e, T3t, T5s, T5i, T4H, T2y, T4B, T6X;
55 E T2m, T4w, T4F, T2s;
56 {
57 E T44, T1d, T3X, T6K, T11, T40, T42, T17, T5h, T5c;
58 {
59 E Ta, Td, Tg, T3x, Tb, Tj, Tf, Tc, Ti;
60 {
61 E T1, T86, T3, T6, T2, T5;
62 T1 = cr[0];
63 T86 = ci[0];
64 T3 = cr[WS(rs, 16)];
65 T6 = ci[WS(rs, 16)];
66 T2 = W[30];
67 T5 = W[31];
68 {
69 E T84, T4, T9, T85, T7;
70 Ta = cr[WS(rs, 8)];
71 Td = ci[WS(rs, 8)];
72 T84 = T2 * T6;
73 T4 = T2 * T3;
74 T9 = W[14];
75 Tg = cr[WS(rs, 24)];
76 T85 = FNMS(T5, T3, T84);
77 T7 = FMA(T5, T6, T4);
78 T3x = T9 * Td;
79 Tb = T9 * Ta;
80 T8y = T86 - T85;
81 T87 = T85 + T86;
82 T8 = T1 + T7;
83 T3w = T1 - T7;
84 Tj = ci[WS(rs, 24)];
85 Tf = W[46];
86 }
87 Tc = W[15];
88 Ti = W[47];
89 }
90 {
91 E Tu, Tx, T3F, Ts, Tw, T3G, Tv;
92 {
93 E To, Tr, Tp, T3E, Tq, Tt;
94 {
95 E T3y, Te, T3A, Tk, T3z, Th, Tn;
96 To = cr[WS(rs, 4)];
97 T3z = Tf * Tj;
98 Th = Tf * Tg;
99 T3y = FNMS(Tc, Ta, T3x);
100 Te = FMA(Tc, Td, Tb);
101 T3A = FNMS(Ti, Tg, T3z);
102 Tk = FMA(Ti, Tj, Th);
103 Tr = ci[WS(rs, 4)];
104 Tn = W[6];
105 T83 = T3y + T3A;
106 T3B = T3y - T3A;
107 T8x = Te - Tk;
108 Tl = Te + Tk;
109 Tp = Tn * To;
110 T3E = Tn * Tr;
111 }
112 Tq = W[7];
113 Tu = cr[WS(rs, 20)];
114 Tx = ci[WS(rs, 20)];
115 Tt = W[38];
116 T3F = FNMS(Tq, To, T3E);
117 Ts = FMA(Tq, Tr, Tp);
118 Tw = W[39];
119 T3G = Tt * Tx;
120 Tv = Tt * Tu;
121 }
122 {
123 E T3M, TF, TH, TK, TG, TJ, TE, TD, TC;
124 {
125 E TB, T3H, Ty, TA, T3I, T3D, T3L;
126 TB = cr[WS(rs, 28)];
127 TE = ci[WS(rs, 28)];
128 T3H = FNMS(Tw, Tu, T3G);
129 Ty = FMA(Tw, Tx, Tv);
130 TA = W[54];
131 TD = W[55];
132 T6G = T3F + T3H;
133 T3I = T3F - T3H;
134 Tz = Ts + Ty;
135 T3D = Ts - Ty;
136 T3L = TA * TE;
137 TC = TA * TB;
138 T3J = T3D - T3I;
139 T5T = T3D + T3I;
140 T3M = FNMS(TD, TB, T3L);
141 }
142 TF = FMA(TD, TE, TC);
143 TH = cr[WS(rs, 12)];
144 TK = ci[WS(rs, 12)];
145 TG = W[22];
146 TJ = W[23];
147 {
148 E TU, T3U, T13, T16, T3W, T10, T12, T15, T41, T14;
149 {
150 E T19, T1c, T18, T1b, T3P, T3K;
151 {
152 E TQ, TT, T3N, TI, TP, TS;
153 TQ = cr[WS(rs, 2)];
154 TT = ci[WS(rs, 2)];
155 T3N = TG * TK;
156 TI = TG * TH;
157 TP = W[2];
158 TS = W[3];
159 {
160 E T3O, TL, T3T, TR;
161 T3O = FNMS(TJ, TH, T3N);
162 TL = FMA(TJ, TK, TI);
163 T3T = TP * TT;
164 TR = TP * TQ;
165 T6F = T3M + T3O;
166 T3P = T3M - T3O;
167 TM = TF + TL;
168 T3K = TF - TL;
169 TU = FMA(TS, TT, TR);
170 T3U = FNMS(TS, TQ, T3T);
171 }
172 }
173 T3Q = T3K + T3P;
174 T5U = T3K - T3P;
175 T19 = cr[WS(rs, 26)];
176 T1c = ci[WS(rs, 26)];
177 T18 = W[50];
178 T1b = W[51];
179 {
180 E TW, TZ, TY, T3V, TX, T43, T1a, TV;
181 TW = cr[WS(rs, 18)];
182 TZ = ci[WS(rs, 18)];
183 T43 = T18 * T1c;
184 T1a = T18 * T19;
185 TV = W[34];
186 TY = W[35];
187 T44 = FNMS(T1b, T19, T43);
188 T1d = FMA(T1b, T1c, T1a);
189 T3V = TV * TZ;
190 TX = TV * TW;
191 T13 = cr[WS(rs, 10)];
192 T16 = ci[WS(rs, 10)];
193 T3W = FNMS(TY, TW, T3V);
194 T10 = FMA(TY, TZ, TX);
195 T12 = W[18];
196 T15 = W[19];
197 }
198 }
199 T3X = T3U - T3W;
200 T6K = T3U + T3W;
201 T11 = TU + T10;
202 T40 = TU - T10;
203 T41 = T12 * T16;
204 T14 = T12 * T13;
205 T42 = FNMS(T15, T13, T41);
206 T17 = FMA(T15, T16, T14);
207 }
208 }
209 }
210 }
211 {
212 E T49, T1l, T4j, T1E, T1u, T1x, T1w, T4b, T1r, T4g, T1v;
213 {
214 E T1A, T1D, T1C, T4i, T1B;
215 {
216 E T1h, T1k, T1g, T1j, T48, T1i, T1z;
217 T1h = cr[WS(rs, 30)];
218 T1k = ci[WS(rs, 30)];
219 {
220 E T6L, T45, T1e, T3Y;
221 T6L = T42 + T44;
222 T45 = T42 - T44;
223 T1e = T17 + T1d;
224 T3Y = T17 - T1d;
225 T46 = T40 - T45;
226 T5X = T40 + T45;
227 T7E = T6K + T6L;
228 T6M = T6K - T6L;
229 T5Y = T3X - T3Y;
230 T3Z = T3X + T3Y;
231 T6J = T11 - T1e;
232 T1f = T11 + T1e;
233 T1g = W[58];
234 }
235 T1j = W[59];
236 T1A = cr[WS(rs, 22)];
237 T1D = ci[WS(rs, 22)];
238 T48 = T1g * T1k;
239 T1i = T1g * T1h;
240 T1z = W[42];
241 T1C = W[43];
242 T49 = FNMS(T1j, T1h, T48);
243 T1l = FMA(T1j, T1k, T1i);
244 T4i = T1z * T1D;
245 T1B = T1z * T1A;
246 }
247 {
248 E T1n, T1q, T1m, T1p, T4a, T1o, T1t;
249 T1n = cr[WS(rs, 14)];
250 T1q = ci[WS(rs, 14)];
251 T4j = FNMS(T1C, T1A, T4i);
252 T1E = FMA(T1C, T1D, T1B);
253 T1m = W[26];
254 T1p = W[27];
255 T1u = cr[WS(rs, 6)];
256 T1x = ci[WS(rs, 6)];
257 T4a = T1m * T1q;
258 T1o = T1m * T1n;
259 T1t = W[10];
260 T1w = W[11];
261 T4b = FNMS(T1p, T1n, T4a);
262 T1r = FMA(T1p, T1q, T1o);
263 T4g = T1t * T1x;
264 T1v = T1t * T1u;
265 }
266 }
267 {
268 E T4c, T6P, T1s, T4f, T4h, T1y;
269 T4c = T49 - T4b;
270 T6P = T49 + T4b;
271 T1s = T1l + T1r;
272 T4f = T1l - T1r;
273 T4h = FNMS(T1w, T1u, T4g);
274 T1y = FMA(T1w, T1x, T1v);
275 {
276 E T4k, T6Q, T4d, T1F;
277 T4k = T4h - T4j;
278 T6Q = T4h + T4j;
279 T4d = T1y - T1E;
280 T1F = T1y + T1E;
281 T7D = T6P + T6Q;
282 T6R = T6P - T6Q;
283 T61 = T4c - T4d;
284 T4e = T4c + T4d;
285 T6O = T1s - T1F;
286 T1G = T1s + T1F;
287 T60 = T4f + T4k;
288 T4l = T4f - T4k;
289 }
290 }
291 }
292 {
293 E T5n, T2H, T52, T30, T2Q, T2T, T2S, T5p, T2N, T4Z, T2R;
294 {
295 E T2W, T2Z, T2Y, T51, T2X;
296 {
297 E T2D, T2G, T2C, T2F, T5m, T2E, T2V;
298 T2D = cr[WS(rs, 31)];
299 T2G = ci[WS(rs, 31)];
300 T2C = W[60];
301 T2F = W[61];
302 T2W = cr[WS(rs, 23)];
303 T2Z = ci[WS(rs, 23)];
304 T5m = T2C * T2G;
305 T2E = T2C * T2D;
