Mercurial > hg > js-dsp-test
comparison fft/fftw/fftw-3.3.4/rdft/scalar/r2cf/hf2_20.c @ 19:26056e866c29
Add FFTW to comparison table
author | Chris Cannam |
---|---|
date | Tue, 06 Oct 2015 13:08:39 +0100 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
18:8db794ca3e0b | 19:26056e866c29 |
---|---|
1 /* | |
2 * Copyright (c) 2003, 2007-14 Matteo Frigo | |
3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology | |
4 * | |
5 * This program is free software; you can redistribute it and/or modify | |
6 * it under the terms of the GNU General Public License as published by | |
7 * the Free Software Foundation; either version 2 of the License, or | |
8 * (at your option) any later version. | |
9 * | |
10 * This program is distributed in the hope that it will be useful, | |
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
13 * GNU General Public License for more details. | |
14 * | |
15 * You should have received a copy of the GNU General Public License | |
16 * along with this program; if not, write to the Free Software | |
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA | |
18 * | |
19 */ | |
20 | |
21 /* This file was automatically generated --- DO NOT EDIT */ | |
22 /* Generated on Tue Mar 4 13:49:14 EST 2014 */ | |
23 | |
24 #include "codelet-rdft.h" | |
25 | |
26 #ifdef HAVE_FMA | |
27 | |
28 /* Generated by: ../../../genfft/gen_hc2hc.native -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -twiddle-log3 -precompute-twiddles -n 20 -dit -name hf2_20 -include hf.h */ | |
29 | |
30 /* | |
31 * This function contains 276 FP additions, 198 FP multiplications, | |
32 * (or, 136 additions, 58 multiplications, 140 fused multiply/add), | |
33 * 146 stack variables, 4 constants, and 80 memory accesses | |
34 */ | |
35 #include "hf.h" | |
36 | |
37 static void hf2_20(R *cr, R *ci, const R *W, stride rs, INT mb, INT me, INT ms) | |
38 { | |
39 DK(KP951056516, +0.951056516295153572116439333379382143405698634); | |
40 DK(KP559016994, +0.559016994374947424102293417182819058860154590); | |
41 DK(KP250000000, +0.250000000000000000000000000000000000000000000); | |
42 DK(KP618033988, +0.618033988749894848204586834365638117720309180); | |
43 { | |
44 INT m; | |
45 for (m = mb, W = W + ((mb - 1) * 8); m < me; m = m + 1, cr = cr + ms, ci = ci - ms, W = W + 8, MAKE_VOLATILE_STRIDE(40, rs)) { | |
46 E T5o, T5u, T5w, T5q, T5n, T5p, T5v, T5r; | |
47 { | |
48 E T2, Th, Tf, T6, T5, Tl, T1p, T1n, Ti, T3, Tt, Tv, T24, T1f, T1D; | |
49 E Tb, T1P, Tm, T21, T1b, T7, T1A, Tw, T1H, T13, TA, T1L, T17, T1S, Tq; | |
50 E T1o, T2g, T1t, T2c, TO, TK; | |
51 { | |
52 E T1e, Ta, Tk, Tg; | |
53 T2 = W[0]; | |
54 Th = W[3]; | |
55 Tf = W[2]; | |
56 T6 = W[5]; | |
57 T5 = W[1]; | |
58 Tk = T2 * Th; | |
59 Tg = T2 * Tf; | |
60 T1e = Tf * T6; | |
61 Ta = T2 * T6; | |
62 Tl = FMA(T5, Tf, Tk); | |
63 T1p = FNMS(T5, Tf, Tk); | |
64 T1n = FMA(T5, Th, Tg); | |
65 Ti = FNMS(T5, Th, Tg); | |
66 T3 = W[4]; | |
67 Tt = W[6]; | |
68 Tv = W[7]; | |
69 { | |
70 E Tp, Tj, TN, TJ; | |
71 Tp = Ti * T6; | |
72 T24 = FMA(Th, T3, T1e); | |
73 T1f = FNMS(Th, T3, T1e); | |
74 T1D = FNMS(T5, T3, Ta); | |
75 Tb = FMA(T5, T3, Ta); | |
76 Tj = Ti * T3; | |
77 { | |
78 E T1a, T4, Tu, T1G; | |
79 T1a = Tf * T3; | |
80 T4 = T2 * T3; | |
81 Tu = Ti * Tt; | |
82 T1G = T2 * Tt; | |
83 { | |
84 E T12, Tz, T1K, T16; | |
85 T12 = Tf * Tt; | |
86 Tz = Ti * Tv; | |
87 T1K = T2 * Tv; | |
88 T16 = Tf * Tv; | |
89 T1P = FNMS(Tl, T6, Tj); | |
90 Tm = FMA(Tl, T6, Tj); | |
91 T21 = FNMS(Th, T6, T1a); | |
92 T1b = FMA(Th, T6, T1a); | |
93 T7 = FNMS(T5, T6, T4); | |
94 T1A = FMA(T5, T6, T4); | |
95 Tw = FMA(Tl, Tv, Tu); | |
96 T1H = FMA(T5, Tv, T1G); | |
97 T13 = FMA(Th, Tv, T12); | |
98 TA = FNMS(Tl, Tt, Tz); | |
99 T1L = FNMS(T5, Tt, T1K); | |
100 T17 = FNMS(Th, Tt, T16); | |
101 T1S = FMA(Tl, T3, Tp); | |
102 Tq = FNMS(Tl, T3, Tp); | |
103 } | |
104 } | |
105 T1o = T1n * T3; | |
106 T2g = T1n * Tv; | |
107 TN = Tm * Tv; | |
108 TJ = Tm * Tt; | |
109 T1t = T1n * T6; | |
