Mercurial > hg > js-dsp-test
comparison fft/fftw/fftw-3.3.4/rdft/scalar/r2cf/hc2cf_10.c @ 19:26056e866c29
Add FFTW to comparison table
author | Chris Cannam |
---|---|
date | Tue, 06 Oct 2015 13:08:39 +0100 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
18:8db794ca3e0b | 19:26056e866c29 |
---|---|
1 /* | |
2 * Copyright (c) 2003, 2007-14 Matteo Frigo | |
3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology | |
4 * | |
5 * This program is free software; you can redistribute it and/or modify | |
6 * it under the terms of the GNU General Public License as published by | |
7 * the Free Software Foundation; either version 2 of the License, or | |
8 * (at your option) any later version. | |
9 * | |
10 * This program is distributed in the hope that it will be useful, | |
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
13 * GNU General Public License for more details. | |
14 * | |
15 * You should have received a copy of the GNU General Public License | |
16 * along with this program; if not, write to the Free Software | |
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA | |
18 * | |
19 */ | |
20 | |
21 /* This file was automatically generated --- DO NOT EDIT */ | |
22 /* Generated on Tue Mar 4 13:49:22 EST 2014 */ | |
23 | |
24 #include "codelet-rdft.h" | |
25 | |
26 #ifdef HAVE_FMA | |
27 | |
28 /* Generated by: ../../../genfft/gen_hc2c.native -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -n 10 -dit -name hc2cf_10 -include hc2cf.h */ | |
29 | |
30 /* | |
31 * This function contains 102 FP additions, 72 FP multiplications, | |
32 * (or, 48 additions, 18 multiplications, 54 fused multiply/add), | |
33 * 70 stack variables, 4 constants, and 40 memory accesses | |
34 */ | |
35 #include "hc2cf.h" | |
36 | |
37 static void hc2cf_10(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) | |
38 { | |
39 DK(KP951056516, +0.951056516295153572116439333379382143405698634); | |
40 DK(KP559016994, +0.559016994374947424102293417182819058860154590); | |
41 DK(KP250000000, +0.250000000000000000000000000000000000000000000); | |
42 DK(KP618033988, +0.618033988749894848204586834365638117720309180); | |
43 { | |
44 INT m; | |
45 for (m = mb, W = W + ((mb - 1) * 18); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 18, MAKE_VOLATILE_STRIDE(40, rs)) { | |
46 E T1X, T21, T20, T22; | |
47 { | |
48 E T26, T1U, T8, T12, T1n, T1P, T24, T1K, T1Y, T18, T10, T2b, T1H, T23, T15; | |
49 E T1Z, T2a, Tz, T1O, T1y; | |
50 { | |
51 E T1, T1T, T3, T6, T2, T5; | |
52 T1 = Rp[0]; | |
