comparison fft/fftw/fftw-3.3.4/rdft/scalar/r2cb/r2cb_25.c @ 19:26056e866c29

Add FFTW to comparison table
author Chris Cannam
date Tue, 06 Oct 2015 13:08:39 +0100
parents
children
comparison
equal deleted inserted replaced
18:8db794ca3e0b 19:26056e866c29
1 /*
2 * Copyright (c) 2003, 2007-14 Matteo Frigo
3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
18 *
19 */
20
21 /* This file was automatically generated --- DO NOT EDIT */
22 /* Generated on Tue Mar 4 13:50:25 EST 2014 */
23
24 #include "codelet-rdft.h"
25
26 #ifdef HAVE_FMA
27
28 /* Generated by: ../../../genfft/gen_r2cb.native -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -sign 1 -n 25 -name r2cb_25 -include r2cb.h */
29
30 /*
31 * This function contains 152 FP additions, 120 FP multiplications,
32 * (or, 32 additions, 0 multiplications, 120 fused multiply/add),
33 * 115 stack variables, 44 constants, and 50 memory accesses
34 */
35 #include "r2cb.h"
36
37 static void r2cb_25(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs)
38 {
39 DK(KP979740652, +0.979740652857618686258237536568998933733477632);
40 DK(KP438153340, +0.438153340021931793654057951961031291699532119);
41 DK(KP1_752613360, +1.752613360087727174616231807844125166798128477);
42 DK(KP963507348, +0.963507348203430549974383005744259307057084020);
43 DK(KP1_606007150, +1.606007150877320829666881187140752009270929701);
44 DK(KP1_721083328, +1.721083328735889354196523361841037632825608373);
45 DK(KP1_011627398, +1.011627398597394192215998921771049272931807941);
46 DK(KP595480289, +0.595480289600000014706716770488118292997907308);
47 DK(KP641441904, +0.641441904830606407298806329068862424939687989);
48 DK(KP452413526, +0.452413526233009763856834323966348796985206956);
49 DK(KP1_809654104, +1.809654104932039055427337295865395187940827822);
50 DK(KP933137358, +0.933137358350283770603023973254446451924190884);
51 DK(KP1_666834356, +1.666834356657377354817925100486477686277992119);
52 DK(KP1_842354653, +1.842354653930286640500894870830132058718564461);
53 DK(KP1_082908895, +1.082908895072625554092571180165639018104066379);
54 DK(KP662318342, +0.662318342759882818626911127577439236802190210);
55 DK(KP576710603, +0.576710603632765877371579268136471017090111488);
56 DK(KP484291580, +0.484291580564315559745084187732367906918006201);
57 DK(KP1_937166322, +1.937166322257262238980336750929471627672024806);
58 DK(KP1_898359647, +1.898359647016882523151110931686726543423167685);
59 DK(KP1_386580726, +1.386580726567734802700860150804827247498955921);
60 DK(KP904730450, +0.904730450839922351881287709692877908104763647);
61 DK(KP1_115827804, +1.115827804063668528375399296931134075984874304);
62 DK(KP634619297, +0.634619297544148100711287640319130485732531031);
63 DK(KP470564281, +0.470564281212251493087595091036643380879947982);
64 DK(KP499013364, +0.499013364214135780976168403431725276668452610);