110 T2c = T1n * Tt; | |
111 TO = FNMS(Tq, Tt, TN); | |
112 TK = FMA(Tq, Tv, TJ); | |
113 } | |
114 } | |
115 { | |
116 E Te, T2C, T4K, T57, T58, TD, T2H, T4L, T3u, T3Z, T11, T2v, T2P, T3P, T4n; | |
117 E T4v, T3C, T43, T2r, T2z, T3b, T3T, T4d, T4z, T3J, T42, T20, T2y, T34, T3S; | |
118 E T4g, T4y, T1c, T19, T1d, T3j, T1w, T2U, T1g, T1j, T1l; | |
119 { | |
120 E T2d, T2h, T2k, T1q, T1u, T2n, TL, TI, TM, T3q, TZ, T2N, TP, TS, TU; | |
121 { | |
122 E T1, T4J, T8, T9, Tc; | |
123 T1 = cr[0]; | |
124 T4J = ci[0]; | |
125 T8 = cr[WS(rs, 10)]; | |
126 T2d = FMA(T1p, Tv, T2c); | |
127 T2h = FNMS(T1p, Tt, T2g); | |
128 T2k = FMA(T1p, T6, T1o); | |
129 T1q = FNMS(T1p, T6, T1o); | |
130 T1u = FMA(T1p, T3, T1t); | |
131 T2n = FNMS(T1p, T3, T1t); | |
132 T9 = T7 * T8; | |
133 Tc = ci[WS(rs, 10)]; | |
134 { | |
135 E Tx, Ts, T2F, TC, T2E; | |
136 { | |
137 E Tn, Tr, To, T2D, T4I, Ty, TB, Td, T4H; | |
138 Tn = cr[WS(rs, 5)]; | |
139 Tr = ci[WS(rs, 5)]; | |
140 Tx = cr[WS(rs, 15)]; | |
141 Td = FMA(Tb, Tc, T9); | |
142 T4H = T7 * Tc; | |
143 To = Tm * Tn; | |
144 T2D = Tm * Tr; | |
145 Te = T1 + Td; | |
146 T2C = T1 - Td; | |
147 T4I = FNMS(Tb, T8, T4H); | |
148 Ty = Tw * Tx; | |
149 TB = ci[WS(rs, 15)]; | |
150 Ts = FMA(Tq, Tr, To); | |
151 T4K = T4I + T4J; | |
152 T57 = T4J - T4I; | |
153 T2F = Tw * TB; | |
154 TC = FMA(TA, TB, Ty); | |
155 T2E = FNMS(Tq, Tn, T2D); | |
156 } | |
157 { | |
158 E TF, TG, TH, TW, TY, T2G, T3p, TX, T2M; | |
159 TF = cr[WS(rs, 4)]; | |
160 T2G = FNMS(TA, Tx, T2F); | |
161 T58 = Ts - TC; | |
162 TD = Ts + TC; | |
163 TG = Ti * TF; | |
164 T2H = T2E - T2G; | |
165 T4L = T2E + T2G; | |
166 TH = ci[WS(rs, 4)]; | |
167 TW = cr[WS(rs, 19)]; | |
168 TY = ci[WS(rs, 19)]; | |
169 TL = cr[WS(rs, 14)]; | |
170 TI = FMA(Tl, TH, TG); | |
171 T3p = Ti * TH; | |
172 TX = Tt * TW; | |
173 T2M = Tt * TY; | |
174 TM = TK * TL; | |
175 T3q = FNMS(Tl, TF, T3p); | |
176 TZ = FMA(Tv, TY, TX); | |
177 T2N = FNMS(Tv, TW, T2M); | |
178 TP = ci[WS(rs, 14)]; | |
179 TS = cr[WS(rs, 9)]; | |
180 TU = ci[WS(rs, 9)]; | |
181 } | |
182 } | |
183 } | |
184 { | |
185 E T27, T26, T28, T3y, T2p, T39, T29, T2e, T2i; | |
186 { | |
187 E T22, T23, T25, T2l, T2o, T3x, T2m, T38; | |
188 { | |
189 E TR, T2J, T3s, TV, T2L, T4m, T3t; | |
190 T22 = cr[WS(rs, 12)]; | |
191 { | |
192 E TQ, T3r, TT, T2K; | |
193 TQ = FMA(TO, TP, TM); | |
194 T3r = TK * TP; | |
195 TT = T3 * TS; | |
196 T2K = T3 * TU; | |
197 TR = TI + TQ; | |
198 T2J = TI - TQ; | |
199 T3s = FNMS(TO, TL, T3r); | |
200 TV = FMA(T6, TU, TT); | |
201 T2L = FNMS(T6, TS, T2K); | |
202 T23 = T21 * T22; | |
203 } | |
204 T4m = T3q + T3s; | |
205 T3t = T3q - T3s; | |
206 { | |
207 E T10, T3o, T4l, T2O; | |
208 T10 = TV + TZ; | |
209 T3o = TZ - TV; | |
210 T4l = T2L + T2N; | |
211 T2O = T2L - T2N; | |
212 T3u = T3o - T3t; | |
213 T3Z = T3t + T3o; | |
214 T11 = TR - T10; | |
215 T2v = TR + T10; | |
216 T2P = T2J - T2O; | |
217 T3P = T2J + T2O; | |
218 T4n = T4l - T4m; | |
219 T4v = T4m + T4l; | |
220 T25 = ci[WS(rs, 12)]; | |
221 } | |
222 } | |
223 T2l = cr[WS(rs, 7)]; | |
224 T2o = ci[WS(rs, 7)]; | |
225 T27 = cr[WS(rs, 2)]; | |
226 T26 = FMA(T24, T25, T23); | |
227 T3x = T21 * T25; | |
228 T2m = T2k * T2l; | |
229 T38 = T2k * T2o; | |
230 T28 = T1n * T27; | |
231 T3y = FNMS(T24, T22, T3x); | |
232 T2p = FMA(T2n, T2o, T2m); | |
233 T39 = FNMS(T2n, T2l, T38); | |
234 T29 = ci[WS(rs, 2)]; | |
235 T2e = cr[WS(rs, 17)]; | |
236 T2i = ci[WS(rs, 17)]; | |
237 } | |
238 { | |
239 E T1I, T1F, T1J, T3F, T1Y, T32, T1M, T1Q, T1T; | |
240 { | |
241 E T1B, T1C, T1E, T1V, T1X, T3E, T1W, T31; | |
242 { | |
243 E T2b, T35, T3A, T2j, T37, T4c, T3B; | |
244 T1B = cr[WS(rs, 8)]; | |
245 { | |
246 E T2a, T3z, T2f, T36; | |
247 T2a = FMA(T1p, T29, T28); | |
248 T3z = T1n * T29; | |
249 T2f = T2d * T2e; | |
250 T36 = T2d * T2i; | |
251 T2b = T26 + T2a; | |
252 T35 = T26 - T2a; | |
253 T3A = FNMS(T1p, T27, T3z); | |
254 T2j = FMA(T2h, T2i, T2f); | |
255 T37 = FNMS(T2h, T2e, T36); | |
256 T1C = T1A * T1B; | |