53 T1T = Rm[0]; | |
54 T3 = Ip[WS(rs, 2)]; | |
55 T6 = Im[WS(rs, 2)]; | |
56 T2 = W[8]; | |
57 T5 = W[9]; | |
58 { | |
59 E T1l, TY, T1h, T1J, TM, T16, T1j, TS; | |
60 { | |
61 E TF, T1e, TO, TR, T1g, TL, TN, TQ, T1i, TP; | |
62 { | |
63 E TU, TX, TT, TW; | |
64 { | |
65 E TB, TE, T1R, T4, TA, TD; | |
66 TB = Rp[WS(rs, 2)]; | |
67 TE = Rm[WS(rs, 2)]; | |
68 T1R = T2 * T6; | |
69 T4 = T2 * T3; | |
70 TA = W[6]; | |
71 TD = W[7]; | |
72 { | |
73 E T1S, T7, T1d, TC; | |
74 T1S = FNMS(T5, T3, T1R); | |
75 T7 = FMA(T5, T6, T4); | |
76 T1d = TA * TE; | |
77 TC = TA * TB; | |
78 T26 = T1T - T1S; | |
79 T1U = T1S + T1T; | |
80 T8 = T1 - T7; | |
81 T12 = T1 + T7; | |
82 TF = FMA(TD, TE, TC); | |
83 T1e = FNMS(TD, TB, T1d); | |
84 } | |
85 } | |
86 TU = Ip[0]; | |
87 TX = Im[0]; | |
88 TT = W[0]; | |
89 TW = W[1]; | |
90 { | |
91 E TH, TK, TJ, T1f, TI, T1k, TV, TG; | |
92 TH = Ip[WS(rs, 4)]; | |
93 TK = Im[WS(rs, 4)]; | |
94 T1k = TT * TX; | |
95 TV = TT * TU; | |
96 TG = W[16]; | |
97 TJ = W[17]; | |
98 T1l = FNMS(TW, TU, T1k); | |
99 TY = FMA(TW, TX, TV); | |
100 T1f = TG * TK; | |
101 TI = TG * TH; | |
102 TO = Rp[WS(rs, 3)]; | |
103 TR = Rm[WS(rs, 3)]; | |
104 T1g = FNMS(TJ, TH, T1f); | |
105 TL = FMA(TJ, TK, TI); | |
106 TN = W[10]; | |
107 TQ = W[11]; | |
108 } | |
109 } | |
110 T1h = T1e + T1g; | |
111 T1J = T1g - T1e; | |
112 TM = TF - TL; | |
113 T16 = TF + TL; | |
114 T1i = TN * TR; | |
115 TP = TN * TO; | |
116 T1j = FNMS(TQ, TO, T1i); | |
117 TS = FMA(TQ, TR, TP); | |
118 } | |
119 { | |
120 E T1p, Te, T1w, Tx, Tn, Tq, Tp, T1r, Tk, T1t, To; | |
121 { | |
122 E Tt, Tw, Tv, T1v, Tu; | |
123 { | |
124 E Ta, Td, T9, Tc, T1o, Tb, Ts; | |
125 Ta = Rp[WS(rs, 1)]; | |
126 Td = Rm[WS(rs, 1)]; | |
127 { | |
128 E T1I, T1m, TZ, T17; | |
129 T1I = T1l - T1j; | |
130 T1m = T1j + T1l; | |
131 TZ = TS - TY; | |
132 T17 = TS + TY; | |
133 T1n = T1h - T1m; | |
134 T1P = T1h + T1m; | |
135 T24 = T1J + T1I; | |
136 T1K = T1I - T1J; | |
137 T1Y = T16 - T17; | |
138 T18 = T16 + T17; | |
139 T10 = TM + TZ; | |
140 T2b = TZ - TM; | |
141 T9 = W[2]; | |
142 } | |
143 Tc = W[3]; | |
144 Tt = Ip[WS(rs, 1)]; | |
145 Tw = Im[WS(rs, 1)]; | |
146 T1o = T9 * Td; | |
147 Tb = T9 * Ta; | |
148 Ts = W[4]; | |
149 Tv = W[5]; | |
150 T1p = FNMS(Tc, Ta, T1o); | |
151 Te = FMA(Tc, Td, Tb); | |
152 T1v = Ts * Tw; | |
153 Tu = Ts * Tt; | |
154 } | |
155 { | |
156 E Tg, Tj, Tf, Ti, T1q, Th, Tm; | |
157 Tg = Ip[WS(rs, 3)]; | |
158 Tj = Im[WS(rs, 3)]; | |
159 T1w = FNMS(Tv, Tt, T1v); | |
160 Tx = FMA(Tv, Tw, Tu); | |