306 T2V = W[44];
307 T2Y = W[45];
308 T5n = FNMS(T2F, T2D, T5m);
309 T2H = FMA(T2F, T2G, T2E);
310 T51 = T2V * T2Z;
311 T2X = T2V * T2W;
312 }
313 {
314 E T2J, T2M, T2I, T2L, T5o, T2K, T2P;
315 T2J = cr[WS(rs, 15)];
316 T2M = ci[WS(rs, 15)];
317 T52 = FNMS(T2Y, T2W, T51);
318 T30 = FMA(T2Y, T2Z, T2X);
319 T2I = W[28];
320 T2L = W[29];
321 T2Q = cr[WS(rs, 7)];
322 T2T = ci[WS(rs, 7)];
323 T5o = T2I * T2M;
324 T2K = T2I * T2J;
325 T2P = W[12];
326 T2S = W[13];
327 T5p = FNMS(T2L, T2J, T5o);
328 T2N = FMA(T2L, T2M, T2K);
329 T4Z = T2P * T2T;
330 T2R = T2P * T2Q;
331 }
332 }
333 {
334 E T5q, T7b, T2O, T4Y, T50, T2U;
335 T5q = T5n - T5p;
336 T7b = T5n + T5p;
337 T2O = T2H + T2N;
338 T4Y = T2H - T2N;
339 T50 = FNMS(T2S, T2Q, T4Z);
340 T2U = FMA(T2S, T2T, T2R);
341 {
342 E T7c, T53, T31, T5l;
343 T7c = T50 + T52;
344 T53 = T50 - T52;
345 T31 = T2U + T30;
346 T5l = T30 - T2U;
347 T54 = T4Y - T53;
348 T6c = T4Y + T53;
349 T7d = T7b - T7c;
350 T7N = T7b + T7c;
351 T32 = T2O + T31;
352 T76 = T2O - T31;
353 T6f = T5q + T5l;
354 T5r = T5l - T5q;
355 }
356 }
357 }
358 {
359 E T4N, T1O, T4t, T27, T1X, T20, T1Z, T4P, T1U, T4q, T1Y;
360 {
361 E T23, T26, T25, T4s, T24;
362 {
363 E T1K, T1N, T1J, T1M, T4M, T1L, T22;
364 T1K = cr[WS(rs, 1)];
365 T1N = ci[WS(rs, 1)];
366 T1J = W[0];
367 T1M = W[1];
368 T23 = cr[WS(rs, 25)];
369 T26 = ci[WS(rs, 25)];
370 T4M = T1J * T1N;
371 T1L = T1J * T1K;
372 T22 = W[48];
373 T25 = W[49];
374 T4N = FNMS(T1M, T1K, T4M);
375 T1O = FMA(T1M, T1N, T1L);
376 T4s = T22 * T26;
377 T24 = T22 * T23;
378 }
379 {
380 E T1Q, T1T, T1P, T1S, T4O, T1R, T1W;
381 T1Q = cr[WS(rs, 17)];
382 T1T = ci[WS(rs, 17)];
383 T4t = FNMS(T25, T23, T4s);
384 T27 = FMA(T25, T26, T24);
385 T1P = W[32];
386 T1S = W[33];
387 T1X = cr[WS(rs, 9)];
388 T20 = ci[WS(rs, 9)];
389 T4O = T1P * T1T;
390 T1R = T1P * T1Q;
391 T1W = W[16];
392 T1Z = W[17];
393 T4P = FNMS(T1S, T1Q, T4O);
394 T1U = FMA(T1S, T1T, T1R);
395 T4q = T1W * T20;
396 T1Y = T1W * T1X;
397 }
398 }
399 {
400 E T4Q, T70, T1V, T4p, T4r, T21;
401 T4Q = T4N - T4P;
402 T70 = T4N + T4P;
403 T1V = T1O + T1U;
404 T4p = T1O - T1U;
405 T4r = FNMS(T1Z, T1X, T4q);
406 T21 = FMA(T1Z, T20, T1Y);
407 {
408 E T71, T4u, T4R, T28;
409 T71 = T4r + T4t;
410 T4u = T4r - T4t;
411 T4R = T21 - T27;
412 T28 = T21 + T27;
413 T4v = T4p - T4u;
414 T65 = T4p + T4u;
415 T72 = T70 - T71;
416 T7I = T70 + T71;
417 T29 = T1V + T28;
418 T6V = T1V - T28;
419 T68 = T4Q - T4R;
420 T4S = T4Q + T4R;
421 }
422 }
423 }
424 {
425 E T57, T38, T5g, T3r, T3h, T3k, T3j, T59, T3e, T5d, T3i;
426 {
427 E T3n, T3q, T3p, T5f, T3o;
428 {
429 E T34, T37, T33, T36, T56, T35, T3m;
430 T34 = cr[WS(rs, 3)];
431 T37 = ci[WS(rs, 3)];
432 T33 = W[4];
433 T36 = W[5];
434 T3n = cr[WS(rs, 11)];
435 T3q = ci[WS(rs, 11)];
436 T56 = T33 * T37;
437 T35 = T33 * T34;
438 T3m = W[20];
439 T3p = W[21];
440 T57 = FNMS(T36, T34, T56);
441 T38 = FMA(T36, T37, T35);
442 T5f = T3m * T3q;
443 T3o = T3m * T3n;
444 }
445 {
446 E T3a, T3d, T39, T3c, T58, T3b, T3g;
447 T3a = cr[WS(rs, 19)];
448 T3d = ci[WS(rs, 19)];
449 T5g = FNMS(T3p, T3n, T5f);
450 T3r = FMA(T3p, T3q, T3o);
451 T39 = W[36];
452 T3c = W[37];
453 T3h = cr[WS(rs, 27)];
454 T3k = ci[WS(rs, 27)];
455 T58 = T39 * T3d;
456 T3b = T39 * T3a;
457 T3g = W[52];
458 T3j = W[53];
459 T59 = FNMS(T3c, T3a, T58);
460 T3e = FMA(T3c, T3d, T3b);
461 T5d = T3g * T3k;
462 T3i = T3g * T3h;
463 }
464 }
465 {
466 E T5a, T78, T3f, T55, T5e, T3l, T77, T3s;
467 T5a = T57 - T59;
468 T78 = T57 + T59;
469 T3f = T38 + T3e;
470 T55 = T38 - T3e;
471 T5e = FNMS(T3j, T3h, T5d);
472 T3l = FMA(T3j, T3k, T3i);
473 T5h = T5e - T5g;
474 T77 = T5e + T5g;
475 T3s = T3l + T3r;
476 T5c = T3l - T3r;
477 T5t = T55 + T5a;
478 T5b = T55 - T5a;
479 T7O = T78 + T77;
480 T79 = T77 - T78;
481 T7e = T3s - T3f;
482 T3t = T3f + T3s;
483 }
484 }
485 {
486 E T4y, T2f, T2o, T2r, T4A, T2l, T2n, T2q, T4E, T2p;
487 {
488 E T2u, T2x, T2t, T2w;
489 {
490 E T2b, T2e, T2d, T4x, T2c, T2a;
491 T2b = cr[WS(rs, 5)];
492 T2e = ci[WS(rs, 5)];
493 T2a = W[8];
494 T5s = T5c - T5h;
495 T5i = T5c + T5h;
496 T2d = W[9];
497 T4x = T2a * T2e;
498 T2c = T2a * T2b;
499 T2u = cr[WS(rs, 13)];
500 T2x = ci[WS(rs, 13)];
501 T4y = FNMS(T2d, T2b, T4x);
502 T2f = FMA(T2d, T2e, T2c);
503 T2t = W[24];
504 T2w = W[25];
505 }
506 {
507 E T2h, T2k, T2j, T4z, T2i, T4G, T2v, T2g;
508 T2h = cr[WS(rs, 21)];
509 T2k = ci[WS(rs, 21)];
510 T4G = T2t * T2x;
511 T2v = T2t * T2u;
512 T2g = W[40];
513 T2j = W[41];
514 T4H = FNMS(T2w, T2u, T4G);
515 T2y = FMA(T2w, T2x, T2v);
516 T4z = T2g * T2k;
517 T2i = T2g * T2h;
518 T2o = cr[WS(rs, 29)];
519 T2r = ci[WS(rs, 29)];
520 T4A = FNMS(T2j, T2h, T4z);
521 T2l = FMA(T2j, T2k, T2i);
522 T2n = W[56];
523 T2q = W[57];
524 }
525 }
526 T4B = T4y - T4A;
527 T6X = T4y + T4A;
528 T2m = T2f + T2l;
529 T4w = T2f - T2l;
530 T4E = T2n * T2r;
531 T2p = T2n * T2o;
532 T4F = FNMS(T2q, T2o, T4E);
533 T2s = FMA(T2q, T2r, T2p);
534 }
535 }
536 {
537 E T6E, T8j, T6Y, T73, T6H, T8k, T5S, T8O, T8N, T5V, T6g, T6d, T69, T66, T5O;
538 E T5R;
539 {
540 E T4T, T4C, T4J, T4U, T7S, T7V;
541 {
542 E T7C, TO, T80, T7Z, T8e, T89, T8d, T1H, T8b, T3v, T7T, T7L, T7U, T7Q, T2A;
543 E T7P, T7K, T7W, T1I;
544 {
545 E T7X, T7Y, T7J, T82, T88;