257 } | |
258 T4c = T3y + T3A; | |
259 T3B = T3y - T3A; | |
260 { | |
261 E T2q, T3w, T4b, T3a; | |
262 T2q = T2j + T2p; | |
263 T3w = T2p - T2j; | |
264 T4b = T37 + T39; | |
265 T3a = T37 - T39; | |
266 T3C = T3w - T3B; | |
267 T43 = T3B + T3w; | |
268 T2r = T2b - T2q; | |
269 T2z = T2b + T2q; | |
270 T3b = T35 - T3a; | |
271 T3T = T35 + T3a; | |
272 T4d = T4b - T4c; | |
273 T4z = T4c + T4b; | |
274 T1E = ci[WS(rs, 8)]; | |
275 } | |
276 } | |
277 T1V = cr[WS(rs, 3)]; | |
278 T1X = ci[WS(rs, 3)]; | |
279 T1I = cr[WS(rs, 18)]; | |
280 T1F = FMA(T1D, T1E, T1C); | |
281 T3E = T1A * T1E; | |
282 T1W = Tf * T1V; | |
283 T31 = Tf * T1X; | |
284 T1J = T1H * T1I; | |
285 T3F = FNMS(T1D, T1B, T3E); | |
286 T1Y = FMA(Th, T1X, T1W); | |
287 T32 = FNMS(Th, T1V, T31); | |
288 T1M = ci[WS(rs, 18)]; | |
289 T1Q = cr[WS(rs, 13)]; | |
290 T1T = ci[WS(rs, 13)]; | |
291 } | |
292 { | |
293 E T14, T15, T18, T1r, T1v, T3i, T1s, T2T; | |
294 { | |
295 E T1O, T2Y, T3H, T1U, T30, T4f, T3I; | |
296 T14 = cr[WS(rs, 16)]; | |
297 { | |
298 E T1N, T3G, T1R, T2Z; | |
299 T1N = FMA(T1L, T1M, T1J); | |
300 T3G = T1H * T1M; | |
301 T1R = T1P * T1Q; | |
302 T2Z = T1P * T1T; | |
303 T1O = T1F + T1N; | |
304 T2Y = T1F - T1N; | |
305 T3H = FNMS(T1L, T1I, T3G); | |
306 T1U = FMA(T1S, T1T, T1R); | |
307 T30 = FNMS(T1S, T1Q, T2Z); | |
308 T15 = T13 * T14; | |
309 } | |
310 T4f = T3F + T3H; | |
311 T3I = T3F - T3H; | |
312 { | |
313 E T1Z, T3D, T4e, T33; | |
314 T1Z = T1U + T1Y; | |
315 T3D = T1Y - T1U; | |
316 T4e = T30 + T32; | |
317 T33 = T30 - T32; | |
318 T3J = T3D - T3I; | |
319 T42 = T3I + T3D; | |
320 T20 = T1O - T1Z; | |
321 T2y = T1O + T1Z; | |
322 T34 = T2Y - T33; | |
323 T3S = T2Y + T33; | |
324 T4g = T4e - T4f; | |
325 T4y = T4f + T4e; | |
326 T18 = ci[WS(rs, 16)]; | |
327 } | |
328 } | |
329 T1r = cr[WS(rs, 11)]; | |
330 T1v = ci[WS(rs, 11)]; | |
331 T1c = cr[WS(rs, 6)]; | |
332 T19 = FMA(T17, T18, T15); | |
333 T3i = T13 * T18; | |
334 T1s = T1q * T1r; | |
335 T2T = T1q * T1v; | |
336 T1d = T1b * T1c; | |
337 T3j = FNMS(T17, T14, T3i); | |
338 T1w = FMA(T1u, T1v, T1s); | |
339 T2U = FNMS(T1u, T1r, T2T); | |
340 T1g = ci[WS(rs, 6)]; | |
341 T1j = cr[WS(rs, 1)]; | |
342 T1l = ci[WS(rs, 1)]; | |
343 } | |
344 } | |
345 } | |
346 } | |
347 { | |
348 E T4F, T4Q, T4R, T5a, T4E, T5b, T2I, T5h, T5g, T4W, T4X, T53, T52, T5l, T5m; | |
349 E T5s, T2X, T3N, T3L, T3c, T5t; | |
350 { | |
351 E T2u, T3n, T2w, T2W, T4w, T4r, T4p, T45, T47, T3O, T3R, T4a, T4q, T3U; | |
352 { | |
353 E T4h, TE, T40, T3Q, T4k, T1z, T2s, T49, T48; | |
354 { | |
355 E T1i, T2Q, T3l, T1m, T2S, T4j, T3m; | |
356 T4h = T4d - T4g; | |
357 T4F = T4g + T4d; | |
358 { | |
359 E T1h, T3k, T1k, T2R; | |
360 T1h = FMA(T1f, T1g, T1d); | |
361 T3k = T1b * T1g; | |
362 T1k = T2 * T1j; | |
363 T2R = T2 * T1l; | |
364 T1i = T19 + T1h; | |
365 T2Q = T19 - T1h; | |
366 T3l = FNMS(T1f, T1c, T3k); | |
367 T1m = FMA(T5, T1l, T1k); | |
368 T2S = FNMS(T5, T1j, T2R); | |
369 } | |
370 TE = Te - TD; | |
371 T2u = Te + TD; | |
372 T4j = T3j + T3l; | |
373 T3m = T3j - T3l; | |
374 { | |
375 E T1x, T3h, T4i, T2V, T1y; | |
376 T1x = T1m + T1w; | |
377 T3h = T1w - T1m; | |
378 T4i = T2S + T2U; | |
379 T2V = T2S - T2U; | |
380 T3n = T3h - T3m; | |
381 T40 = T3m + T3h; | |
382 T1y = T1i - T1x; | |
383 T2w = T1i + T1x; | |
384 T2W = T2Q - T2V; | |
385 T3Q = T2Q + T2V; | |
386 T4k = T4i - T4j; | |
387 T4w = T4j + T4i; | |
388 T4Q = T1y - T11; | |
389 T1z = T11 + T1y; | |
390 T2s = T20 + T2r; | |
391 T4R = T20 - T2r; | |
392 } | |
393 } | |
394 { | |
395 E T41, T4o, T44, T2t; | |
396 T5a = T3Z + T40; | |
397 T41 = T3Z - T40; | |
398 T4o = T4k - T4n; | |
399 T4E = T4n + T4k; | |
400 T5b = T42 + T43; | |
401 T44 = T42 - T43; | |
402 T49 = T1z - T2s; | |
403 T2t = T1z + T2s; | |
404 T4r = FMA(KP618033988, T4h, T4o); | |
405 T4p = FNMS(KP618033988, T4o, T4h); | |
406 T45 = FMA(KP618033988, T44, T41); | |
407 T47 = FNMS(KP618033988, T41, T44); | |
408 ci[WS(rs, 9)] = TE + T2t; | |
409 T48 = FNMS(KP250000000, T2t, TE); | |
