comparison fft/fftw/fftw-3.3.4/rdft/scalar/r2cf/hf_15.c @ 19:26056e866c29

Add FFTW to comparison table
author Chris Cannam
date Tue, 06 Oct 2015 13:08:39 +0100
parents
children
comparison
equal deleted inserted replaced
18:8db794ca3e0b 19:26056e866c29
1 /*
2 * Copyright (c) 2003, 2007-14 Matteo Frigo
3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
18 *
19 */
20
21 /* This file was automatically generated --- DO NOT EDIT */
22 /* Generated on Tue Mar 4 13:49:10 EST 2014 */
23
24 #include "codelet-rdft.h"
25
26 #ifdef HAVE_FMA
27
28 /* Generated by: ../../../genfft/gen_hc2hc.native -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -n 15 -dit -name hf_15 -include hf.h */
29
30 /*
31 * This function contains 184 FP additions, 140 FP multiplications,
32 * (or, 72 additions, 28 multiplications, 112 fused multiply/add),
33 * 97 stack variables, 6 constants, and 60 memory accesses
34 */
35 #include "hf.h"
36
37 static void hf_15(R *cr, R *ci, const R *W, stride rs, INT mb, INT me, INT ms)
38 {
39 DK(KP951056516, +0.951056516295153572116439333379382143405698634);
40 DK(KP559016994, +0.559016994374947424102293417182819058860154590);
41 DK(KP250000000, +0.250000000000000000000000000000000000000000000);
42 DK(KP618033988, +0.618033988749894848204586834365638117720309180);
43 DK(KP866025403, +0.866025403784438646763723170752936183471402627);
44 DK(KP500000000, +0.500000000000000000000000000000000000000000000);
45 {
46 INT m;
47 for (m = mb, W = W + ((mb - 1) * 28); m < me; m = m + 1, cr = cr + ms, ci = ci - ms, W = W + 28, MAKE_VOLATILE_STRIDE(30, rs)) {
48 E T3v, T3E, T3G, T3A, T3y, T3z, T3F, T3B;
49 {
50 E T1G, T3l, T3H, T3k, T1B, Tf, T37, T1y, T2Y, T2M, T2a, T2i, T39, Tz, T2U;
51 E T2t, T1O, T2e, T3a, TT, T10, T2V, T2z, T1V, T2f, T2C, T12, T15, T14, T21;
52 E T1c, T1Y, T13;
53 {
54 E T2I, T1k, T1m, T1p, T1o, T28, T1w, T25, T1n;
55 {
56 E T1, T3i, T9, Tc, Tb, T1D, T7, T1E, Ta, T1j, T1i, T1h;
57 T1 = cr[0];
58 T3i = ci[0];
59 {
60 E T3, T6, T2, T5, T1C, T4, T8;
61 T3 = cr[WS(rs, 5)];
62 T6 = ci[WS(rs, 5)];
63 T2 = W[8];
64 T5 = W[9];
65 T9 = cr[WS(rs, 10)];
66 Tc = ci[WS(rs, 10)];
67 T1C = T2 * T6;
68 T4 = T2 * T3;
69 T8 = W[18];
70 Tb = W[19];
71 T1D = FNMS(T5, T3, T1C);
72 T7 = FMA(T5, T6, T4);
73 T1E = T8 * Tc;
74 Ta = T8 * T9;
75 }
76 {
77 E T1g, T1F, Td, T1f, T3j, Te, T2H;
78 T1g = cr[WS(rs, 9)];
79 T1j = ci[WS(rs, 9)];
80 T1F = FNMS(Tb, T9, T1E);
81 Td = FMA(Tb, Tc, Ta);
82 T1f = W[16];
83 T1i = W[17];
84 T1G = T1D - T1F;
85 T3j = T1D + T1F;
86 T3l = Td - T7;
87 Te = T7 + Td;
88 T2H = T1f * T1j;
89 T1h = T1f * T1g;