546 {
547 E Tm, T4I, T6W, T4D, T2z, TN;
548 T6E = T8 - Tl;
549 Tm = T8 + Tl;
550 T4T = T4w + T4B;
551 T4C = T4w - T4B;
552 T4I = T4F - T4H;
553 T6W = T4F + T4H;
554 T4D = T2s - T2y;
555 T2z = T2s + T2y;
556 TN = Tz + TM;
557 T8j = Tz - TM;
558 T6Y = T6W - T6X;
559 T7J = T6X + T6W;
560 T4J = T4D + T4I;
561 T4U = T4I - T4D;
562 T2A = T2m + T2z;
563 T73 = T2m - T2z;
564 T7C = Tm - TN;
565 TO = Tm + TN;
566 }
567 T7P = T7N - T7O;
568 T7X = T7N + T7O;
569 T7Y = T7I + T7J;
570 T7K = T7I - T7J;
571 T6H = T6F - T6G;
572 T82 = T6G + T6F;
573 T88 = T83 + T87;
574 T8k = T87 - T83;
575 T80 = T7Y + T7X;
576 T7Z = T7X - T7Y;
577 T8e = T88 - T82;
578 T89 = T82 + T88;
579 }
580 {
581 E T7H, T7M, T2B, T3u;
582 T7H = T29 - T2A;
583 T2B = T29 + T2A;
584 T3u = T32 + T3t;
585 T7M = T32 - T3t;
586 T8d = T1f - T1G;
587 T1H = T1f + T1G;
588 T8b = T3u - T2B;
589 T3v = T2B + T3u;
590 T7T = T7H - T7K;
591 T7L = T7H + T7K;
592 T7U = T7M + T7P;
593 T7Q = T7M - T7P;
594 }
595 T7W = TO - T1H;
596 T1I = TO + T1H;
597 {
598 E T8g, T8h, T8f, T8i;
599 {
600 E T7R, T8c, T8a, T7G, T81, T7F;
601 T8g = T7Q - T7L;
602 T7R = T7L + T7Q;
603 T81 = T7E + T7D;
604 T7F = T7D - T7E;
605 cr[0] = T1I + T3v;
606 ci[WS(rs, 15)] = T1I - T3v;
607 ci[WS(rs, 7)] = T7W + T7Z;
608 cr[WS(rs, 8)] = T7W - T7Z;
609 T8c = T89 - T81;
610 T8a = T81 + T89;
611 T7G = T7C - T7F;
612 T7S = T7C + T7F;
613 T8h = T8e - T8d;
614 T8f = T8d + T8e;
615 ci[WS(rs, 23)] = T8b + T8c;
616 cr[WS(rs, 24)] = T8b - T8c;
617 ci[WS(rs, 31)] = T80 + T8a;
618 cr[WS(rs, 16)] = T80 - T8a;
619 cr[WS(rs, 4)] = FMA(KP707106781, T7R, T7G);
620 ci[WS(rs, 11)] = FNMS(KP707106781, T7R, T7G);
621 }
622 T8i = T7U - T7T;
623 T7V = T7T + T7U;
624 ci[WS(rs, 19)] = FMA(KP707106781, T8g, T8f);
625 cr[WS(rs, 28)] = FMS(KP707106781, T8g, T8f);
626 ci[WS(rs, 27)] = FMA(KP707106781, T8i, T8h);
627 cr[WS(rs, 20)] = FMS(KP707106781, T8i, T8h);
628 }
629 }
630 {
631 E T5C, T3S, T8C, T4n, T8H, T8B, T8I, T5F, T4L, T5H, T5M, T5Q, T5A, T5w, T4V;
632 {
633 E T5D, T47, T4m, T5E, T8z, T8A, T3C, T3R, T5j, T5u;
634 T5S = T3w + T3B;
635 T3C = T3w - T3B;
636 T3R = T3J + T3Q;
637 T8O = T3Q - T3J;
638 T5D = FNMS(KP414213562, T3Z, T46);
639 T47 = FMA(KP414213562, T46, T3Z);
640 ci[WS(rs, 3)] = FMA(KP707106781, T7V, T7S);
641 cr[WS(rs, 12)] = FNMS(KP707106781, T7V, T7S);
642 T5C = FMA(KP707106781, T3R, T3C);
643 T3S = FNMS(KP707106781, T3R, T3C);
644 T4m = FNMS(KP414213562, T4l, T4e);
645 T5E = FMA(KP414213562, T4e, T4l);
646 T8N = T8y - T8x;
647 T8z = T8x + T8y;
648 T8A = T5T - T5U;
649 T5V = T5T + T5U;
650 T8C = T47 + T4m;
651 T4n = T47 - T4m;
652 T8H = FNMS(KP707106781, T8A, T8z);
653 T8B = FMA(KP707106781, T8A, T8z);
654 T6g = T5i - T5b;
655 T5j = T5b + T5i;
656 T5u = T5s - T5t;
657 T6d = T5t + T5s;
658 {
659 E T5K, T5k, T5L, T5v, T4K;
660 T69 = T4J - T4C;
661 T4K = T4C + T4J;
662 T8I = T5E - T5D;
663 T5F = T5D + T5E;
664 T5K = FMA(KP707106781, T5j, T54);
665 T5k = FNMS(KP707106781, T5j, T54);
666 T5L = FMA(KP707106781, T5u, T5r);
667 T5v = FNMS(KP707106781, T5u, T5r);
668 T4L = FNMS(KP707106781, T4K, T4v);
669 T5H = FMA(KP707106781, T4K, T4v);
670 T5M = FNMS(KP198912367, T5L, T5K);
671 T5Q = FMA(KP198912367, T5K, T5L);
672 T5A = FNMS(KP668178637, T5k, T5v);
673 T5w = FMA(KP668178637, T5v, T5k);
674 T4V = T4T + T4U;
675 T66 = T4T - T4U;
676 }
677 }
678 {
679 E T5y, T4o, T8J, T8L, T5I, T4W;
680 T5y = FNMS(KP923879532, T4n, T3S);
681 T4o = FMA(KP923879532, T4n, T3S);
682 T8J = FMA(KP923879532, T8I, T8H);
683 T8L = FNMS(KP923879532, T8I, T8H);
684 T5I = FMA(KP707106781, T4V, T4S);
685 T4W = FNMS(KP707106781, T4V, T4S);
686 {
687 E T8G, T8F, T8D, T8E;
688 {
689 E T5G, T5P, T5z, T4X, T5N, T5J;
690 T5O = FNMS(KP923879532, T5F, T5C);
691 T5G = FMA(KP923879532, T5F, T5C);
692 T5J = FNMS(KP198912367, T5I, T5H);
693 T5P = FMA(KP198912367, T5H, T5I);
694 T5z = FNMS(KP668178637, T4L, T4W);
695 T4X = FMA(KP668178637, T4W, T4L);
696 T5N = T5J + T5M;
697 T8G = T5M - T5J;
698 T8F = FNMS(KP923879532, T8C, T8B);
699 T8D = FMA(KP923879532, T8C, T8B);
700 {
701 E T5B, T8K, T8M, T5x;
702 T5B = T5z + T5A;
703 T8K = T5z - T5A;
704 T8M = T5w - T4X;
705 T5x = T4X + T5w;
706 ci[0] = FMA(KP980785280, T5N, T5G);
707 cr[WS(rs, 15)] = FNMS(KP980785280, T5N, T5G);
708 ci[WS(rs, 4)] = FNMS(KP831469612, T5B, T5y);
709 cr[WS(rs, 11)] = FMA(KP831469612, T5B, T5y);
710 ci[WS(rs, 28)] = FMA(KP831469612, T8K, T8J);
711 cr[WS(rs, 19)] = FMS(KP831469612, T8K, T8J);
712 ci[WS(rs, 20)] = FMA(KP831469612, T8M, T8L);
713 cr[WS(rs, 27)] = FMS(KP831469612, T8M, T8L);
714 cr[WS(rs, 3)] = FMA(KP831469612, T5x, T4o);
715 ci[WS(rs, 12)] = FNMS(KP831469612, T5x, T4o);
716 T8E = T5Q - T5P;
717 T5R = T5P + T5Q;
718 }
719 }
720 ci[WS(rs, 16)] = FMA(KP980785280, T8E, T8D);
721 cr[WS(rs, 31)] = FMS(KP980785280, T8E, T8D);
722 ci[WS(rs, 24)] = FMA(KP980785280, T8G, T8F);
723 cr[WS(rs, 23)] = FMS(KP980785280, T8G, T8F);
724 }
725 }
726 }
727 }
728 {
729 E T7y, T8q, T8p, T7B;
730 {
731 E T7a, T7m, T6I, T7f, T7A, T7w, T8r, T8l, T8m, T6T, T7k, T75, T8s, T7p, T7z;
732 E T7t;
733 {
734 E T7n, T6N, T6S, T7o, T7u, T7v;
735 T7a = T76 - T79;
736 T7u = T76 + T79;
737 cr[WS(rs, 7)] = FMA(KP980785280, T5R, T5O);
738 ci[WS(rs, 8)] = FNMS(KP980785280, T5R, T5O);