161 Tf = W[12]; | |
162 Ti = W[13]; | |
163 Tn = Rp[WS(rs, 4)]; | |
164 Tq = Rm[WS(rs, 4)]; | |
165 T1q = Tf * Tj; | |
166 Th = Tf * Tg; | |
167 Tm = W[14]; | |
168 Tp = W[15]; | |
169 T1r = FNMS(Ti, Tg, T1q); | |
170 Tk = FMA(Ti, Tj, Th); | |
171 T1t = Tm * Tq; | |
172 To = Tm * Tn; | |
173 } | |
174 } | |
175 { | |
176 E T1s, T1G, Tl, T13, T1u, Tr; | |
177 T1s = T1p + T1r; | |
178 T1G = T1r - T1p; | |
179 Tl = Te - Tk; | |
180 T13 = Te + Tk; | |
181 T1u = FNMS(Tp, Tn, T1t); | |
182 Tr = FMA(Tp, Tq, To); | |
183 { | |
184 E T1x, T1F, T14, Ty; | |
185 T1x = T1u + T1w; | |
186 T1F = T1w - T1u; | |
187 T14 = Tr + Tx; | |
188 Ty = Tr - Tx; | |
189 T1H = T1F - T1G; | |
190 T23 = T1G + T1F; | |
191 T15 = T13 + T14; | |
192 T1Z = T13 - T14; | |
193 T2a = Ty - Tl; | |
194 Tz = Tl + Ty; | |
195 T1O = T1s + T1x; | |
196 T1y = T1s - T1x; | |
197 } | |
198 } | |
199 } | |
200 } | |
201 } | |
202 { | |
203 E T2c, T2e, T29, T2d; | |
204 { | |
205 E T1D, T11, T25, T28, T27; | |
206 T1D = Tz - T10; | |
207 T11 = Tz + T10; | |
208 T25 = T23 + T24; | |
209 T28 = T24 - T23; | |
210 { | |
211 E T1N, T1L, T1C, T1M, T1E; | |
212 T1N = FNMS(KP618033988, T1H, T1K); | |
213 T1L = FMA(KP618033988, T1K, T1H); | |
214 Rm[WS(rs, 4)] = T8 + T11; | |
215 T1C = FNMS(KP250000000, T11, T8); | |
216 T1M = FNMS(KP559016994, T1D, T1C); | |
217 T1E = FMA(KP559016994, T1D, T1C); | |
218 T27 = FMA(KP250000000, T25, T26); | |
219 T2c = FMA(KP618033988, T2b, T2a); | |
220 T2e = FNMS(KP618033988, T2a, T2b); | |
221 Rp[WS(rs, 1)] = FMA(KP951056516, T1L, T1E); | |
222 Rm[0] = FNMS(KP951056516, T1L, T1E); | |
223 Rp[WS(rs, 3)] = FMA(KP951056516, T1N, T1M); | |
224 Rm[WS(rs, 2)] = FNMS(KP951056516, T1N, T1M); | |
225 } | |
226 Im[WS(rs, 4)] = T25 - T26; | |
227 T29 = FMA(KP559016994, T28, T27); | |
228 T2d = FNMS(KP559016994, T28, T27); | |
229 } | |
230 { | |
231 E T1c, T1A, T1z, T1B, T19, T1b, T1a, T1Q, T1W, T1V; | |
232 T19 = T15 + T18; | |
233 T1b = T15 - T18; | |
234 Ip[WS(rs, 3)] = FMA(KP951056516, T2e, T2d); | |
235 Im[WS(rs, 2)] = FMS(KP951056516, T2e, T2d); | |
236 Ip[WS(rs, 1)] = FMA(KP951056516, T2c, T29); | |
237 Im[0] = FMS(KP951056516, T2c, T29); | |
238 T1a = FNMS(KP250000000, T19, T12); | |
239 Rp[0] = T12 + T19; | |
240 T1c = FNMS(KP559016994, T1b, T1a); | |
241 T1A = FMA(KP559016994, T1b, T1a); | |
242 T1z = FNMS(KP618033988, T1y, T1n); | |
243 T1B = FMA(KP618033988, T1n, T1y); | |
244 T1Q = T1O + T1P; | |
245 T1W = T1O - T1P; | |
246 Rm[WS(rs, 3)] = FMA(KP951056516, T1B, T1A); | |