90 T3H = T3j + T3i;
91 T3k = FNMS(KP500000000, T3j, T3i);
92 T1B = FNMS(KP500000000, Te, T1);
93 Tf = T1 + Te;
94 T2I = FNMS(T1i, T1g, T2H);
95 }
96 T1k = FMA(T1i, T1j, T1h);
97 {
98 E T1s, T1v, T1r, T1u, T27, T1t, T1l;
99 T1s = cr[WS(rs, 4)];
100 T1v = ci[WS(rs, 4)];
101 T1r = W[6];
102 T1u = W[7];
103 T1m = cr[WS(rs, 14)];
104 T1p = ci[WS(rs, 14)];
105 T27 = T1r * T1v;
106 T1t = T1r * T1s;
107 T1l = W[26];
108 T1o = W[27];
109 T28 = FNMS(T1u, T1s, T27);
110 T1w = FMA(T1u, T1v, T1t);
111 T25 = T1l * T1p;
112 T1n = T1l * T1m;
113 }
114 }
115 {
116 E Tl, T2p, Tn, Tq, Tp, T1M, Tx, T1J, To;
117 {
118 E Th, Tk, T26, T1q, Tg, Tj;
119 Th = cr[WS(rs, 3)];
120 Tk = ci[WS(rs, 3)];
121 T26 = FNMS(T1o, T1m, T25);
122 T1q = FMA(T1o, T1p, T1n);
123 Tg = W[4];
124 Tj = W[5];
125 {
126 E T29, T2J, T1x, T2L;
127 T29 = T26 - T28;
128 T2J = T26 + T28;
129 T1x = T1q + T1w;
130 T2L = T1q - T1w;
131 {
132 E T2o, Ti, T2K, T24;
133 T2o = Tg * Tk;
134 Ti = Tg * Th;
135 T2K = FNMS(KP500000000, T2J, T2I);
136 T37 = T2I + T2J;
137 T24 = FNMS(KP500000000, T1x, T1k);
138 T1y = T1k + T1x;
139 Tl = FMA(Tj, Tk, Ti);
140 T2Y = FMA(KP866025403, T2L, T2K);
141 T2M = FNMS(KP866025403, T2L, T2K);
142 T2a = FNMS(KP866025403, T29, T24);
143 T2i = FMA(KP866025403, T29, T24);
144 T2p = FNMS(Tj, Th, T2o);
145 }
146 }
147 }
148 {
149 E Tt, Tw, Ts, Tv, T1L, Tu, Tm;
150 Tt = cr[WS(rs, 13)];
151 Tw = ci[WS(rs, 13)];
152 Ts = W[24];
153 Tv = W[25];
154 Tn = cr[WS(rs, 8)];
155 Tq = ci[WS(rs, 8)];
156 T1L = Ts * Tw;
157 Tu = Ts * Tt;
158 Tm = W[14];
159 Tp = W[15];
160 T1M = FNMS(Tv, Tt, T1L);
161 Tx = FMA(Tv, Tw, Tu);
162 T1J = Tm * Tq;
163 To = Tm * Tn;
164 }
165 {
166 E TF, T2v, TH, TK, TJ, T1T, TR, T1Q, TI;
167 {
168 E TB, TE, T1K, Tr, TA, TD;
169 TB = cr[WS(rs, 12)];
170 TE = ci[WS(rs, 12)];
171 T1K = FNMS(Tp, Tn, T1J);
172 Tr = FMA(Tp, Tq, To);
173 TA = W[22];
174 TD = W[23];
175 {
176 E T1N, T2q, Ty, T2s;
177 T1N = T1K - T1M;
178 T2q = T1K + T1M;
179 Ty = Tr + Tx;
180 T2s = Tr - Tx;
181 {
182 E T2u, TC, T2r, T1I;
183 T2u = TA * TE;
184 TC = TA * TB;
185 T2r = FNMS(KP500000000, T2q, T2p);
186 T39 = T2p + T2q;
187 T1I = FNMS(KP500000000, Ty, Tl);
188 Tz = Tl + Ty;
189 TF = FMA(TD, TE, TC);
190 T2U = FMA(KP866025403, T2s, T2r);
191 T2t = FNMS(KP866025403, T2s, T2r);
192 T1O = FNMS(KP866025403, T1N, T1I);
193 T2e = FMA(KP866025403, T1N, T1I);
194 T2v = FNMS(TD, TB, T2u);
195 }
196 }
197 }
198 {
199 E TN, TQ, TM, TP, T1S, TO, TG;
200 TN = cr[WS(rs, 7)];
201 TQ = ci[WS(rs, 7)];
202 TM = W[12];
203 TP = W[13];
204 TH = cr[WS(rs, 2)];
205 TK = ci[WS(rs, 2)];
206 T1S = TM * TQ;