410 } | |
411 T3O = T2C + T2H; | |
412 T2I = T2C - T2H; | |
413 T5h = T3P - T3Q; | |
414 T3R = T3P + T3Q; | |
415 T4a = FNMS(KP559016994, T49, T48); | |
416 T4q = FMA(KP559016994, T49, T48); | |
417 T3U = T3S + T3T; | |
418 T5g = T3S - T3T; | |
419 } | |
420 { | |
421 E T2x, T4B, T4D, T2A, T3Y, T46; | |
422 { | |
423 E T4x, T3X, T3V, T4A, T3W; | |
424 T4W = T4v + T4w; | |
425 T4x = T4v - T4w; | |
426 ci[WS(rs, 1)] = FMA(KP951056516, T4p, T4a); | |
427 cr[WS(rs, 2)] = FNMS(KP951056516, T4p, T4a); | |
428 cr[WS(rs, 6)] = FMA(KP951056516, T4r, T4q); | |
429 ci[WS(rs, 5)] = FNMS(KP951056516, T4r, T4q); | |
430 T3X = T3R - T3U; | |
431 T3V = T3R + T3U; | |
432 T4A = T4y - T4z; | |
433 T4X = T4y + T4z; | |
434 T2x = T2v + T2w; | |
435 T53 = T2v - T2w; | |
436 cr[WS(rs, 5)] = T3O + T3V; | |
437 T3W = FNMS(KP250000000, T3V, T3O); | |
438 T4B = FMA(KP618033988, T4A, T4x); | |
439 T4D = FNMS(KP618033988, T4x, T4A); | |
440 T52 = T2z - T2y; | |
441 T2A = T2y + T2z; | |
442 T3Y = FMA(KP559016994, T3X, T3W); | |
443 T46 = FNMS(KP559016994, T3X, T3W); | |
444 } | |
445 { | |
446 E T3v, T4t, T4s, T3K, T2B, T4u, T4C; | |
447 T3v = T3n - T3u; | |
448 T5l = T3u + T3n; | |
449 T2B = T2x + T2A; | |
450 T4t = T2x - T2A; | |
451 cr[WS(rs, 9)] = FNMS(KP951056516, T45, T3Y); | |
452 cr[WS(rs, 1)] = FMA(KP951056516, T45, T3Y); | |
453 ci[WS(rs, 6)] = FMA(KP951056516, T47, T46); | |
454 ci[WS(rs, 2)] = FNMS(KP951056516, T47, T46); | |
455 cr[0] = T2u + T2B; | |
456 T4s = FNMS(KP250000000, T2B, T2u); | |
457 T5m = T3J + T3C; | |
458 T3K = T3C - T3J; | |
459 T5s = T2P - T2W; | |
460 T2X = T2P + T2W; | |
461 T4u = FMA(KP559016994, T4t, T4s); | |
462 T4C = FNMS(KP559016994, T4t, T4s); | |
463 T3N = FNMS(KP618033988, T3v, T3K); | |
464 T3L = FMA(KP618033988, T3K, T3v); | |
465 ci[WS(rs, 3)] = FMA(KP951056516, T4B, T4u); | |
466 cr[WS(rs, 4)] = FNMS(KP951056516, T4B, T4u); | |
467 cr[WS(rs, 8)] = FMA(KP951056516, T4D, T4C); | |
468 ci[WS(rs, 7)] = FNMS(KP951056516, T4D, T4C); | |
469 T3c = T34 + T3b; | |
470 T5t = T34 - T3b; | |
471 } | |
472 } | |
473 } | |
474 { | |
475 E T4V, T5i, T5k, T59, T5e, T5c; | |
476 { | |
477 E T4M, T3f, T4U, T4S, T3e, T3d; | |
478 T4V = T4L + T4K; | |
479 T4M = T4K - T4L; | |
480 T3f = T2X - T3c; | |
481 T3d = T2X + T3c; | |
482 T4U = FMA(KP618033988, T4Q, T4R); | |
483 T4S = FNMS(KP618033988, T4R, T4Q); | |
484 ci[WS(rs, 4)] = T2I + T3d; | |
485 T3e = FNMS(KP250000000, T3d, T2I); | |
486 { | |
487 E T4O, T4N, T3g, T3M, T4G, T4T, T4P; | |
488 T3g = FMA(KP559016994, T3f, T3e); | |
489 T3M = FNMS(KP559016994, T3f, T3e); | |
490 T4O = T4F - T4E; | |
491 T4G = T4E + T4F; | |
492 ci[WS(rs, 8)] = FMA(KP951056516, T3L, T3g); | |
493 ci[0] = FNMS(KP951056516, T3L, T3g); | |
494 cr[WS(rs, 7)] = FNMS(KP951056516, T3N, T3M); | |
495 cr[WS(rs, 3)] = FMA(KP951056516, T3N, T3M); | |
496 cr[WS(rs, 10)] = T4G - T4M; | |
497 T4N = FMA(KP250000000, T4G, T4M); | |
498 T5i = FNMS(KP618033988, T5h, T5g); | |
499 T5k = FMA(KP618033988, T5g, T5h); | |
500 T59 = T57 - T58; | |
501 T5o = T58 + T57; | |
502 T4T = FNMS(KP559016994, T4O, T4N); | |
503 T4P = FMA(KP559016994, T4O, T4N); | |
504 ci[WS(rs, 13)] = FMA(KP951056516, T4S, T4P); | |
505 cr[WS(rs, 14)] = FMS(KP951056516, T4S, T4P); | |
506 ci[WS(rs, 17)] = FMA(KP951056516, T4U, T4T); | |
507 cr[WS(rs, 18)] = FMS(KP951056516, T4U, T4T); | |
508 T5e = T5a - T5b; | |
509 T5c = T5a + T5b; | |
510 } | |
511 } | |
512 { | |
513 E T56, T54, T4Y, T50, T5d, T5f, T5j, T4Z, T55, T51; | |
514 ci[WS(rs, 14)] = T5c + T59; | |
515 T5d = FNMS(KP250000000, T5c, T59); | |
516 T56 = FNMS(KP618033988, T52, T53); | |
517 T54 = FMA(KP618033988, T53, T52); | |
518 T5f = FNMS(KP559016994, T5e, T5d); | |
519 T5j = FMA(KP559016994, T5e, T5d); | |
520 cr[WS(rs, 17)] = -(FMA(KP951056516, T5i, T5f)); | |
521 cr[WS(rs, 13)] = FMS(KP951056516, T5i, T5f); | |
522 ci[WS(rs, 18)] = FNMS(KP951056516, T5k, T5j); | |
523 ci[WS(rs, 10)] = FMA(KP951056516, T5k, T5j); | |
524 T4Y = T4W + T4X; | |