247 Rp[WS(rs, 4)] = FNMS(KP951056516, T1B, T1A); | |
248 Rm[WS(rs, 1)] = FMA(KP951056516, T1z, T1c); | |
249 Rp[WS(rs, 2)] = FNMS(KP951056516, T1z, T1c); | |
250 T1V = FNMS(KP250000000, T1Q, T1U); | |
251 Ip[0] = T1Q + T1U; | |
252 T1X = FNMS(KP559016994, T1W, T1V); | |
253 T21 = FMA(KP559016994, T1W, T1V); | |
254 T20 = FNMS(KP618033988, T1Z, T1Y); | |
255 T22 = FMA(KP618033988, T1Y, T1Z); | |
256 } | |
257 } | |
258 } | |
259 Ip[WS(rs, 4)] = FMA(KP951056516, T22, T21); | |
260 Im[WS(rs, 3)] = FMS(KP951056516, T22, T21); | |
261 Ip[WS(rs, 2)] = FMA(KP951056516, T20, T1X); | |
262 Im[WS(rs, 1)] = FMS(KP951056516, T20, T1X); | |
263 } | |
264 } | |
265 } | |
266 | |
267 static const tw_instr twinstr[] = { | |
268 {TW_FULL, 1, 10}, | |
269 {TW_NEXT, 1, 0} | |
270 }; | |
271 | |
272 static const hc2c_desc desc = { 10, "hc2cf_10", twinstr, &GENUS, {48, 18, 54, 0} }; | |
273 | |
274 void X(codelet_hc2cf_10) (planner *p) { | |
275 X(khc2c_register) (p, hc2cf_10, &desc, HC2C_VIA_RDFT); | |
276 } | |
277 #else /* HAVE_FMA */ | |
278 | |
279 /* Generated by: ../../../genfft/gen_hc2c.native -compact -variables 4 -pipeline-latency 4 -n 10 -dit -name hc2cf_10 -include hc2cf.h */ | |
280 | |
281 /* | |
282 * This function contains 102 FP additions, 60 FP multiplications, | |
283 * (or, 72 additions, 30 multiplications, 30 fused multiply/add), | |
284 * 45 stack variables, 4 constants, and 40 memory accesses | |
285 */ | |
286 #include "hc2cf.h" | |
287 | |
288 static void hc2cf_10(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) | |
289 { | |
290 DK(KP587785252, +0.587785252292473129168705954639072768597652438); | |
291 DK(KP951056516, +0.951056516295153572116439333379382143405698634); | |
292 DK(KP250000000, +0.250000000000000000000000000000000000000000000); | |
293 DK(KP559016994, +0.559016994374947424102293417182819058860154590); | |
294 { | |
295 INT m; | |
296 for (m = mb, W = W + ((mb - 1) * 18); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 18, MAKE_VOLATILE_STRIDE(40, rs)) { | |
297 E T7, T1O, TT, T1C, TF, TQ, TR, T1r, T1s, T1L, TX, TY, TZ, T16, T19; | |
298 E T1y, Ti, Tt, Tu, T1o, T1p, T1M, TU, TV, TW, T1d, T1g, T1x; | |
299 { | |
300 E T1, T1B, T6, T1A; | |
301 T1 = Rp[0]; | |
302 T1B = Rm[0]; | |
303 { | |
304 E T3, T5, T2, T4; | |
305 T3 = Ip[WS(rs, 2)]; | |
306 T5 = Im[WS(rs, 2)]; | |
307 T2 = W[8]; | |
308 T4 = W[9]; | |
309 T6 = FMA(T2, T3, T4 * T5); | |
310 T1A = FNMS(T4, T3, T2 * T5); | |
311 } | |
312 T7 = T1 - T6; | |
313 T1O = T1B - T1A; | |
314 TT = T1 + T6; | |