207 TO = TM * TN;
208 TG = W[2];
209 TJ = W[3];
210 T1T = FNMS(TP, TN, T1S);
211 TR = FMA(TP, TQ, TO);
212 T1Q = TG * TK;
213 TI = TG * TH;
214 }
215 {
216 E TW, TZ, T1R, TL, TV, TY;
217 TW = cr[WS(rs, 6)];
218 TZ = ci[WS(rs, 6)];
219 T1R = FNMS(TJ, TH, T1Q);
220 TL = FMA(TJ, TK, TI);
221 TV = W[10];
222 TY = W[11];
223 {
224 E T1U, T2w, TS, T2y;
225 T1U = T1R - T1T;
226 T2w = T1R + T1T;
227 TS = TL + TR;
228 T2y = TL - TR;
229 {
230 E T2B, TX, T2x, T1P;
231 T2B = TV * TZ;
232 TX = TV * TW;
233 T2x = FNMS(KP500000000, T2w, T2v);
234 T3a = T2v + T2w;
235 T1P = FNMS(KP500000000, TS, TF);
236 TT = TF + TS;
237 T10 = FMA(TY, TZ, TX);
238 T2V = FMA(KP866025403, T2y, T2x);
239 T2z = FNMS(KP866025403, T2y, T2x);
240 T1V = FNMS(KP866025403, T1U, T1P);
241 T2f = FMA(KP866025403, T1U, T1P);
242 T2C = FNMS(TY, TW, T2B);
243 }
244 }
245 }
246 {
247 E T18, T1b, T17, T1a, T20, T19, T11;
248 T18 = cr[WS(rs, 1)];
249 T1b = ci[WS(rs, 1)];
250 T17 = W[0];
251 T1a = W[1];
252 T12 = cr[WS(rs, 11)];
253 T15 = ci[WS(rs, 11)];
254 T20 = T17 * T1b;
255 T19 = T17 * T18;
256 T11 = W[20];
257 T14 = W[21];
258 T21 = FNMS(T1a, T18, T20);
259 T1c = FMA(T1a, T1b, T19);
260 T1Y = T11 * T15;
261 T13 = T11 * T12;
262 }
263 }
264 }
265 }
266 {
267 E T3I, T3O, T3w, T2d, T3J, T3P, T3x, T3C, T3D, T3f, T3g, T2Q, T2O, T3r, T3q;
268 E T2k, T2m;
269 {
270 E T3b, T1Z, T16, TU;
271 T3I = T39 + T3a;
272 T3b = T39 - T3a;
273 T1Z = FNMS(T14, T12, T1Y);
274 T16 = FMA(T14, T15, T13);
275 T3O = TT - Tz;
276 TU = Tz + TT;
277 {
278 E T1H, T2G, T2h, T3e, T3c, T34, T1W, T32, T30, T33, T2b, T2S, T2R;
279 {
280 E T2W, T22, T1d, T2F, T2E, T36, T2D;
281 T2W = T2U - T2V;
282 T3w = T2U + T2V;
283 T22 = T1Z - T21;
284 T2D = T1Z + T21;
285 T1d = T16 + T1c;
286 T2F = T16 - T1c;
287 T2E = FNMS(KP500000000, T2D, T2C);
288 T36 = T2C + T2D;
289 T2d = FMA(KP866025403, T1G, T1B);
290 T1H = FNMS(KP866025403, T1G, T1B);
291 {
292 E T1e, T1X, T38, T2X;
293 T1e = T10 + T1d;
294 T1X = FNMS(KP500000000, T1d, T10);
295 T38 = T36 - T37;
296 T3J = T36 + T37;
297 T2G = FNMS(KP866025403, T2F, T2E);
298 T2X = FMA(KP866025403, T2F, T2E);
299 {
300 E T1z, T23, T2Z, T1A;
301 T3P = T1y - T1e;
302 T1z = T1e + T1y;
303 T23 = FNMS(KP866025403, T22, T1X);
304 T2h = FMA(KP866025403, T22, T1X);
305 T3e = FMA(KP618033988, T38, T3b);
306 T3c = FNMS(KP618033988, T3b, T38);
307 T2Z = T2X - T2Y;
308 T3x = T2X + T2Y;
309 T1A = TU + T1z;
310 T34 = TU - T1z;
311 T3C = T1O - T1V;
312 T1W = T1O + T1V;
313 T32 = FNMS(KP618033988, T2W, T2Z);
314 T30 = FMA(KP618033988, T2Z, T2W);
315 cr[0] = Tf + T1A;
316 T33 = FNMS(KP250000000, T1A, Tf);