525 T50 = T4W - T4X; | |
526 ci[WS(rs, 19)] = T4Y + T4V; | |
527 T4Z = FNMS(KP250000000, T4Y, T4V); | |
528 T5u = FMA(KP618033988, T5t, T5s); | |
529 T5w = FNMS(KP618033988, T5s, T5t); | |
530 T55 = FMA(KP559016994, T50, T4Z); | |
531 T51 = FNMS(KP559016994, T50, T4Z); | |
532 ci[WS(rs, 11)] = FMA(KP951056516, T54, T51); | |
533 cr[WS(rs, 12)] = FMS(KP951056516, T54, T51); | |
534 ci[WS(rs, 15)] = FMA(KP951056516, T56, T55); | |
535 cr[WS(rs, 16)] = FMS(KP951056516, T56, T55); | |
536 T5q = T5l - T5m; | |
537 T5n = T5l + T5m; | |
538 } | |
539 } | |
540 } | |
541 } | |
542 } | |
543 cr[WS(rs, 15)] = T5n - T5o; | |
544 T5p = FMA(KP250000000, T5n, T5o); | |
545 T5v = FMA(KP559016994, T5q, T5p); | |
546 T5r = FNMS(KP559016994, T5q, T5p); | |
547 cr[WS(rs, 19)] = -(FMA(KP951056516, T5u, T5r)); | |
548 cr[WS(rs, 11)] = FMS(KP951056516, T5u, T5r); | |
549 ci[WS(rs, 16)] = FNMS(KP951056516, T5w, T5v); | |
550 ci[WS(rs, 12)] = FMA(KP951056516, T5w, T5v); | |
551 } | |
552 } | |
553 } | |
554 | |
555 static const tw_instr twinstr[] = { | |
556 {TW_CEXP, 1, 1}, | |
557 {TW_CEXP, 1, 3}, | |
558 {TW_CEXP, 1, 9}, | |
559 {TW_CEXP, 1, 19}, | |
560 {TW_NEXT, 1, 0} | |
561 }; | |
562 | |
563 static const hc2hc_desc desc = { 20, "hf2_20", twinstr, &GENUS, {136, 58, 140, 0} }; | |
564 | |
565 void X(codelet_hf2_20) (planner *p) { | |
566 X(khc2hc_register) (p, hf2_20, &desc); | |
567 } | |
568 #else /* HAVE_FMA */ | |
569 | |
570 /* Generated by: ../../../genfft/gen_hc2hc.native -compact -variables 4 -pipeline-latency 4 -twiddle-log3 -precompute-twiddles -n 20 -dit -name hf2_20 -include hf.h */ | |
571 | |
572 /* | |
573 * This function contains 276 FP additions, 164 FP multiplications, | |
574 * (or, 204 additions, 92 multiplications, 72 fused multiply/add), | |
575 * 123 stack variables, 4 constants, and 80 memory accesses | |
576 */ | |
577 #include "hf.h" | |
578 | |
579 static void hf2_20(R *cr, R *ci, const R *W, stride rs, INT mb, INT me, INT ms) | |
580 { | |
581 DK(KP587785252, +0.587785252292473129168705954639072768597652438); | |
582 DK(KP951056516, +0.951056516295153572116439333379382143405698634); | |
583 DK(KP250000000, +0.250000000000000000000000000000000000000000000); | |
584 DK(KP559016994, +0.559016994374947424102293417182819058860154590); | |
585 { | |
586 INT m; | |
587 for (m = mb, W = W + ((mb - 1) * 8); m < me; m = m + 1, cr = cr + ms, ci = ci - ms, W = W + 8, MAKE_VOLATILE_STRIDE(40, rs)) { | |
588 E T2, T5, Tg, Ti, Tk, To, T1h, T1f, T6, T3, T8, T14, T1Q, Tc, T1O; | |
589 E T1v, T18, T1t, T1n, T24, T1j, T22, Tq, Tu, T1E, T1G, Tx, Ty, Tz, TJ; | |
590 E T1Z, TB, T1X, T1A, TZ, TL, T1y, TX; | |
591 { | |
592 E T7, T16, Ta, T13, T4, T17, Tb, T12; | |
593 { | |
594 E Th, Tn, Tj, Tm; | |
595 T2 = W[0]; | |
596 T5 = W[1]; | |
597 Tg = W[2]; | |
598 Ti = W[3]; | |
599 Th = T2 * Tg; | |
600 Tn = T5 * Tg; | |
601 Tj = T5 * Ti; | |
602 Tm = T2 * Ti; | |
603 Tk = Th - Tj; | |
604 To = Tm + Tn; | |
605 T1h = Tm - Tn; | |
606 T1f = Th + Tj; | |
607 T6 = W[5]; | |
608 T7 = T5 * T6; | |
609 T16 = Tg * T6; | |
610 Ta = T2 * T6; | |
611 T13 = Ti * T6; | |
612 T3 = W[4]; | |
613 T4 = T2 * T3; | |
614 T17 = Ti * T3; | |
615 Tb = T5 * T3; | |
616 T12 = Tg * T3; | |
617 } | |
618 T8 = T4 - T7; | |
619 T14 = T12 + T13; | |
620 T1Q = T16 + T17; | |
621 Tc = Ta + Tb; | |
622 T1O = T12 - T13; | |
623 T1v = Ta - Tb; | |
624 T18 = T16 - T17; | |
625 T1t = T4 + T7; | |
626 { | |
627 E T1l, T1m, T1g, T1i; | |
628 T1l = T1f * T6; | |
629 T1m = T1h * T3; | |
630 T1n = T1l + T1m; | |
631 T24 = T1l - T1m; | |
632 T1g = T1f * T3; | |
633 T1i = T1h * T6; | |
634 T1j = T1g - T1i; | |
635 T22 = T1g + T1i; | |
636 { | |
637 E Tl, Tp, Ts, Tt; | |
638 Tl = Tk * T3; | |
639 Tp = To * T6; | |
640 Tq = Tl + Tp; | |
641 Ts = Tk * T6; | |
642 Tt = To * T3; | |
643 Tu = Ts - Tt; | |
644 T1E = Tl - Tp; | |
645 T1G = Ts + Tt; | |
646 Tx = W[6]; | |
647 Ty = W[7]; | |
648 Tz = FMA(Tk, Tx, To * Ty); | |
649 TJ = FMA(Tq, Tx, Tu * Ty); | |
650 T1Z = FNMS(T1h, Tx, T1f * Ty); | |