315 T1C = T1A + T1B; | |
316 } | |
317 { | |
318 E Tz, T14, TP, T18, TE, T15, TK, T17; | |
319 { | |
320 E Tw, Ty, Tv, Tx; | |
321 Tw = Rp[WS(rs, 2)]; | |
322 Ty = Rm[WS(rs, 2)]; | |
323 Tv = W[6]; | |
324 Tx = W[7]; | |
325 Tz = FMA(Tv, Tw, Tx * Ty); | |
326 T14 = FNMS(Tx, Tw, Tv * Ty); | |
327 } | |
328 { | |
329 E TM, TO, TL, TN; | |
330 TM = Ip[0]; | |
331 TO = Im[0]; | |
332 TL = W[0]; | |
333 TN = W[1]; | |
334 TP = FMA(TL, TM, TN * TO); | |
335 T18 = FNMS(TN, TM, TL * TO); | |
336 } | |
337 { | |
338 E TB, TD, TA, TC; | |
339 TB = Ip[WS(rs, 4)]; | |
340 TD = Im[WS(rs, 4)]; | |
341 TA = W[16]; | |
342 TC = W[17]; | |
343 TE = FMA(TA, TB, TC * TD); | |
344 T15 = FNMS(TC, TB, TA * TD); | |
345 } | |
346 { | |
347 E TH, TJ, TG, TI; | |
348 TH = Rp[WS(rs, 3)]; | |
349 TJ = Rm[WS(rs, 3)]; | |
350 TG = W[10]; | |
351 TI = W[11]; | |
352 TK = FMA(TG, TH, TI * TJ); | |
353 T17 = FNMS(TI, TH, TG * TJ); | |
354 } | |
355 TF = Tz - TE; | |
356 TQ = TK - TP; | |
357 TR = TF + TQ; | |
358 T1r = T14 - T15; | |
359 T1s = T18 - T17; | |
360 T1L = T1s - T1r; | |
361 TX = Tz + TE; | |
362 TY = TK + TP; | |
363 TZ = TX + TY; | |
364 T16 = T14 + T15; | |
365 T19 = T17 + T18; | |
366 T1y = T16 + T19; | |
367 } | |
368 { | |
369 E Tc, T1b, Ts, T1f, Th, T1c, Tn, T1e; | |
370 { | |
371 E T9, Tb, T8, Ta; | |
372 T9 = Rp[WS(rs, 1)]; | |
373 Tb = Rm[WS(rs, 1)]; | |
374 T8 = W[2]; | |
375 Ta = W[3]; | |
376 Tc = FMA(T8, T9, Ta * Tb); | |
377 T1b = FNMS(Ta, T9, T8 * Tb); | |
378 } | |
379 { | |
380 E Tp, Tr, To, Tq; | |
381 Tp = Ip[WS(rs, 1)]; | |
382 Tr = Im[WS(rs, 1)]; | |
383 To = W[4]; | |
384 Tq = W[5]; | |
385 Ts = FMA(To, Tp, Tq * Tr); | |
386 T1f = FNMS(Tq, Tp, To * Tr); | |
387 } | |
388 { | |
389 E Te, Tg, Td, Tf; | |
390 Te = Ip[WS(rs, 3)]; | |
391 Tg = Im[WS(rs, 3)]; | |
392 Td = W[12]; | |
393 Tf = W[13]; | |
394 Th = FMA(Td, Te, Tf * Tg); | |
395 T1c = FNMS(Tf, Te, Td * Tg); | |
396 } | |
397 { | |
398 E Tk, Tm, Tj, Tl; | |
399 Tk = Rp[WS(rs, 4)]; | |
400 Tm = Rm[WS(rs, 4)]; | |
401 Tj = W[14]; | |
402 Tl = W[15]; | |
403 Tn = FMA(Tj, Tk, Tl * Tm); | |
404 T1e = FNMS(Tl, Tk, Tj * Tm); | |
405 } | |
406 Ti = Tc - Th; | |
407 Tt = Tn - Ts; | |
408 Tu = Ti + Tt; | |
409 T1o = T1b - T1c; | |
410 T1p = T1e - T1f; | |
411 T1M = T1o + T1p; | |
412 TU = Tc + Th; | |
413 TV = Tn + Ts; | |
414 TW = TU + TV; | |
415 T1d = T1b + T1c; | |
416 T1g = T1e + T1f; | |
417 T1x = T1d + T1g; | |
418 } | |
419 { | |
420 E T1l, TS, T1m, T1u, T1w, T1q, T1t, T1v, T1n; | |
421 T1l = KP559016994 * (Tu - TR); | |