317 T2b = T23 + T2a;
318 T3D = T23 - T2a;
319 }
320 }
321 }
322 {
323 E T2A, T2N, T3d, T35, T2c;
324 T3f = T2t + T2z;
325 T2A = T2t - T2z;
326 T2N = T2G - T2M;
327 T3g = T2G + T2M;
328 T3d = FMA(KP559016994, T34, T33);
329 T35 = FNMS(KP559016994, T34, T33);
330 T2c = T1W + T2b;
331 T2S = T1W - T2b;
332 cr[WS(rs, 3)] = FMA(KP951056516, T3c, T35);
333 ci[WS(rs, 2)] = FNMS(KP951056516, T3c, T35);
334 cr[WS(rs, 6)] = FMA(KP951056516, T3e, T3d);
335 ci[WS(rs, 5)] = FNMS(KP951056516, T3e, T3d);
336 cr[WS(rs, 5)] = T1H + T2c;
337 T2R = FNMS(KP250000000, T2c, T1H);
338 T2Q = FNMS(KP618033988, T2A, T2N);
339 T2O = FMA(KP618033988, T2N, T2A);
340 }
341 {
342 E T2T, T31, T2g, T2j;
343 T2T = FMA(KP559016994, T2S, T2R);
344 T31 = FNMS(KP559016994, T2S, T2R);
345 T2g = T2e + T2f;
346 T3r = T2e - T2f;
347 T3q = T2h - T2i;
348 T2j = T2h + T2i;
349 ci[WS(rs, 3)] = FMA(KP951056516, T30, T2T);
350 ci[0] = FNMS(KP951056516, T30, T2T);
351 ci[WS(rs, 6)] = FMA(KP951056516, T32, T31);
352 cr[WS(rs, 2)] = FNMS(KP951056516, T32, T31);
353 T2k = T2g + T2j;
354 T2m = T2g - T2j;
355 }
356 }
357 }
358 {
359 E T3m, T3s, T3u, T3o, T3h, T2l, T2n, T2P;
360 ci[WS(rs, 4)] = T2d + T2k;
361 T2l = FNMS(KP250000000, T2k, T2d);
362 T3m = FMA(KP866025403, T3l, T3k);
363 T3v = FNMS(KP866025403, T3l, T3k);
364 T3s = FNMS(KP618033988, T3r, T3q);
365 T3u = FMA(KP618033988, T3q, T3r);
366 T2n = FMA(KP559016994, T2m, T2l);
367 T2P = FNMS(KP559016994, T2m, T2l);
368 ci[WS(rs, 1)] = FMA(KP951056516, T2Q, T2P);
369 cr[WS(rs, 7)] = FNMS(KP951056516, T2Q, T2P);
370 cr[WS(rs, 1)] = FMA(KP951056516, T2O, T2n);
371 cr[WS(rs, 4)] = FNMS(KP951056516, T2O, T2n);
372 T3o = T3f - T3g;
373 T3h = T3f + T3g;
374 {
375 E T3S, T3Q, T3K, T3M, T3n, T3p, T3t, T3L, T3R, T3N;
376 cr[WS(rs, 10)] = -(T3h + T3m);
377 T3n = FNMS(KP250000000, T3h, T3m);
378 T3S = FNMS(KP618033988, T3O, T3P);
379 T3Q = FMA(KP618033988, T3P, T3O);
380 T3p = FNMS(KP559016994, T3o, T3n);
381 T3t = FMA(KP559016994, T3o, T3n);
382 ci[WS(rs, 7)] = FMA(KP951056516, T3s, T3p);
383 cr[WS(rs, 13)] = FMS(KP951056516, T3s, T3p);
384 ci[WS(rs, 13)] = FNMS(KP951056516, T3u, T3t);
385 ci[WS(rs, 10)] = FMA(KP951056516, T3u, T3t);
386 T3K = T3I + T3J;
387 T3M = T3I - T3J;
388 ci[WS(rs, 14)] = T3K + T3H;
389 T3L = FNMS(KP250000000, T3K, T3H);
390 T3E = FMA(KP618033988, T3D, T3C);
391 T3G = FNMS(KP618033988, T3C, T3D);
392 T3R = FNMS(KP559016994, T3M, T3L);
393 T3N = FMA(KP559016994, T3M, T3L);
394 ci[WS(rs, 8)] = FMA(KP951056516, T3Q, T3N);
395 cr[WS(rs, 9)] = FMS(KP951056516, T3Q, T3N);
396 ci[WS(rs, 11)] = FMA(KP951056516, T3S, T3R);