651 TB = FNMS(To, Tx, Tk * Ty); | |
652 T1X = FMA(T1f, Tx, T1h * Ty); | |
653 T1A = FNMS(T5, Tx, T2 * Ty); | |
654 TZ = FNMS(Ti, Tx, Tg * Ty); | |
655 TL = FNMS(Tu, Tx, Tq * Ty); | |
656 T1y = FMA(T2, Tx, T5 * Ty); | |
657 TX = FMA(Tg, Tx, Ti * Ty); | |
658 } | |
659 } | |
660 } | |
661 { | |
662 E TF, T2b, T4D, T4M, T2K, T3r, T4a, T4m, T1N, T28, T29, T3C, T3F, T43, T3X; | |
663 E T3Y, T4o, T2f, T2g, T2h, T2y, T2D, T2E, T3g, T3h, T4z, T3n, T3o, T3p, T33; | |
664 E T38, T4K, TW, T1r, T1s, T3J, T3M, T44, T3U, T3V, T4n, T2c, T2d, T2e, T2n; | |
665 E T2s, T2t, T3d, T3e, T4y, T3k, T3l, T3m, T2S, T2X, T4J; | |
666 { | |
667 E T1, T47, Te, T46, Tw, T2H, TD, T2I, T9, Td; | |
668 T1 = cr[0]; | |
669 T47 = ci[0]; | |
670 T9 = cr[WS(rs, 10)]; | |
671 Td = ci[WS(rs, 10)]; | |
672 Te = FMA(T8, T9, Tc * Td); | |
673 T46 = FNMS(Tc, T9, T8 * Td); | |
674 { | |
675 E Tr, Tv, TA, TC; | |
676 Tr = cr[WS(rs, 5)]; | |
677 Tv = ci[WS(rs, 5)]; | |
678 Tw = FMA(Tq, Tr, Tu * Tv); | |
679 T2H = FNMS(Tu, Tr, Tq * Tv); | |
680 TA = cr[WS(rs, 15)]; | |
681 TC = ci[WS(rs, 15)]; | |
682 TD = FMA(Tz, TA, TB * TC); | |
683 T2I = FNMS(TB, TA, Tz * TC); | |
684 } | |
685 { | |
686 E Tf, TE, T4B, T4C; | |
687 Tf = T1 + Te; | |
688 TE = Tw + TD; | |
689 TF = Tf - TE; | |
690 T2b = Tf + TE; | |
691 T4B = T47 - T46; | |
692 T4C = Tw - TD; | |
693 T4D = T4B - T4C; | |
694 T4M = T4C + T4B; | |
695 } | |
696 { | |
697 E T2G, T2J, T48, T49; | |
698 T2G = T1 - Te; | |
699 T2J = T2H - T2I; | |
700 T2K = T2G - T2J; | |
701 T3r = T2G + T2J; | |
702 T48 = T46 + T47; | |
703 T49 = T2H + T2I; | |
704 T4a = T48 - T49; | |
705 T4m = T49 + T48; | |
706 } | |
707 } | |
708 { | |
709 E T1D, T3A, T2u, T31, T27, T3D, T2C, T37, T1M, T3B, T2x, T32, T1W, T3E, T2z; | |
710 E T36; | |
711 { | |
712 E T1x, T2Z, T1C, T30; | |
713 { | |
714 E T1u, T1w, T1z, T1B; | |
715 T1u = cr[WS(rs, 8)]; | |
716 T1w = ci[WS(rs, 8)]; | |
717 T1x = FMA(T1t, T1u, T1v * T1w); | |
718 T2Z = FNMS(T1v, T1u, T1t * T1w); | |
719 T1z = cr[WS(rs, 18)]; | |
720 T1B = ci[WS(rs, 18)]; | |
721 T1C = FMA(T1y, T1z, T1A * T1B); | |
722 T30 = FNMS(T1A, T1z, T1y * T1B); | |
723 } | |
724 T1D = T1x + T1C; | |
725 T3A = T2Z + T30; | |
726 T2u = T1x - T1C; | |
727 T31 = T2Z - T30; | |
728 } | |
729 { | |
730 E T21, T2A, T26, T2B; | |
731 { | |
732 E T1Y, T20, T23, T25; | |
733 T1Y = cr[WS(rs, 17)]; | |
734 T20 = ci[WS(rs, 17)]; | |
735 T21 = FMA(T1X, T1Y, T1Z * T20); | |
736 T2A = FNMS(T1Z, T1Y, T1X * T20); | |
737 T23 = cr[WS(rs, 7)]; | |
738 T25 = ci[WS(rs, 7)]; | |
739 T26 = FMA(T22, T23, T24 * T25); | |
740 T2B = FNMS(T24, T23, T22 * T25); | |
741 } | |
742 T27 = T21 + T26; | |
743 T3D = T2A + T2B; | |
744 T2C = T2A - T2B; | |
745 T37 = T21 - T26; | |
746 } | |
747 { | |
748 E T1I, T2v, T1L, T2w; | |
749 { | |
750 E T1F, T1H, T1J, T1K; | |
751 T1F = cr[WS(rs, 13)]; | |
752 T1H = ci[WS(rs, 13)]; | |
753 T1I = FMA(T1E, T1F, T1G * T1H); | |
754 T2v = FNMS(T1G, T1F, T1E * T1H); | |
755 T1J = cr[WS(rs, 3)]; | |
756 T1K = ci[WS(rs, 3)]; | |
757 T1L = FMA(Tg, T1J, Ti * T1K); | |
758 T2w = FNMS(Ti, T1J, Tg * T1K); | |
759 } | |
760 T1M = T1I + T1L; | |
761 T3B = T2v + T2w; | |
762 T2x = T2v - T2w; | |
763 T32 = T1I - T1L; | |
764 } | |
765 { | |
766 E T1S, T34, T1V, T35; | |
767 { | |
768 E T1P, T1R, T1T, T1U; | |
769 T1P = cr[WS(rs, 12)]; | |
770 T1R = ci[WS(rs, 12)]; | |
771 T1S = FMA(T1O, T1P, T1Q * T1R); | |
772 T34 = FNMS(T1Q, T1P, T1O * T1R); | |
773 T1T = cr[WS(rs, 2)]; | |
774 T1U = ci[WS(rs, 2)]; | |
775 T1V = FMA(T1f, T1T, T1h * T1U); | |
776 T35 = FNMS(T1h, T1T, T1f * T1U); | |
777 } | |
778 T1W = T1S + T1V; | |
779 T3E = T34 + T35; | |
780 T2z = T1S - T1V; | |
781 T36 = T34 - T35; | |
782 } | |
783 T1N = T1D - T1M; | |
784 T28 = T1W - T27; | |
785 T29 = T1N + T28; | |
786 T3C = T3A - T3B; | |
787 T3F = T3D - T3E; | |
788 T43 = T3F - T3C; | |
789 T3X = T3A + T3B; | |
790 T3Y = T3E + T3D; | |
791 T4o = T3X + T3Y; | |
792 T2f = T1D + T1M; | |
793 T2g = T1W + T27; | |
794 T2h = T2f + T2g; | |