739 T7m = T6E + T6H;
740 T6I = T6E - T6H;
741 T7v = T7e - T7d;
742 T7f = T7d + T7e;
743 T7n = T6J - T6M;
744 T6N = T6J + T6M;
745 T7A = FMA(KP414213562, T7u, T7v);
746 T7w = FNMS(KP414213562, T7v, T7u);
747 T8r = T8k - T8j;
748 T8l = T8j + T8k;
749 T6S = T6O - T6R;
750 T7o = T6O + T6R;
751 {
752 E T7r, T7s, T6Z, T74;
753 T7r = T6V + T6Y;
754 T6Z = T6V - T6Y;
755 T74 = T72 - T73;
756 T7s = T72 + T73;
757 T8m = T6N - T6S;
758 T6T = T6N + T6S;
759 T7k = FNMS(KP414213562, T6Z, T74);
760 T75 = FMA(KP414213562, T74, T6Z);
761 T8s = T7o - T7n;
762 T7p = T7n + T7o;
763 T7z = FMA(KP414213562, T7r, T7s);
764 T7t = FNMS(KP414213562, T7s, T7r);
765 }
766 }
767 {
768 E T7i, T6U, T8t, T8v, T7j, T7g;
769 T7i = FNMS(KP707106781, T6T, T6I);
770 T6U = FMA(KP707106781, T6T, T6I);
771 T8t = FMA(KP707106781, T8s, T8r);
772 T8v = FNMS(KP707106781, T8s, T8r);
773 T7j = FMA(KP414213562, T7a, T7f);
774 T7g = FNMS(KP414213562, T7f, T7a);
775 {
776 E T7q, T7x, T8n, T8o;
777 T7y = FNMS(KP707106781, T7p, T7m);
778 T7q = FMA(KP707106781, T7p, T7m);
779 {
780 E T7l, T8u, T8w, T7h;
781 T7l = T7j - T7k;
782 T8u = T7k + T7j;
783 T8w = T7g - T75;
784 T7h = T75 + T7g;
785 ci[WS(rs, 5)] = FMA(KP923879532, T7l, T7i);
786 cr[WS(rs, 10)] = FNMS(KP923879532, T7l, T7i);
787 ci[WS(rs, 29)] = FMA(KP923879532, T8u, T8t);
788 cr[WS(rs, 18)] = FMS(KP923879532, T8u, T8t);
789 ci[WS(rs, 21)] = FMA(KP923879532, T8w, T8v);
790 cr[WS(rs, 26)] = FMS(KP923879532, T8w, T8v);
791 cr[WS(rs, 2)] = FMA(KP923879532, T7h, T6U);
792 ci[WS(rs, 13)] = FNMS(KP923879532, T7h, T6U);
793 T7x = T7t + T7w;
794 T8q = T7w - T7t;
795 }
796 T8p = FNMS(KP707106781, T8m, T8l);
797 T8n = FMA(KP707106781, T8m, T8l);
798 T8o = T7A - T7z;
799 T7B = T7z + T7A;
800 ci[WS(rs, 1)] = FMA(KP923879532, T7x, T7q);
801 cr[WS(rs, 14)] = FNMS(KP923879532, T7x, T7q);
802 ci[WS(rs, 17)] = FMA(KP923879532, T8o, T8n);
803 cr[WS(rs, 30)] = FMS(KP923879532, T8o, T8n);
804 }
805 }
806 }
807 {
808 E T6o, T5W, T8W, T63, T8V, T8P, T8Q, T6r, T6e, T6w;
809 {
810 E T6q, T6p, T5Z, T62;
811 ci[WS(rs, 25)] = FMA(KP923879532, T8q, T8p);
812 cr[WS(rs, 22)] = FMS(KP923879532, T8q, T8p);
813 cr[WS(rs, 6)] = FMA(KP923879532, T7B, T7y);
814 ci[WS(rs, 9)] = FNMS(KP923879532, T7B, T7y);
815 T6q = FNMS(KP414213562, T5X, T5Y);
816 T5Z = FMA(KP414213562, T5Y, T5X);
817 T62 = FNMS(KP414213562, T61, T60);
818 T6p = FMA(KP414213562, T60, T61);
819 T6o = FNMS(KP707106781, T5V, T5S);
820 T5W = FMA(KP707106781, T5V, T5S);
821 T8W = T5Z - T62;
822 T63 = T5Z + T62;
823 T8V = FNMS(KP707106781, T8O, T8N);
824 T8P = FMA(KP707106781, T8O, T8N);
825 T8Q = T6q + T6p;
826 T6r = T6p - T6q;
827 T6e = FMA(KP707106781, T6d, T6c);
828 T6w = FNMS(KP707106781, T6d, T6c);
829 }
830 {
831 E T6k, T8U, T6z, T6n, T8S, T8T, T8R, T6s;
832 {
833 E T64, T6y, T6l, T6i, T6v, T6m, T6b, T8X, T8Z, T8Y, T6j, T90;
834 {
835 E T6C, T6B, T6x, T6h;
836 T6k = FNMS(KP923879532, T63, T5W);
837 T64 = FMA(KP923879532, T63, T5W);
838 T6x = FNMS(KP707106781, T6g, T6f);
839 T6h = FMA(KP707106781, T6g, T6f);
840 {
841 E T6t, T67, T6u, T6a;
842 T6t = FNMS(KP707106781, T66, T65);
843 T67 = FMA(KP707106781, T66, T65);
844 T6u = FNMS(KP707106781, T69, T68);
845 T6a = FMA(KP707106781, T69, T68);
846 T6y = FMA(KP668178637, T6x, T6w);
847 T6C = FNMS(KP668178637, T6w, T6x);
848 T6l = FMA(KP198912367, T6e, T6h);
849 T6i = FNMS(KP198912367, T6h, T6e);
850 T6v = FNMS(KP668178637, T6u, T6t);
851 T6B = FMA(KP668178637, T6t, T6u);
852 T6m = FNMS(KP198912367, T67, T6a);
853 T6b = FMA(KP198912367, T6a, T67);
854 }
855 T8X = FMA(KP923879532, T8W, T8V);
856 T8Z = FNMS(KP923879532, T8W, T8V);
857 T6D = T6B - T6C;
858 T8Y = T6B + T6C;
859 }
860 T8U = T6i - T6b;
861 T6j = T6b + T6i;
862 T90 = T6y - T6v;
863 T6z = T6v + T6y;
864 ci[WS(rs, 18)] = FNMS(KP831469612, T8Y, T8X);
865 cr[WS(rs, 29)] = -(FMA(KP831469612, T8Y, T8X));
866 cr[WS(rs, 1)] = FMA(KP980785280, T6j, T64);
867 ci[WS(rs, 14)] = FNMS(KP980785280, T6j, T64);
868 cr[WS(rs, 21)] = FMS(KP831469612, T90, T8Z);
869 ci[WS(rs, 26)] = FMA(KP831469612, T90, T8Z);
870 T6n = T6l - T6m;
871 T8S = T6m + T6l;
872 }
873 T6A = FNMS(KP923879532, T6r, T6o);
874 T6s = FMA(KP923879532, T6r, T6o);
875 T8T = FNMS(KP923879532, T8Q, T8P);
876 T8R = FMA(KP923879532, T8Q, T8P);
877 ci[WS(rs, 6)] = FMA(KP980785280, T6n, T6k);
878 cr[WS(rs, 9)] = FNMS(KP980785280, T6n, T6k);
879 ci[WS(rs, 2)] = FMA(KP831469612, T6z, T6s);
880 cr[WS(rs, 13)] = FNMS(KP831469612, T6z, T6s);
881 ci[WS(rs, 30)] = FMA(KP980785280, T8S, T8R);
882 cr[WS(rs, 17)] = FMS(KP980785280, T8S, T8R);
883 ci[WS(rs, 22)] = FMA(KP980785280, T8U, T8T);
884 cr[WS(rs, 25)] = FMS(KP980785280, T8U, T8T);
885 }
886 }
887 }
888 }
889 }
890 cr[WS(rs, 5)] = FMA(KP831469612, T6D, T6A);
891 ci[WS(rs, 10)] = FNMS(KP831469612, T6D, T6A);
892 }
893 }
894 }
895
896 static const tw_instr twinstr[] = {
897 {TW_FULL, 1, 32},
898 {TW_NEXT, 1, 0}
899 };
900
901 static const hc2hc_desc desc = { 32, "hf_32", twinstr, &GENUS, {236, 62, 198, 0} };
902
903 void X(codelet_hf_32) (planner *p) {
904 X(khc2hc_register) (p, hf_32, &desc);
905 }
906 #else /* HAVE_FMA */
907
908 /* Generated by: ../../../genfft/gen_hc2hc.native -compact -variables 4 -pipeline-latency 4 -n 32 -dit -name hf_32 -include hf.h */