397 cr[WS(rs, 12)] = FMS(KP951056516, T3S, T3R);
398 T3A = T3x - T3w;
399 T3y = T3w + T3x;
400 }
401 }
402 }
403 }
404 ci[WS(rs, 9)] = T3y + T3v;
405 T3z = FNMS(KP250000000, T3y, T3v);
406 T3F = FMA(KP559016994, T3A, T3z);
407 T3B = FNMS(KP559016994, T3A, T3z);
408 cr[WS(rs, 14)] = -(FMA(KP951056516, T3E, T3B));
409 cr[WS(rs, 11)] = FMS(KP951056516, T3E, T3B);
410 ci[WS(rs, 12)] = FMA(KP951056516, T3G, T3F);
411 cr[WS(rs, 8)] = FMS(KP951056516, T3G, T3F);
412 }
413 }
414 }
415
416 static const tw_instr twinstr[] = {
417 {TW_FULL, 1, 15},
418 {TW_NEXT, 1, 0}
419 };
420
421 static const hc2hc_desc desc = { 15, "hf_15", twinstr, &GENUS, {72, 28, 112, 0} };
422
423 void X(codelet_hf_15) (planner *p) {
424 X(khc2hc_register) (p, hf_15, &desc);
425 }
426 #else /* HAVE_FMA */
427
428 /* Generated by: ../../../genfft/gen_hc2hc.native -compact -variables 4 -pipeline-latency 4 -n 15 -dit -name hf_15 -include hf.h */
429
430 /*
431 * This function contains 184 FP additions, 112 FP multiplications,
432 * (or, 128 additions, 56 multiplications, 56 fused multiply/add),
433 * 65 stack variables, 6 constants, and 60 memory accesses
434 */
435 #include "hf.h"
436
437 static void hf_15(R *cr, R *ci, const R *W, stride rs, INT mb, INT me, INT ms)
438 {
439 DK(KP587785252, +0.587785252292473129168705954639072768597652438);
440 DK(KP951056516, +0.951056516295153572116439333379382143405698634);
441 DK(KP250000000, +0.250000000000000000000000000000000000000000000);
442 DK(KP559016994, +0.559016994374947424102293417182819058860154590);
443 DK(KP500000000, +0.500000000000000000000000000000000000000000000);
444 DK(KP866025403, +0.866025403784438646763723170752936183471402627);
445 {
446 INT m;
447 for (m = mb, W = W + ((mb - 1) * 28); m < me; m = m + 1, cr = cr + ms, ci = ci - ms, W = W + 28, MAKE_VOLATILE_STRIDE(30, rs)) {
448 E T1q, T2Q, Td, T1n, T2T, T3l, T13, T1k, T1l, T2E, T2F, T3j, T1H, T1T, T2k;
449 E T2w, T2f, T2v, T1M, T1U, Tu, TL, TM, T2H, T2I, T3i, T1w, T1Q, T29, T2t;
450 E T24, T2s, T1B, T1R;
451 {
452 E T1, T2R, T6, T1o, Tb, T1p, Tc, T2S;
453 T1 = cr[0];
454 T2R = ci[0];
455 {
456 E T3, T5, T2, T4;
457 T3 = cr[WS(rs, 5)];
458 T5 = ci[WS(rs, 5)];
459 T2 = W[8];
460 T4 = W[9];
461 T6 = FMA(T2, T3, T4 * T5);
462 T1o = FNMS(T4, T3, T2 * T5);
463 }
464 {
465 E T8, Ta, T7, T9;
466 T8 = cr[WS(rs, 10)];
467 Ta = ci[WS(rs, 10)];
468 T7 = W[18];
469 T9 = W[19];
470 Tb = FMA(T7, T8, T9 * Ta);
471 T1p = FNMS(T9, T8, T7 * Ta);
472 }
473 T1q = KP866025403 * (T1o - T1p);
474 T2Q = KP866025403 * (Tb - T6);
475 Tc = T6 + Tb;
476 Td = T1 + Tc;