422 TS = Tu + TR; | |
423 T1m = FNMS(KP250000000, TS, T7); | |
424 T1q = T1o - T1p; | |
425 T1t = T1r + T1s; | |
426 T1u = FMA(KP951056516, T1q, KP587785252 * T1t); | |
427 T1w = FNMS(KP587785252, T1q, KP951056516 * T1t); | |
428 Rm[WS(rs, 4)] = T7 + TS; | |
429 T1v = T1m - T1l; | |
430 Rm[WS(rs, 2)] = T1v - T1w; | |
431 Rp[WS(rs, 3)] = T1v + T1w; | |
432 T1n = T1l + T1m; | |
433 Rm[0] = T1n - T1u; | |
434 Rp[WS(rs, 1)] = T1n + T1u; | |
435 } | |
436 { | |
437 E T1S, T1N, T1T, T1R, T1V, T1P, T1Q, T1W, T1U; | |
438 T1S = KP559016994 * (T1M + T1L); | |
439 T1N = T1L - T1M; | |
440 T1T = FMA(KP250000000, T1N, T1O); | |
441 T1P = TQ - TF; | |
442 T1Q = Ti - Tt; | |
443 T1R = FNMS(KP951056516, T1Q, KP587785252 * T1P); | |
444 T1V = FMA(KP587785252, T1Q, KP951056516 * T1P); | |
445 Im[WS(rs, 4)] = T1N - T1O; | |
446 T1W = T1T - T1S; | |
447 Im[WS(rs, 2)] = T1V - T1W; | |
448 Ip[WS(rs, 3)] = T1V + T1W; | |
449 T1U = T1S + T1T; | |
450 Im[0] = T1R - T1U; | |
451 Ip[WS(rs, 1)] = T1R + T1U; | |
452 } | |
453 { | |
454 E T12, T10, T11, T1i, T1k, T1a, T1h, T1j, T13; | |
455 T12 = KP559016994 * (TW - TZ); | |
456 T10 = TW + TZ; | |
457 T11 = FNMS(KP250000000, T10, TT); | |
458 T1a = T16 - T19; | |
459 T1h = T1d - T1g; | |
460 T1i = FNMS(KP587785252, T1h, KP951056516 * T1a); | |
461 T1k = FMA(KP951056516, T1h, KP587785252 * T1a); | |
462 Rp[0] = TT + T10; | |
463 T1j = T12 + T11; | |
464 Rp[WS(rs, 4)] = T1j - T1k; | |
465 Rm[WS(rs, 3)] = T1j + T1k; | |
466 T13 = T11 - T12; | |
467 Rp[WS(rs, 2)] = T13 - T1i; | |
468 Rm[WS(rs, 1)] = T13 + T1i; | |
469 } | |
470 { | |
471 E T1H, T1z, T1G, T1F, T1J, T1D, T1E, T1K, T1I; | |
472 T1H = KP559016994 * (T1x - T1y); | |
473 T1z = T1x + T1y; | |
474 T1G = FNMS(KP250000000, T1z, T1C); | |
475 T1D = TX - TY; | |
476 T1E = TU - TV; | |
477 T1F = FNMS(KP587785252, T1E, KP951056516 * T1D); | |
478 T1J = FMA(KP951056516, T1E, KP587785252 * T1D); | |
479 Ip[0] = T1z + T1C; | |
480 T1K = T1H + T1G; | |
481 Im[WS(rs, 3)] = T1J - T1K; | |
482 Ip[WS(rs, 4)] = T1J + T1K; | |
483 T1I = T1G - T1H; | |
484 Im[WS(rs, 1)] = T1F - T1I; | |
485 Ip[WS(rs, 2)] = T1F + T1I; | |
486 } | |
487 } | |
488 } | |
489 } | |
490 | |
491 static const tw_instr twinstr[] = { | |
492 {TW_FULL, 1, 10}, | |
493 {TW_NEXT, 1, 0} | |
494 }; | |
495 | |
496 static const hc2c_desc desc = { 10, "hc2cf_10", twinstr, &GENUS, {72, 30, 30, 0} }; | |
497 | |
498 void X(codelet_hc2cf_10) (planner *p) { | |
499 X(khc2c_register) (p, hc2cf_10, &desc, HC2C_VIA_RDFT); | |
500 } | |
501 #endif /* HAVE_FMA */ |