795 T2y = T2u - T2x; | |
796 T2D = T2z - T2C; | |
797 T2E = T2y + T2D; | |
798 T3g = T31 - T32; | |
799 T3h = T36 - T37; | |
800 T4z = T3g + T3h; | |
801 T3n = T2u + T2x; | |
802 T3o = T2z + T2C; | |
803 T3p = T3n + T3o; | |
804 T33 = T31 + T32; | |
805 T38 = T36 + T37; | |
806 T4K = T33 + T38; | |
807 } | |
808 { | |
809 E TO, T3H, T2j, T2Q, T1q, T3L, T2r, T2T, TV, T3I, T2m, T2R, T1b, T3K, T2o; | |
810 E T2W; | |
811 { | |
812 E TI, T2O, TN, T2P; | |
813 { | |
814 E TG, TH, TK, TM; | |
815 TG = cr[WS(rs, 4)]; | |
816 TH = ci[WS(rs, 4)]; | |
817 TI = FMA(Tk, TG, To * TH); | |
818 T2O = FNMS(To, TG, Tk * TH); | |
819 TK = cr[WS(rs, 14)]; | |
820 TM = ci[WS(rs, 14)]; | |
821 TN = FMA(TJ, TK, TL * TM); | |
822 T2P = FNMS(TL, TK, TJ * TM); | |
823 } | |
824 TO = TI + TN; | |
825 T3H = T2O + T2P; | |
826 T2j = TI - TN; | |
827 T2Q = T2O - T2P; | |
828 } | |
829 { | |
830 E T1e, T2p, T1p, T2q; | |
831 { | |
832 E T1c, T1d, T1k, T1o; | |
833 T1c = cr[WS(rs, 1)]; | |
834 T1d = ci[WS(rs, 1)]; | |
835 T1e = FMA(T2, T1c, T5 * T1d); | |
836 T2p = FNMS(T5, T1c, T2 * T1d); | |
837 T1k = cr[WS(rs, 11)]; | |
838 T1o = ci[WS(rs, 11)]; | |
839 T1p = FMA(T1j, T1k, T1n * T1o); | |
840 T2q = FNMS(T1n, T1k, T1j * T1o); | |
841 } | |
842 T1q = T1e + T1p; | |
843 T3L = T2p + T2q; | |
844 T2r = T2p - T2q; | |
845 T2T = T1p - T1e; | |
846 } | |
847 { | |
848 E TR, T2k, TU, T2l; | |
849 { | |
850 E TP, TQ, TS, TT; | |
851 TP = cr[WS(rs, 9)]; | |
852 TQ = ci[WS(rs, 9)]; | |
853 TR = FMA(T3, TP, T6 * TQ); | |
854 T2k = FNMS(T6, TP, T3 * TQ); | |
855 TS = cr[WS(rs, 19)]; | |
856 TT = ci[WS(rs, 19)]; | |
857 TU = FMA(Tx, TS, Ty * TT); | |
858 T2l = FNMS(Ty, TS, Tx * TT); | |
859 } | |
860 TV = TR + TU; | |
861 T3I = T2k + T2l; | |
862 T2m = T2k - T2l; | |
863 T2R = TR - TU; | |
864 } | |
865 { | |
866 E T11, T2U, T1a, T2V; | |
867 { | |
868 E TY, T10, T15, T19; | |
869 TY = cr[WS(rs, 16)]; | |
870 T10 = ci[WS(rs, 16)]; | |
871 T11 = FMA(TX, TY, TZ * T10); | |
872 T2U = FNMS(TZ, TY, TX * T10); | |
873 T15 = cr[WS(rs, 6)]; | |
874 T19 = ci[WS(rs, 6)]; | |
875 T1a = FMA(T14, T15, T18 * T19); | |
876 T2V = FNMS(T18, T15, T14 * T19); | |
877 } | |
878 T1b = T11 + T1a; | |
879 T3K = T2U + T2V; | |
880 T2o = T11 - T1a; | |
881 T2W = T2U - T2V; | |
882 } | |
883 TW = TO - TV; | |
884 T1r = T1b - T1q; | |
885 T1s = TW + T1r; | |
886 T3J = T3H - T3I; | |
887 T3M = T3K - T3L; | |
888 T44 = T3J + T3M; | |
889 T3U = T3H + T3I; | |
890 T3V = T3K + T3L; | |
891 T4n = T3U + T3V; | |
892 T2c = TO + TV; | |
893 T2d = T1b + T1q; | |
894 T2e = T2c + T2d; | |
895 T2n = T2j - T2m; | |
896 T2s = T2o - T2r; | |
897 T2t = T2n + T2s; | |
898 T3d = T2Q - T2R; | |
899 T3e = T2W + T2T; | |
900 T4y = T3d + T3e; | |
901 T3k = T2j + T2m; | |
902 T3l = T2o + T2r; | |
903 T3m = T3k + T3l; | |
904 T2S = T2Q + T2R; | |
905 T2X = T2T - T2W; | |
906 T4J = T2X - T2S; | |
907 } | |
908 { | |
909 E T3y, T2a, T3x, T3O, T3Q, T3G, T3N, T3P, T3z; | |
910 T3y = KP559016994 * (T1s - T29); | |
911 T2a = T1s + T29; | |
912 T3x = FNMS(KP250000000, T2a, TF); | |
913 T3G = T3C + T3F; | |
914 T3N = T3J - T3M; | |
915 T3O = FNMS(KP587785252, T3N, KP951056516 * T3G); | |
916 T3Q = FMA(KP951056516, T3N, KP587785252 * T3G); | |
917 ci[WS(rs, 9)] = TF + T2a; | |
918 T3P = T3y + T3x; | |
919 ci[WS(rs, 5)] = T3P - T3Q; | |
920 cr[WS(rs, 6)] = T3P + T3Q; | |
921 T3z = T3x - T3y; | |
922 cr[WS(rs, 2)] = T3z - T3O; | |
923 ci[WS(rs, 1)] = T3z + T3O; | |
924 } | |
925 { | |
926 E T3q, T3s, T3t, T3j, T3w, T3f, T3i, T3v, T3u; | |
927 T3q = KP559016994 * (T3m - T3p); | |
928 T3s = T3m + T3p; | |
929 T3t = FNMS(KP250000000, T3s, T3r); | |
930 T3f = T3d - T3e; | |
931 T3i = T3g - T3h; | |
932 T3j = FMA(KP951056516, T3f, KP587785252 * T3i); | |
933 T3w = FNMS(KP587785252, T3f, KP951056516 * T3i); | |
934 cr[WS(rs, 5)] = T3r + T3s; | |
935 T3v = T3t - T3q; | |
936 ci[WS(rs, 2)] = T3v - T3w; | |
937 ci[WS(rs, 6)] = T3w + T3v; | |
938 T3u = T3q + T3t; | |
939 cr[WS(rs, 1)] = T3j + T3u; | |
940 cr[WS(rs, 9)] = T3u - T3j; | |