909
910 /*
911 * This function contains 434 FP additions, 208 FP multiplications,
912 * (or, 340 additions, 114 multiplications, 94 fused multiply/add),
913 * 96 stack variables, 7 constants, and 128 memory accesses
914 */
915 #include "hf.h"
916
917 static void hf_32(R *cr, R *ci, const R *W, stride rs, INT mb, INT me, INT ms)
918 {
919 DK(KP555570233, +0.555570233019602224742830813948532874374937191);
920 DK(KP831469612, +0.831469612302545237078788377617905756738560812);
921 DK(KP980785280, +0.980785280403230449126182236134239036973933731);
922 DK(KP195090322, +0.195090322016128267848284868477022240927691618);
923 DK(KP382683432, +0.382683432365089771728459984030398866761344562);
924 DK(KP923879532, +0.923879532511286756128183189396788286822416626);
925 DK(KP707106781, +0.707106781186547524400844362104849039284835938);
926 {
927 INT m;
928 for (m = mb, W = W + ((mb - 1) * 62); m < me; m = m + 1, cr = cr + ms, ci = ci - ms, W = W + 62, MAKE_VOLATILE_STRIDE(64, rs)) {
929 E Tj, T5F, T7C, T7Q, T35, T4T, T78, T7m, T1Q, T61, T5Y, T6J, T3K, T56, T41;
930 E T59, T2B, T67, T6e, T6O, T4b, T5g, T4s, T5d, TG, T7l, T5I, T73, T3a, T4U;
931 E T3f, T4V, T14, T5K, T5N, T6F, T3m, T4Z, T3r, T4Y, T1r, T5P, T5S, T6E, T3x;
932 E T52, T3C, T51, T2d, T5Z, T64, T6K, T3V, T5a, T44, T57, T2Y, T6f, T6a, T6P;
933 E T4m, T5e, T4v, T5h;
934 {
935 E T1, T76, T6, T75, Tc, T32, Th, T33;
936 T1 = cr[0];
937 T76 = ci[0];
938 {
939 E T3, T5, T2, T4;
940 T3 = cr[WS(rs, 16)];
941 T5 = ci[WS(rs, 16)];
942 T2 = W[30];
943 T4 = W[31];
944 T6 = FMA(T2, T3, T4 * T5);
945 T75 = FNMS(T4, T3, T2 * T5);
946 }
947 {
948 E T9, Tb, T8, Ta;
949 T9 = cr[WS(rs, 8)];
950 Tb = ci[WS(rs, 8)];
951 T8 = W[14];
952 Ta = W[15];
953 Tc = FMA(T8, T9, Ta * Tb);
954 T32 = FNMS(Ta, T9, T8 * Tb);
955 }
956 {
957 E Te, Tg, Td, Tf;
958 Te = cr[WS(rs, 24)];
959 Tg = ci[WS(rs, 24)];
960 Td = W[46];
961 Tf = W[47];
962 Th = FMA(Td, Te, Tf * Tg);
963 T33 = FNMS(Tf, Te, Td * Tg);
964 }
965 {
966 E T7, Ti, T7A, T7B;
967 T7 = T1 + T6;
968 Ti = Tc + Th;
969 Tj = T7 + Ti;
970 T5F = T7 - Ti;
971 T7A = Tc - Th;
972 T7B = T76 - T75;
973 T7C = T7A + T7B;
974 T7Q = T7B - T7A;
975 }
976 {
977 E T31, T34, T74, T77;
978 T31 = T1 - T6;
979 T34 = T32 - T33;
980 T35 = T31 + T34;
981 T4T = T31 - T34;
982 T74 = T32 + T33;
983 T77 = T75 + T76;
984 T78 = T74 + T77;
985 T7m = T77 - T74;
986 }
987 }
988 {
989 E T1y, T3X, T1O, T3I, T1D, T3Y, T1J, T3H;
990 {
991 E T1v, T1x, T1u, T1w;
992 T1v = cr[WS(rs, 1)];
993 T1x = ci[WS(rs, 1)];
994 T1u = W[0];
995 T1w = W[1];
996 T1y = FMA(T1u, T1v, T1w * T1x);
997 T3X = FNMS(T1w, T1v, T1u * T1x);
998 }
999 {
1000 E T1L, T1N, T1K, T1M;
1001 T1L = cr[WS(rs, 25)];
1002 T1N = ci[WS(rs, 25)];
1003 T1K = W[48];
1004 T1M = W[49];
1005 T1O = FMA(T1K, T1L, T1M * T1N);
1006 T3I = FNMS(T1M, T1L, T1K * T1N);
1007 }
1008 {
1009 E T1A, T1C, T1z, T1B;
1010 T1A = cr[WS(rs, 17)];
1011 T1C = ci[WS(rs, 17)];
1012 T1z = W[32];
1013 T1B = W[33];
1014 T1D = FMA(T1z, T1A, T1B * T1C);
1015 T3Y = FNMS(T1B, T1A, T1z * T1C);
1016 }
1017 {
1018 E T1G, T1I, T1F, T1H;
1019 T1G = cr[WS(rs, 9)];
1020 T1I = ci[WS(rs, 9)];
1021 T1F = W[16];
1022 T1H = W[17];
1023 T1J = FMA(T1F, T1G, T1H * T1I);
1024 T3H = FNMS(T1H, T1G, T1F * T1I);
1025 }
1026 {
1027 E T1E, T1P, T5W, T5X;
1028 T1E = T1y + T1D;
1029 T1P = T1J + T1O;
1030 T1Q = T1E + T1P;
1031 T61 = T1E - T1P;
1032 T5W = T3X + T3Y;
1033 T5X = T3H + T3I;
1034 T5Y = T5W - T5X;
1035 T6J = T5W + T5X;
1036 }
1037 {
1038 E T3G, T3J, T3Z, T40;
1039 T3G = T1y - T1D;
1040 T3J = T3H - T3I;
1041 T3K = T3G + T3J;
1042 T56 = T3G - T3J;
1043 T3Z = T3X - T3Y;
1044 T40 = T1J - T1O;
1045 T41 = T3Z - T40;
1046 T59 = T3Z + T40;
1047 }
1048 }
1049 {
1050 E T2j, T47, T2z, T4q, T2o, T48, T2u, T4p;
1051 {
1052 E T2g, T2i, T2f, T2h;
1053 T2g = cr[WS(rs, 31)];
1054 T2i = ci[WS(rs, 31)];
1055 T2f = W[60];
1056 T2h = W[61];
1057 T2j = FMA(T2f, T2g, T2h * T2i);
1058 T47 = FNMS(T2h, T2g, T2f * T2i);
1059 }
1060 {
1061 E T2w, T2y, T2v, T2x;
1062 T2w = cr[WS(rs, 23)];
1063 T2y = ci[WS(rs, 23)];
1064 T2v = W[44];
1065 T2x = W[45];
1066 T2z = FMA(T2v, T2w, T2x * T2y);
1067 T4q = FNMS(T2x, T2w, T2v * T2y);
1068 }
1069 {
1070 E T2l, T2n, T2k, T2m;
1071 T2l = cr[WS(rs, 15)];
1072 T2n = ci[WS(rs, 15)];
1073 T2k = W[28];
1074 T2m = W[29];
1075 T2o = FMA(T2k, T2l, T2m * T2n);
1076 T48 = FNMS(T2m, T2l, T2k * T2n);
1077 }
1078 {
1079 E T2r, T2t, T2q, T2s;
1080 T2r = cr[WS(rs, 7)];
1081 T2t = ci[WS(rs, 7)];
1082 T2q = W[12];
1083 T2s = W[13];
1084 T2u = FMA(T2q, T2r, T2s * T2t);
1085 T4p = FNMS(T2s, T2r, T2q * T2t);
1086 }
1087 {
1088 E T2p, T2A, T6c, T6d;
1089 T2p = T2j + T2o;
1090 T2A = T2u + T2z;
1091 T2B = T2p + T2A;
1092 T67 = T2p - T2A;
1093 T6c = T47 + T48;
1094 T6d = T4p + T4q;
1095 T6e = T6c - T6d;
1096 T6O = T6c + T6d;
1097 }
1098 {
1099 E T49, T4a, T4o, T4r;
1100 T49 = T47 - T48;
1101 T4a = T2u - T2z;
1102 T4b = T49 - T4a;
1103 T5g = T49 + T4a;
1104 T4o = T2j - T2o;
1105 T4r = T4p - T4q;
1106 T4s = T4o + T4r;
1107 T5d = T4o - T4r;
1108 }
1109 }
1110 {
1111 E To, T37, TE, T3d, Tt, T38, Tz, T3c;
1112 {
1113 E Tl, Tn, Tk, Tm;
1114 Tl = cr[WS(rs, 4)];
1115 Tn = ci[WS(rs, 4)];
1116 Tk = W[6];
1117 Tm = W[7];