477 T1n = FNMS(KP500000000, Tc, T1);
478 T2S = T1o + T1p;
479 T2T = FNMS(KP500000000, T2S, T2R);
480 T3l = T2S + T2R;
481 }
482 {
483 E TR, T2c, T18, T2h, TW, T1E, T11, T1F, T12, T2d, T1d, T1J, T1i, T1K, T1j;
484 E T2i;
485 {
486 E TO, TQ, TN, TP;
487 TO = cr[WS(rs, 6)];
488 TQ = ci[WS(rs, 6)];
489 TN = W[10];
490 TP = W[11];
491 TR = FMA(TN, TO, TP * TQ);
492 T2c = FNMS(TP, TO, TN * TQ);
493 }
494 {
495 E T15, T17, T14, T16;
496 T15 = cr[WS(rs, 9)];
497 T17 = ci[WS(rs, 9)];
498 T14 = W[16];
499 T16 = W[17];
500 T18 = FMA(T14, T15, T16 * T17);
501 T2h = FNMS(T16, T15, T14 * T17);
502 }
503 {
504 E TT, TV, TS, TU;
505 TT = cr[WS(rs, 11)];
506 TV = ci[WS(rs, 11)];
507 TS = W[20];
508 TU = W[21];
509 TW = FMA(TS, TT, TU * TV);
510 T1E = FNMS(TU, TT, TS * TV);
511 }
512 {
513 E TY, T10, TX, TZ;
514 TY = cr[WS(rs, 1)];
515 T10 = ci[WS(rs, 1)];
516 TX = W[0];
517 TZ = W[1];
518 T11 = FMA(TX, TY, TZ * T10);
519 T1F = FNMS(TZ, TY, TX * T10);
520 }
521 T12 = TW + T11;
522 T2d = T1E + T1F;
523 {
524 E T1a, T1c, T19, T1b;
525 T1a = cr[WS(rs, 14)];
526 T1c = ci[WS(rs, 14)];
527 T19 = W[26];
528 T1b = W[27];
529 T1d = FMA(T19, T1a, T1b * T1c);
530 T1J = FNMS(T1b, T1a, T19 * T1c);
531 }
532 {
533 E T1f, T1h, T1e, T1g;
534 T1f = cr[WS(rs, 4)];
535 T1h = ci[WS(rs, 4)];
536 T1e = W[6];
537 T1g = W[7];
538 T1i = FMA(T1e, T1f, T1g * T1h);
539 T1K = FNMS(T1g, T1f, T1e * T1h);
540 }
541 T1j = T1d + T1i;
542 T2i = T1J + T1K;
543 {
544 E T1D, T1G, T2g, T2j;
545 T13 = TR + T12;
546 T1k = T18 + T1j;
547 T1l = T13 + T1k;
548 T2E = T2c + T2d;
549 T2F = T2h + T2i;
550 T3j = T2E + T2F;
551 T1D = FNMS(KP500000000, T12, TR);
552 T1G = KP866025403 * (T1E - T1F);
553 T1H = T1D - T1G;
554 T1T = T1D + T1G;
555 T2g = KP866025403 * (T1d - T1i);
556 T2j = FNMS(KP500000000, T2i, T2h);
557 T2k = T2g - T2j;
558 T2w = T2g + T2j;
559 {
560 E T2b, T2e, T1I, T1L;
561 T2b = KP866025403 * (T11 - TW);
562 T2e = FNMS(KP500000000, T2d, T2c);
563 T2f = T2b + T2e;
564 T2v = T2e - T2b;
565 T1I = FNMS(KP500000000, T1j, T18);
566 T1L = KP866025403 * (T1J - T1K);
567 T1M = T1I - T1L;
568 T1U = T1I + T1L;
569 }
570 }
571 }
572 {
573 E Ti, T21, Tz, T26, Tn, T1t, Ts, T1u, Tt, T22, TE, T1y, TJ, T1z, TK;
574 E T27;
575 {
576 E Tf, Th, Te, Tg;
577 Tf = cr[WS(rs, 3)];
578 Th = ci[WS(rs, 3)];
579 Te = W[4];
580 Tg = W[5];
581 Ti = FMA(Te, Tf, Tg * Th);
582 T21 = FNMS(Tg, Tf, Te * Th);
583 }
584 {
585 E Tw, Ty, Tv, Tx;
586 Tw = cr[WS(rs, 12)];
587 Ty = ci[WS(rs, 12)];
588 Tv = W[22];
589 Tx = W[23];
590 Tz = FMA(Tv, Tw, Tx * Ty);
591 T26 = FNMS(Tx, Tw, Tv * Ty);
592 }
593 {
594 E Tk, Tm, Tj, Tl;