941 } | |
942 { | |
943 E T3R, T2i, T3S, T40, T42, T3W, T3Z, T41, T3T; | |
944 T3R = KP559016994 * (T2e - T2h); | |
945 T2i = T2e + T2h; | |
946 T3S = FNMS(KP250000000, T2i, T2b); | |
947 T3W = T3U - T3V; | |
948 T3Z = T3X - T3Y; | |
949 T40 = FMA(KP951056516, T3W, KP587785252 * T3Z); | |
950 T42 = FNMS(KP587785252, T3W, KP951056516 * T3Z); | |
951 cr[0] = T2b + T2i; | |
952 T41 = T3S - T3R; | |
953 ci[WS(rs, 7)] = T41 - T42; | |
954 cr[WS(rs, 8)] = T41 + T42; | |
955 T3T = T3R + T3S; | |
956 cr[WS(rs, 4)] = T3T - T40; | |
957 ci[WS(rs, 3)] = T3T + T40; | |
958 } | |
959 { | |
960 E T2F, T2L, T2M, T3a, T3b, T2Y, T39, T3c, T2N; | |
961 T2F = KP559016994 * (T2t - T2E); | |
962 T2L = T2t + T2E; | |
963 T2M = FNMS(KP250000000, T2L, T2K); | |
964 T2Y = T2S + T2X; | |
965 T39 = T33 - T38; | |
966 T3a = FMA(KP951056516, T2Y, KP587785252 * T39); | |
967 T3b = FNMS(KP587785252, T2Y, KP951056516 * T39); | |
968 ci[WS(rs, 4)] = T2K + T2L; | |
969 T3c = T2M - T2F; | |
970 cr[WS(rs, 3)] = T3b + T3c; | |
971 cr[WS(rs, 7)] = T3c - T3b; | |
972 T2N = T2F + T2M; | |
973 ci[0] = T2N - T3a; | |
974 ci[WS(rs, 8)] = T3a + T2N; | |
975 } | |
976 { | |
977 E T4e, T45, T4f, T4d, T4h, T4b, T4c, T4i, T4g; | |
978 T4e = KP559016994 * (T44 + T43); | |
979 T45 = T43 - T44; | |
980 T4f = FMA(KP250000000, T45, T4a); | |
981 T4b = T1r - TW; | |
982 T4c = T1N - T28; | |
983 T4d = FNMS(KP587785252, T4c, KP951056516 * T4b); | |
984 T4h = FMA(KP587785252, T4b, KP951056516 * T4c); | |
985 cr[WS(rs, 10)] = T45 - T4a; | |
986 T4i = T4f - T4e; | |
987 cr[WS(rs, 18)] = T4h - T4i; | |
988 ci[WS(rs, 17)] = T4h + T4i; | |
989 T4g = T4e + T4f; | |
990 cr[WS(rs, 14)] = T4d - T4g; | |
991 ci[WS(rs, 13)] = T4d + T4g; | |
992 } | |
993 { | |
994 E T4A, T4E, T4F, T4x, T4H, T4v, T4w, T4I, T4G; | |
995 T4A = KP559016994 * (T4y - T4z); | |
996 T4E = T4y + T4z; | |
997 T4F = FNMS(KP250000000, T4E, T4D); | |
998 T4v = T3n - T3o; | |
999 T4w = T3k - T3l; | |
1000 T4x = FNMS(KP587785252, T4w, KP951056516 * T4v); | |
1001 T4H = FMA(KP951056516, T4w, KP587785252 * T4v); | |
1002 ci[WS(rs, 14)] = T4E + T4D; | |
1003 T4I = T4A + T4F; | |
1004 ci[WS(rs, 10)] = T4H + T4I; | |
1005 ci[WS(rs, 18)] = T4I - T4H; | |
1006 T4G = T4A - T4F; | |
1007 cr[WS(rs, 13)] = T4x + T4G; | |
1008 cr[WS(rs, 17)] = T4G - T4x; | |
1009 } | |
1010 { | |
1011 E T4r, T4p, T4q, T4l, T4t, T4j, T4k, T4u, T4s; | |
1012 T4r = KP559016994 * (T4n - T4o); | |
1013 T4p = T4n + T4o; | |
1014 T4q = FNMS(KP250000000, T4p, T4m); | |
1015 T4j = T2c - T2d; | |
1016 T4k = T2f - T2g; | |
1017 T4l = FNMS(KP951056516, T4k, KP587785252 * T4j); | |
1018 T4t = FMA(KP951056516, T4j, KP587785252 * T4k); | |
1019 ci[WS(rs, 19)] = T4p + T4m; | |
1020 T4u = T4r + T4q; | |
1021 cr[WS(rs, 16)] = T4t - T4u; | |
1022 ci[WS(rs, 15)] = T4t + T4u; | |
1023 T4s = T4q - T4r; | |
1024 cr[WS(rs, 12)] = T4l - T4s; | |
1025 ci[WS(rs, 11)] = T4l + T4s; | |
1026 } | |
1027 { | |
1028 E T4Q, T4L, T4R, T4P, T4T, T4N, T4O, T4U, T4S; | |
1029 T4Q = KP559016994 * (T4J + T4K); | |
1030 T4L = T4J - T4K; | |
1031 T4R = FMA(KP250000000, T4L, T4M); | |
1032 T4N = T2n - T2s; | |
1033 T4O = T2y - T2D; | |
1034 T4P = FMA(KP951056516, T4N, KP587785252 * T4O); | |
1035 T4T = FNMS(KP587785252, T4N, KP951056516 * T4O); | |
1036 cr[WS(rs, 15)] = T4L - T4M; | |
1037 T4U = T4Q + T4R; | |
1038 ci[WS(rs, 12)] = T4T + T4U; | |
1039 ci[WS(rs, 16)] = T4U - T4T; | |
1040 T4S = T4Q - T4R; | |
1041 cr[WS(rs, 11)] = T4P + T4S; | |
1042 cr[WS(rs, 19)] = T4S - T4P; | |
1043 } | |
1044 } | |
1045 } | |
1046 } | |
1047 } | |
1048 | |
1049 static const tw_instr twinstr[] = { | |
1050 {TW_CEXP, 1, 1}, | |
1051 {TW_CEXP, 1, 3}, | |
1052 {TW_CEXP, 1, 9}, | |
1053 {TW_CEXP, 1, 19}, | |
1054 {TW_NEXT, 1, 0} | |
1055 }; | |
1056 | |
1057 static const hc2hc_desc desc = { 20, "hf2_20", twinstr, &GENUS, {204, 92, 72, 0} }; | |
1058 | |
1059 void X(codelet_hf2_20) (planner *p) { | |
1060 X(khc2hc_register) (p, hf2_20, &desc); | |
1061 } | |
1062 #endif /* HAVE_FMA */ |