1118 To = FMA(Tk, Tl, Tm * Tn);
1119 T37 = FNMS(Tm, Tl, Tk * Tn);
1120 }
1121 {
1122 E TB, TD, TA, TC;
1123 TB = cr[WS(rs, 12)];
1124 TD = ci[WS(rs, 12)];
1125 TA = W[22];
1126 TC = W[23];
1127 TE = FMA(TA, TB, TC * TD);
1128 T3d = FNMS(TC, TB, TA * TD);
1129 }
1130 {
1131 E Tq, Ts, Tp, Tr;
1132 Tq = cr[WS(rs, 20)];
1133 Ts = ci[WS(rs, 20)];
1134 Tp = W[38];
1135 Tr = W[39];
1136 Tt = FMA(Tp, Tq, Tr * Ts);
1137 T38 = FNMS(Tr, Tq, Tp * Ts);
1138 }
1139 {
1140 E Tw, Ty, Tv, Tx;
1141 Tw = cr[WS(rs, 28)];
1142 Ty = ci[WS(rs, 28)];
1143 Tv = W[54];
1144 Tx = W[55];
1145 Tz = FMA(Tv, Tw, Tx * Ty);
1146 T3c = FNMS(Tx, Tw, Tv * Ty);
1147 }
1148 {
1149 E Tu, TF, T5G, T5H;
1150 Tu = To + Tt;
1151 TF = Tz + TE;
1152 TG = Tu + TF;
1153 T7l = Tu - TF;
1154 T5G = T3c + T3d;
1155 T5H = T37 + T38;
1156 T5I = T5G - T5H;
1157 T73 = T5H + T5G;
1158 }
1159 {
1160 E T36, T39, T3b, T3e;
1161 T36 = To - Tt;
1162 T39 = T37 - T38;
1163 T3a = T36 + T39;
1164 T4U = T36 - T39;
1165 T3b = Tz - TE;
1166 T3e = T3c - T3d;
1167 T3f = T3b - T3e;
1168 T4V = T3b + T3e;
1169 }
1170 }
1171 {
1172 E TM, T3n, T12, T3k, TR, T3o, TX, T3j;
1173 {
1174 E TJ, TL, TI, TK;
1175 TJ = cr[WS(rs, 2)];
1176 TL = ci[WS(rs, 2)];
1177 TI = W[2];
1178 TK = W[3];
1179 TM = FMA(TI, TJ, TK * TL);
1180 T3n = FNMS(TK, TJ, TI * TL);
1181 }
1182 {
1183 E TZ, T11, TY, T10;
1184 TZ = cr[WS(rs, 26)];
1185 T11 = ci[WS(rs, 26)];
1186 TY = W[50];
1187 T10 = W[51];
1188 T12 = FMA(TY, TZ, T10 * T11);
1189 T3k = FNMS(T10, TZ, TY * T11);
1190 }
1191 {
1192 E TO, TQ, TN, TP;
1193 TO = cr[WS(rs, 18)];
1194 TQ = ci[WS(rs, 18)];
1195 TN = W[34];
1196 TP = W[35];
1197 TR = FMA(TN, TO, TP * TQ);
1198 T3o = FNMS(TP, TO, TN * TQ);
1199 }
1200 {
1201 E TU, TW, TT, TV;
1202 TU = cr[WS(rs, 10)];
1203 TW = ci[WS(rs, 10)];
1204 TT = W[18];
1205 TV = W[19];
1206 TX = FMA(TT, TU, TV * TW);
1207 T3j = FNMS(TV, TU, TT * TW);
1208 }
1209 {
1210 E TS, T13, T5L, T5M;
1211 TS = TM + TR;
1212 T13 = TX + T12;
1213 T14 = TS + T13;
1214 T5K = TS - T13;
1215 T5L = T3n + T3o;
1216 T5M = T3j + T3k;
1217 T5N = T5L - T5M;
1218 T6F = T5L + T5M;
1219 }
1220 {
1221 E T3i, T3l, T3p, T3q;
1222 T3i = TM - TR;
1223 T3l = T3j - T3k;
1224 T3m = T3i + T3l;
1225 T4Z = T3i - T3l;
1226 T3p = T3n - T3o;
1227 T3q = TX - T12;
1228 T3r = T3p - T3q;
1229 T4Y = T3p + T3q;
1230 }
1231 }
1232 {
1233 E T19, T3t, T1p, T3A, T1e, T3u, T1k, T3z;
1234 {
1235 E T16, T18, T15, T17;
1236 T16 = cr[WS(rs, 30)];
1237 T18 = ci[WS(rs, 30)];
1238 T15 = W[58];
1239 T17 = W[59];
1240 T19 = FMA(T15, T16, T17 * T18);
1241 T3t = FNMS(T17, T16, T15 * T18);
1242 }
1243 {
1244 E T1m, T1o, T1l, T1n;
1245 T1m = cr[WS(rs, 22)];
1246 T1o = ci[WS(rs, 22)];
1247 T1l = W[42];
1248 T1n = W[43];
1249 T1p = FMA(T1l, T1m, T1n * T1o);
1250 T3A = FNMS(T1n, T1m, T1l * T1o);
1251 }
1252 {
1253 E T1b, T1d, T1a, T1c;
1254 T1b = cr[WS(rs, 14)];
1255 T1d = ci[WS(rs, 14)];
1256 T1a = W[26];
1257 T1c = W[27];
1258 T1e = FMA(T1a, T1b, T1c * T1d);
1259 T3u = FNMS(T1c, T1b, T1a * T1d);
1260 }
1261 {
1262 E T1h, T1j, T1g, T1i;
1263 T1h = cr[WS(rs, 6)];
1264 T1j = ci[WS(rs, 6)];
1265 T1g = W[10];
1266 T1i = W[11];
1267 T1k = FMA(T1g, T1h, T1i * T1j);
1268 T3z = FNMS(T1i, T1h, T1g * T1j);
1269 }
1270 {
1271 E T1f, T1q, T5Q, T5R;
1272 T1f = T19 + T1e;
1273 T1q = T1k + T1p;
1274 T1r = T1f + T1q;
1275 T5P = T1f - T1q;
1276 T5Q = T3t + T3u;
1277 T5R = T3z + T3A;
1278 T5S = T5Q - T5R;
1279 T6E = T5Q + T5R;
1280 }
1281 {
1282 E T3v, T3w, T3y, T3B;
1283 T3v = T3t - T3u;
1284 T3w = T1k - T1p;
1285 T3x = T3v - T3w;
1286 T52 = T3v + T3w;
1287 T3y = T19 - T1e;
1288 T3B = T3z - T3A;
1289 T3C = T3y + T3B;
1290 T51 = T3y - T3B;
1291 }
1292 }
1293 {
1294 E T1V, T3M, T20, T3N, T3L, T3O, T26, T3Q, T2b, T3R, T3S, T3T;
1295 {
1296 E T1S, T1U, T1R, T1T;
1297 T1S = cr[WS(rs, 5)];
1298 T1U = ci[WS(rs, 5)];
1299 T1R = W[8];
1300 T1T = W[9];
1301 T1V = FMA(T1R, T1S, T1T * T1U);
1302 T3M = FNMS(T1T, T1S, T1R * T1U);
1303 }
1304 {
1305 E T1X, T1Z, T1W, T1Y;
1306 T1X = cr[WS(rs, 21)];
1307 T1Z = ci[WS(rs, 21)];
1308 T1W = W[40];
1309 T1Y = W[41];
1310 T20 = FMA(T1W, T1X, T1Y * T1Z);
1311 T3N = FNMS(T1Y, T1X, T1W * T1Z);
1312 }
1313 T3L = T1V - T20;
1314 T3O = T3M - T3N;
1315 {
1316 E T23, T25, T22, T24;
1317 T23 = cr[WS(rs, 29)];
1318 T25 = ci[WS(rs, 29)];
1319 T22 = W[56];
1320 T24 = W[57];
1321 T26 = FMA(T22, T23, T24 * T25);
1322 T3Q = FNMS(T24, T23, T22 * T25);
1323 }
1324 {
1325 E T28, T2a, T27, T29;
1326 T28 = cr[WS(rs, 13)];
1327 T2a = ci[WS(rs, 13)];
1328 T27 = W[24];
1329 T29 = W[25];
1330 T2b = FMA(T27, T28, T29 * T2a);
1331 T3R = FNMS(T29, T28, T27 * T2a);
1332 }
1333 T3S = T3Q - T3R;
1334 T3T = T26 - T2b;
1335 {
1336 E T21, T2c, T62, T63;
1337 T21 = T1V + T20;
1338 T2c = T26 + T2b;
1339 T2d = T21 + T2c;
1340 T5Z = T21 - T2c;
1341 T62 = T3Q + T3R;
1342 T63 = T3M + T3N;
1343 T64 = T62 - T63;
1344 T6K = T63 + T62;
1345 }
1346 {
1347 E T3P, T3U, T42, T43;
1348 T3P = T3L + T3O;
1349 T3U = T3S - T3T;
1350 T3V = KP707106781 * (T3P - T3U);
1351 T5a = KP707106781 * (T3P + T3U);
1352 T42 = T3T + T3S;
1353 T43 = T3L - T3O;
1354 T44 = KP707106781 * (T42 - T43);
1355 T57 = KP707106781 * (T43 + T42);
1356 }
1357 }
1358 {
1359 E T2G, T4i, T2L, T4j, T4h, T4k, T2R, T4d, T2W, T4e, T4c, T4f;