595 Tk = cr[WS(rs, 8)];
596 Tm = ci[WS(rs, 8)];
597 Tj = W[14];
598 Tl = W[15];
599 Tn = FMA(Tj, Tk, Tl * Tm);
600 T1t = FNMS(Tl, Tk, Tj * Tm);
601 }
602 {
603 E Tp, Tr, To, Tq;
604 Tp = cr[WS(rs, 13)];
605 Tr = ci[WS(rs, 13)];
606 To = W[24];
607 Tq = W[25];
608 Ts = FMA(To, Tp, Tq * Tr);
609 T1u = FNMS(Tq, Tp, To * Tr);
610 }
611 Tt = Tn + Ts;
612 T22 = T1t + T1u;
613 {
614 E TB, TD, TA, TC;
615 TB = cr[WS(rs, 2)];
616 TD = ci[WS(rs, 2)];
617 TA = W[2];
618 TC = W[3];
619 TE = FMA(TA, TB, TC * TD);
620 T1y = FNMS(TC, TB, TA * TD);
621 }
622 {
623 E TG, TI, TF, TH;
624 TG = cr[WS(rs, 7)];
625 TI = ci[WS(rs, 7)];
626 TF = W[12];
627 TH = W[13];
628 TJ = FMA(TF, TG, TH * TI);
629 T1z = FNMS(TH, TG, TF * TI);
630 }
631 TK = TE + TJ;
632 T27 = T1y + T1z;
633 {
634 E T1s, T1v, T25, T28;
635 Tu = Ti + Tt;
636 TL = Tz + TK;
637 TM = Tu + TL;
638 T2H = T21 + T22;
639 T2I = T26 + T27;
640 T3i = T2H + T2I;
641 T1s = FNMS(KP500000000, Tt, Ti);
642 T1v = KP866025403 * (T1t - T1u);
643 T1w = T1s - T1v;
644 T1Q = T1s + T1v;
645 T25 = KP866025403 * (TJ - TE);
646 T28 = FNMS(KP500000000, T27, T26);
647 T29 = T25 + T28;
648 T2t = T28 - T25;
649 {
650 E T20, T23, T1x, T1A;
651 T20 = KP866025403 * (Ts - Tn);
652 T23 = FNMS(KP500000000, T22, T21);
653 T24 = T20 + T23;
654 T2s = T23 - T20;
655 T1x = FNMS(KP500000000, TK, Tz);
656 T1A = KP866025403 * (T1y - T1z);
657 T1B = T1x - T1A;
658 T1R = T1x + T1A;
659 }
660 }
661 }
662 {
663 E T2C, T1m, T2B, T2K, T2M, T2G, T2J, T2L, T2D;
664 T2C = KP559016994 * (TM - T1l);
665 T1m = TM + T1l;
666 T2B = FNMS(KP250000000, T1m, Td);
667 T2G = T2E - T2F;
668 T2J = T2H - T2I;
669 T2K = FNMS(KP587785252, T2J, KP951056516 * T2G);
670 T2M = FMA(KP951056516, T2J, KP587785252 * T2G);
671 cr[0] = Td + T1m;
672 T2L = T2C + T2B;
673 ci[WS(rs, 5)] = T2L - T2M;
674 cr[WS(rs, 6)] = T2L + T2M;
675 T2D = T2B - T2C;
676 ci[WS(rs, 2)] = T2D - T2K;
677 cr[WS(rs, 3)] = T2D + T2K;
678 }
679 {
680 E T3k, T3m, T3n, T3h, T3p, T3f, T3g, T3q, T3o;
681 T3k = KP559016994 * (T3i - T3j);
682 T3m = T3i + T3j;
683 T3n = FNMS(KP250000000, T3m, T3l);
684 T3f = T1k - T13;
685 T3g = Tu - TL;
686 T3h = FNMS(KP951056516, T3g, KP587785252 * T3f);
687 T3p = FMA(KP587785252, T3g, KP951056516 * T3f);
688 ci[WS(rs, 14)] = T3m + T3l;
689 T3q = T3n - T3k;
690 cr[WS(rs, 12)] = T3p - T3q;
691 ci[WS(rs, 11)] = T3p + T3q;
692 T3o = T3k + T3n;
693 cr[WS(rs, 9)] = T3h - T3o;
694 ci[WS(rs, 8)] = T3h + T3o;
695 }
696 {
697 E T2y, T2A, T1r, T1O, T2p, T2q, T2z, T2r;
698 {
699 E T2u, T2x, T1C, T1N;
700 T2u = T2s - T2t;
701 T2x = T2v - T2w;