1360 {
1361 E T2D, T2F, T2C, T2E;
1362 T2D = cr[WS(rs, 3)];
1363 T2F = ci[WS(rs, 3)];
1364 T2C = W[4];
1365 T2E = W[5];
1366 T2G = FMA(T2C, T2D, T2E * T2F);
1367 T4i = FNMS(T2E, T2D, T2C * T2F);
1368 }
1369 {
1370 E T2I, T2K, T2H, T2J;
1371 T2I = cr[WS(rs, 19)];
1372 T2K = ci[WS(rs, 19)];
1373 T2H = W[36];
1374 T2J = W[37];
1375 T2L = FMA(T2H, T2I, T2J * T2K);
1376 T4j = FNMS(T2J, T2I, T2H * T2K);
1377 }
1378 T4h = T2G - T2L;
1379 T4k = T4i - T4j;
1380 {
1381 E T2O, T2Q, T2N, T2P;
1382 T2O = cr[WS(rs, 27)];
1383 T2Q = ci[WS(rs, 27)];
1384 T2N = W[52];
1385 T2P = W[53];
1386 T2R = FMA(T2N, T2O, T2P * T2Q);
1387 T4d = FNMS(T2P, T2O, T2N * T2Q);
1388 }
1389 {
1390 E T2T, T2V, T2S, T2U;
1391 T2T = cr[WS(rs, 11)];
1392 T2V = ci[WS(rs, 11)];
1393 T2S = W[20];
1394 T2U = W[21];
1395 T2W = FMA(T2S, T2T, T2U * T2V);
1396 T4e = FNMS(T2U, T2T, T2S * T2V);
1397 }
1398 T4c = T2R - T2W;
1399 T4f = T4d - T4e;
1400 {
1401 E T2M, T2X, T68, T69;
1402 T2M = T2G + T2L;
1403 T2X = T2R + T2W;
1404 T2Y = T2M + T2X;
1405 T6f = T2M - T2X;
1406 T68 = T4d + T4e;
1407 T69 = T4i + T4j;
1408 T6a = T68 - T69;
1409 T6P = T69 + T68;
1410 }
1411 {
1412 E T4g, T4l, T4t, T4u;
1413 T4g = T4c + T4f;
1414 T4l = T4h - T4k;
1415 T4m = KP707106781 * (T4g - T4l);
1416 T5e = KP707106781 * (T4l + T4g);
1417 T4t = T4h + T4k;
1418 T4u = T4f - T4c;
1419 T4v = KP707106781 * (T4t - T4u);
1420 T5h = KP707106781 * (T4t + T4u);
1421 }
1422 }
1423 {
1424 E T1t, T6X, T7a, T7c, T30, T7b, T70, T71;
1425 {
1426 E TH, T1s, T72, T79;
1427 TH = Tj + TG;
1428 T1s = T14 + T1r;
1429 T1t = TH + T1s;
1430 T6X = TH - T1s;
1431 T72 = T6F + T6E;
1432 T79 = T73 + T78;
1433 T7a = T72 + T79;
1434 T7c = T79 - T72;
1435 }
1436 {
1437 E T2e, T2Z, T6Y, T6Z;
1438 T2e = T1Q + T2d;
1439 T2Z = T2B + T2Y;
1440 T30 = T2e + T2Z;
1441 T7b = T2Z - T2e;
1442 T6Y = T6O + T6P;
1443 T6Z = T6J + T6K;
1444 T70 = T6Y - T6Z;
1445 T71 = T6Z + T6Y;
1446 }
1447 ci[WS(rs, 15)] = T1t - T30;
1448 cr[WS(rs, 24)] = T7b - T7c;
1449 ci[WS(rs, 23)] = T7b + T7c;
1450 cr[0] = T1t + T30;
1451 cr[WS(rs, 8)] = T6X - T70;
1452 cr[WS(rs, 16)] = T71 - T7a;
1453 ci[WS(rs, 31)] = T71 + T7a;
1454 ci[WS(rs, 7)] = T6X + T70;
1455 }
1456 {
1457 E T4X, T5p, T7D, T7J, T54, T7y, T5z, T5D, T5c, T5m, T5s, T7I, T5w, T5C, T5j;
1458 E T5n, T4W, T7z;
1459 T4W = KP707106781 * (T4U + T4V);
1460 T4X = T4T - T4W;
1461 T5p = T4T + T4W;
1462 T7z = KP707106781 * (T3a - T3f);
1463 T7D = T7z + T7C;
1464 T7J = T7C - T7z;
1465 {
1466 E T50, T53, T5x, T5y;
1467 T50 = FMA(KP923879532, T4Y, KP382683432 * T4Z);
1468 T53 = FNMS(KP923879532, T52, KP382683432 * T51);
1469 T54 = T50 + T53;
1470 T7y = T50 - T53;
1471 T5x = T5d + T5e;
1472 T5y = T5g + T5h;
1473 T5z = FNMS(KP980785280, T5y, KP195090322 * T5x);
1474 T5D = FMA(KP980785280, T5x, KP195090322 * T5y);
1475 }
1476 {
1477 E T58, T5b, T5q, T5r;
1478 T58 = T56 - T57;
1479 T5b = T59 - T5a;
1480 T5c = FMA(KP831469612, T58, KP555570233 * T5b);
1481 T5m = FNMS(KP831469612, T5b, KP555570233 * T58);
1482 T5q = FNMS(KP382683432, T4Y, KP923879532 * T4Z);
1483 T5r = FMA(KP382683432, T52, KP923879532 * T51);
1484 T5s = T5q + T5r;
1485 T7I = T5r - T5q;
1486 }
1487 {
1488 E T5u, T5v, T5f, T5i;
1489 T5u = T56 + T57;
1490 T5v = T59 + T5a;
1491 T5w = FMA(KP195090322, T5u, KP980785280 * T5v);
1492 T5C = FNMS(KP195090322, T5v, KP980785280 * T5u);
1493 T5f = T5d - T5e;
1494 T5i = T5g - T5h;
1495 T5j = FNMS(KP555570233, T5i, KP831469612 * T5f);
1496 T5n = FMA(KP555570233, T5f, KP831469612 * T5i);
1497 }
1498 {
1499 E T55, T5k, T7H, T7K;
1500 T55 = T4X + T54;
1501 T5k = T5c + T5j;
1502 ci[WS(rs, 12)] = T55 - T5k;
1503 cr[WS(rs, 3)] = T55 + T5k;
1504 T7H = T5n - T5m;
1505 T7K = T7I + T7J;
1506 cr[WS(rs, 19)] = T7H - T7K;
1507 ci[WS(rs, 28)] = T7H + T7K;
1508 }
1509 {
1510 E T7L, T7M, T5l, T5o;
1511 T7L = T5j - T5c;
1512 T7M = T7J - T7I;
1513 cr[WS(rs, 27)] = T7L - T7M;
1514 ci[WS(rs, 20)] = T7L + T7M;
1515 T5l = T4X - T54;
1516 T5o = T5m + T5n;
1517 cr[WS(rs, 11)] = T5l - T5o;
1518 ci[WS(rs, 4)] = T5l + T5o;
1519 }
1520 {
1521 E T5t, T5A, T7x, T7E;
1522 T5t = T5p - T5s;
1523 T5A = T5w + T5z;
1524 ci[WS(rs, 8)] = T5t - T5A;
1525 cr[WS(rs, 7)] = T5t + T5A;
1526 T7x = T5z - T5w;
1527 T7E = T7y + T7D;
1528 cr[WS(rs, 31)] = T7x - T7E;
1529 ci[WS(rs, 16)] = T7x + T7E;
1530 }
1531 {
1532 E T7F, T7G, T5B, T5E;
1533 T7F = T5D - T5C;
1534 T7G = T7D - T7y;
1535 cr[WS(rs, 23)] = T7F - T7G;
1536 ci[WS(rs, 24)] = T7F + T7G;
1537 T5B = T5p + T5s;
1538 T5E = T5C + T5D;
1539 cr[WS(rs, 15)] = T5B - T5E;
1540 ci[0] = T5B + T5E;
1541 }
1542 }
1543 {
1544 E T6H, T6T, T7g, T7i, T6M, T6U, T6R, T6V;
1545 {
1546 E T6D, T6G, T7e, T7f;
1547 T6D = Tj - TG;
1548 T6G = T6E - T6F;
1549 T6H = T6D - T6G;
1550 T6T = T6D + T6G;
1551 T7e = T14 - T1r;
1552 T7f = T78 - T73;
1553 T7g = T7e + T7f;
1554 T7i = T7f - T7e;
1555 }
1556 {
1557 E T6I, T6L, T6N, T6Q;
1558 T6I = T1Q - T2d;
1559 T6L = T6J - T6K;
1560 T6M = T6I + T6L;
1561 T6U = T6I - T6L;
1562 T6N = T2B - T2Y;
1563 T6Q = T6O - T6P;
1564 T6R = T6N - T6Q;
1565 T6V = T6N + T6Q;
1566 }
1567 {
1568 E T6S, T7h, T6W, T7d;
1569 T6S = KP707106781 * (T6M + T6R);
1570 ci[WS(rs, 11)] = T6H - T6S;
1571 cr[WS(rs, 4)] = T6H + T6S;
1572 T7h = KP707106781 * (T6V - T6U);