702 T2y = FMA(KP951056516, T2u, KP587785252 * T2x);
703 T2A = FNMS(KP587785252, T2u, KP951056516 * T2x);
704 T1r = T1n - T1q;
705 T1C = T1w + T1B;
706 T1N = T1H + T1M;
707 T1O = T1C + T1N;
708 T2p = KP559016994 * (T1C - T1N);
709 T2q = FNMS(KP250000000, T1O, T1r);
710 }
711 cr[WS(rs, 5)] = T1r + T1O;
712 T2z = T2q - T2p;
713 cr[WS(rs, 2)] = T2z - T2A;
714 ci[WS(rs, 6)] = T2z + T2A;
715 T2r = T2p + T2q;
716 ci[0] = T2r - T2y;
717 ci[WS(rs, 3)] = T2r + T2y;
718 }
719 {
720 E T35, T3d, T39, T3a, T38, T3b, T3e, T3c;
721 {
722 E T33, T34, T36, T37;
723 T33 = T1w - T1B;
724 T34 = T1H - T1M;
725 T35 = FMA(KP951056516, T33, KP587785252 * T34);
726 T3d = FNMS(KP587785252, T33, KP951056516 * T34);
727 T39 = T2T - T2Q;
728 T36 = T2v + T2w;
729 T37 = T2s + T2t;
730 T3a = T37 + T36;
731 T38 = KP559016994 * (T36 - T37);
732 T3b = FNMS(KP250000000, T3a, T39);
733 }
734 ci[WS(rs, 9)] = T3a + T39;
735 T3e = T38 + T3b;
736 cr[WS(rs, 8)] = T3d - T3e;
737 ci[WS(rs, 12)] = T3d + T3e;
738 T3c = T38 - T3b;
739 cr[WS(rs, 11)] = T35 + T3c;
740 cr[WS(rs, 14)] = T3c - T35;
741 }
742 {
743 E T2X, T31, T2U, T2P, T2Y, T2Z, T32, T30;
744 {
745 E T2V, T2W, T2N, T2O;
746 T2V = T1T - T1U;
747 T2W = T1Q - T1R;
748 T2X = FNMS(KP587785252, T2W, KP951056516 * T2V);
749 T31 = FMA(KP951056516, T2W, KP587785252 * T2V);
750 T2U = T2Q + T2T;
751 T2N = T2k - T2f;
752 T2O = T24 + T29;
753 T2P = T2N - T2O;
754 T2Y = FMA(KP250000000, T2P, T2U);
755 T2Z = KP559016994 * (T2O + T2N);
756 }
757 cr[WS(rs, 10)] = T2P - T2U;
758 T32 = T2Z + T2Y;
759 ci[WS(rs, 10)] = T31 + T32;
760 ci[WS(rs, 13)] = T32 - T31;
761 T30 = T2Y - T2Z;
762 cr[WS(rs, 13)] = T2X - T30;
763 ci[WS(rs, 7)] = T2X + T30;
764 }
765 {
766 E T2m, T2o, T1P, T1W, T1X, T1Y, T1Z, T2n;
767 {
768 E T2a, T2l, T1S, T1V;
769 T2a = T24 - T29;
770 T2l = T2f + T2k;
771 T2m = FMA(KP951056516, T2a, KP587785252 * T2l);
772 T2o = FNMS(KP587785252, T2a, KP951056516 * T2l);
773 T1P = T1n + T1q;
774 T1S = T1Q + T1R;
775 T1V = T1T + T1U;
776 T1W = T1S + T1V;
777 T1X = KP559016994 * (T1S - T1V);
778 T1Y = FNMS(KP250000000, T1W, T1P);
779 }
780 ci[WS(rs, 4)] = T1P + T1W;
781 T1Z = T1X + T1Y;
782 cr[WS(rs, 4)] = T1Z - T2m;
783 cr[WS(rs, 1)] = T1Z + T2m;
784 T2n = T1Y - T1X;
785 cr[WS(rs, 7)] = T2n - T2o;
786 ci[WS(rs, 1)] = T2n + T2o;
787 }
788 }
789 }
790 }
791
792 static const tw_instr twinstr[] = {
793 {TW_FULL, 1, 15},
794 {TW_NEXT, 1, 0}
795 };
796
797 static const hc2hc_desc desc = { 15, "hf_15", twinstr, &GENUS, {128, 56, 56, 0} };
798
799 void X(codelet_hf_15) (planner *p) {
800 X(khc2hc_register) (p, hf_15, &desc);
801 }
802 #endif /* HAVE_FMA */