1573 cr[WS(rs, 20)] = T7h - T7i;
1574 ci[WS(rs, 27)] = T7h + T7i;
1575 T6W = KP707106781 * (T6U + T6V);
1576 cr[WS(rs, 12)] = T6T - T6W;
1577 ci[WS(rs, 3)] = T6T + T6W;
1578 T7d = KP707106781 * (T6R - T6M);
1579 cr[WS(rs, 28)] = T7d - T7g;
1580 ci[WS(rs, 19)] = T7d + T7g;
1581 }
1582 }
1583 {
1584 E T5J, T7n, T7t, T6n, T5U, T7k, T6x, T6B, T6q, T7s, T66, T6k, T6u, T6A, T6h;
1585 E T6l;
1586 {
1587 E T5O, T5T, T60, T65;
1588 T5J = T5F - T5I;
1589 T7n = T7l + T7m;
1590 T7t = T7m - T7l;
1591 T6n = T5F + T5I;
1592 T5O = T5K + T5N;
1593 T5T = T5P - T5S;
1594 T5U = KP707106781 * (T5O + T5T);
1595 T7k = KP707106781 * (T5O - T5T);
1596 {
1597 E T6v, T6w, T6o, T6p;
1598 T6v = T6e + T6f;
1599 T6w = T67 + T6a;
1600 T6x = FMA(KP382683432, T6v, KP923879532 * T6w);
1601 T6B = FNMS(KP923879532, T6v, KP382683432 * T6w);
1602 T6o = T5K - T5N;
1603 T6p = T5P + T5S;
1604 T6q = KP707106781 * (T6o + T6p);
1605 T7s = KP707106781 * (T6p - T6o);
1606 }
1607 T60 = T5Y - T5Z;
1608 T65 = T61 - T64;
1609 T66 = FMA(KP382683432, T60, KP923879532 * T65);
1610 T6k = FNMS(KP923879532, T60, KP382683432 * T65);
1611 {
1612 E T6s, T6t, T6b, T6g;
1613 T6s = T61 + T64;
1614 T6t = T5Y + T5Z;
1615 T6u = FNMS(KP382683432, T6t, KP923879532 * T6s);
1616 T6A = FMA(KP923879532, T6t, KP382683432 * T6s);
1617 T6b = T67 - T6a;
1618 T6g = T6e - T6f;
1619 T6h = FNMS(KP382683432, T6g, KP923879532 * T6b);
1620 T6l = FMA(KP923879532, T6g, KP382683432 * T6b);
1621 }
1622 }
1623 {
1624 E T5V, T6i, T7r, T7u;
1625 T5V = T5J + T5U;
1626 T6i = T66 + T6h;
1627 ci[WS(rs, 13)] = T5V - T6i;
1628 cr[WS(rs, 2)] = T5V + T6i;
1629 T7r = T6l - T6k;
1630 T7u = T7s + T7t;
1631 cr[WS(rs, 18)] = T7r - T7u;
1632 ci[WS(rs, 29)] = T7r + T7u;
1633 }
1634 {
1635 E T7v, T7w, T6j, T6m;
1636 T7v = T6h - T66;
1637 T7w = T7t - T7s;
1638 cr[WS(rs, 26)] = T7v - T7w;
1639 ci[WS(rs, 21)] = T7v + T7w;
1640 T6j = T5J - T5U;
1641 T6m = T6k + T6l;
1642 cr[WS(rs, 10)] = T6j - T6m;
1643 ci[WS(rs, 5)] = T6j + T6m;
1644 }
1645 {
1646 E T6r, T6y, T7j, T7o;
1647 T6r = T6n + T6q;
1648 T6y = T6u + T6x;
1649 cr[WS(rs, 14)] = T6r - T6y;
1650 ci[WS(rs, 1)] = T6r + T6y;
1651 T7j = T6B - T6A;
1652 T7o = T7k + T7n;
1653 cr[WS(rs, 30)] = T7j - T7o;
1654 ci[WS(rs, 17)] = T7j + T7o;
1655 }
1656 {
1657 E T7p, T7q, T6z, T6C;
1658 T7p = T6x - T6u;
1659 T7q = T7n - T7k;
1660 cr[WS(rs, 22)] = T7p - T7q;
1661 ci[WS(rs, 25)] = T7p + T7q;
1662 T6z = T6n - T6q;
1663 T6C = T6A + T6B;
1664 ci[WS(rs, 9)] = T6z - T6C;
1665 cr[WS(rs, 6)] = T6z + T6C;
1666 }
1667 }
1668 {
1669 E T3h, T4D, T7R, T7X, T3E, T7O, T4N, T4R, T46, T4A, T4G, T7W, T4K, T4Q, T4x;
1670 E T4B, T3g, T7P;
1671 T3g = KP707106781 * (T3a + T3f);
1672 T3h = T35 - T3g;
1673 T4D = T35 + T3g;
1674 T7P = KP707106781 * (T4V - T4U);
1675 T7R = T7P + T7Q;
1676 T7X = T7Q - T7P;
1677 {
1678 E T3s, T3D, T4L, T4M;
1679 T3s = FNMS(KP923879532, T3r, KP382683432 * T3m);
1680 T3D = FMA(KP923879532, T3x, KP382683432 * T3C);
1681 T3E = T3s + T3D;
1682 T7O = T3D - T3s;
1683 T4L = T4s + T4v;
1684 T4M = T4b + T4m;
1685 T4N = FNMS(KP195090322, T4M, KP980785280 * T4L);
1686 T4R = FMA(KP980785280, T4M, KP195090322 * T4L);
1687 }
1688 {
1689 E T3W, T45, T4E, T4F;
1690 T3W = T3K - T3V;
1691 T45 = T41 - T44;
1692 T46 = FNMS(KP555570233, T45, KP831469612 * T3W);
1693 T4A = FMA(KP831469612, T45, KP555570233 * T3W);
1694 T4E = FMA(KP382683432, T3r, KP923879532 * T3m);
1695 T4F = FNMS(KP382683432, T3x, KP923879532 * T3C);
1696 T4G = T4E + T4F;
1697 T7W = T4E - T4F;
1698 }
1699 {
1700 E T4I, T4J, T4n, T4w;
1701 T4I = T41 + T44;
1702 T4J = T3K + T3V;
1703 T4K = FMA(KP195090322, T4I, KP980785280 * T4J);
1704 T4Q = FNMS(KP980785280, T4I, KP195090322 * T4J);
1705 T4n = T4b - T4m;
1706 T4w = T4s - T4v;
1707 T4x = FMA(KP555570233, T4n, KP831469612 * T4w);
1708 T4B = FNMS(KP831469612, T4n, KP555570233 * T4w);
1709 }
1710 {
1711 E T3F, T4y, T7V, T7Y;
1712 T3F = T3h + T3E;
1713 T4y = T46 + T4x;
1714 cr[WS(rs, 13)] = T3F - T4y;
1715 ci[WS(rs, 2)] = T3F + T4y;
1716 T7V = T4B - T4A;
1717 T7Y = T7W + T7X;
1718 cr[WS(rs, 29)] = T7V - T7Y;
1719 ci[WS(rs, 18)] = T7V + T7Y;
1720 }
1721 {
1722 E T7Z, T80, T4z, T4C;
1723 T7Z = T4x - T46;
1724 T80 = T7X - T7W;
1725 cr[WS(rs, 21)] = T7Z - T80;
1726 ci[WS(rs, 26)] = T7Z + T80;
1727 T4z = T3h - T3E;
1728 T4C = T4A + T4B;
1729 ci[WS(rs, 10)] = T4z - T4C;
1730 cr[WS(rs, 5)] = T4z + T4C;
1731 }
1732 {
1733 E T4H, T4O, T7N, T7S;
1734 T4H = T4D + T4G;
1735 T4O = T4K + T4N;
1736 ci[WS(rs, 14)] = T4H - T4O;
1737 cr[WS(rs, 1)] = T4H + T4O;
1738 T7N = T4R - T4Q;
1739 T7S = T7O + T7R;
1740 cr[WS(rs, 17)] = T7N - T7S;
1741 ci[WS(rs, 30)] = T7N + T7S;
1742 }
1743 {
1744 E T7T, T7U, T4P, T4S;
1745 T7T = T4N - T4K;
1746 T7U = T7R - T7O;
1747 cr[WS(rs, 25)] = T7T - T7U;
1748 ci[WS(rs, 22)] = T7T + T7U;
1749 T4P = T4D - T4G;
1750 T4S = T4Q + T4R;
1751 cr[WS(rs, 9)] = T4P - T4S;
1752 ci[WS(rs, 6)] = T4P + T4S;
1753 }
1754 }
1755 }
1756 }
1757 }
1758
1759 static const tw_instr twinstr[] = {
1760 {TW_FULL, 1, 32},
1761 {TW_NEXT, 1, 0}
1762 };
1763
1764 static const hc2hc_desc desc = { 32, "hf_32", twinstr, &GENUS, {340, 114, 94, 0} };
1765
1766 void X(codelet_hf_32) (planner *p) {
1767 X(khc2hc_register) (p, hf_32, &desc);
1768 }
1769 #endif /* HAVE_FMA */