65 DK(KP1_996053456, +1.996053456856543123904673613726901106673810439);
66 DK(KP559154169, +0.559154169276087864842202529084232643714075927);
67 DK(KP683113946, +0.683113946453479238701949862233725244439656928);
68 DK(KP730409924, +0.730409924561256563751459444999838399157094302);
69 DK(KP549754652, +0.549754652192770074288023275540779861653779767);
70 DK(KP256756360, +0.256756360367726783319498520922669048172391148);
71 DK(KP451418159, +0.451418159099103183892477933432151804893354132);
72 DK(KP846146756, +0.846146756728608505452954290121135880883743802);
73 DK(KP1_902113032, +1.902113032590307144232878666758764286811397268);
74 DK(KP062914667, +0.062914667253649757225485955897349402364686947);
75 DK(KP939062505, +0.939062505817492352556001843133229685779824606);
76 DK(KP951056516, +0.951056516295153572116439333379382143405698634);
77 DK(KP559016994, +0.559016994374947424102293417182819058860154590);
78 DK(KP250000000, +0.250000000000000000000000000000000000000000000);
79 DK(KP1_118033988, +1.118033988749894848204586834365638117720309180);
80 DK(KP2_000000000, +2.000000000000000000000000000000000000000000000);
81 DK(KP500000000, +0.500000000000000000000000000000000000000000000);
82 DK(KP618033988, +0.618033988749894848204586834365638117720309180);
83 {
84 INT i;
85 for (i = v; i > 0; i = i - 1, R0 = R0 + ovs, R1 = R1 + ovs, Cr = Cr + ivs, Ci = Ci + ivs, MAKE_VOLATILE_STRIDE(100, rs), MAKE_VOLATILE_STRIDE(100, csr), MAKE_VOLATILE_STRIDE(100, csi)) {
86 E T1H, T24, T22, T1W, T1Y, T1X, T1Z, T23;
87 {
88 E T1G, Tu, T5, T1F, Tr, Te, T2o, T1N, T2a, T1t, TR, T1K, T29, T1u, TG;
89 E TU, TT, Tn, T1d, T1Q, T2p, T1T, T12, T1P, T1a;
90 {
91 E T1, T2, T3, Ts, Tt;
92 Ts = Ci[WS(csi, 5)];
93 Tt = Ci[WS(csi, 10)];
94 T1 = Cr[0];
95 T2 = Cr[WS(csr, 5)];
96 T3 = Cr[WS(csr, 10)];
97 T1G = FMS(KP618033988, Ts, Tt);
98 Tu = FMA(KP618033988, Tt, Ts);
99 {
100 E Tx, Tw, T1M, TQ, TM, T1J, TF, TL;
101 {
102 E T6, TH, TO, TP, TB, TI, Td, TJ, TE, T4, Tq, TK;
103 T6 = Cr[WS(csr, 1)];
104 T4 = T2 + T3;
105 Tq = T2 - T3;
106 TH = Ci[WS(csi, 1)];
107 {
108 E Ta, T9, Tb, T7, T8, Tp;
109 T7 = Cr[WS(csr, 6)];
110 T8 = Cr[WS(csr, 4)];
111 Tp = FNMS(KP500000000, T4, T1);
112 T5 = FMA(KP2_000000000, T4, T1);
113 Ta = Cr[WS(csr, 11)];
114 TO = T7 - T8;
115 T9 = T7 + T8;
116 T1F = FNMS(KP1_118033988, Tq, Tp);
117 Tr = FMA(KP1_118033988, Tq, Tp);
118 Tb = Cr[WS(csr, 9)];
119 {
120 E TC, TD, Tz, TA, Tc;
121 Tz = Ci[WS(csi, 6)];
122 TA = Ci[WS(csi, 4)];
123 TP = Tb - Ta;
124 Tc = Ta + Tb;
125 TC = Ci[WS(csi, 11)];
126 TB = Tz + TA;
127 TI = Tz - TA;
128 TD = Ci[WS(csi, 9)];
129 Td = T9 + Tc;
130 Tx = T9 - Tc;
131 TJ = TC - TD;
132 TE = TC + TD;
133 }
134 }
135 Te = T6 + Td;
136 Tw = FNMS(KP250000000, Td, T6);
137 T1M = FMA(KP618033988, TO, TP);
138 TQ = FNMS(KP618033988, TP, TO);
139 TK = TI + TJ;
140 TM = TI - TJ;
141 T1J = FNMS(KP618033988, TB, TE);
142 TF = FMA(KP618033988, TE, TB);
143 TL = FNMS(KP250000000, TK, TH);
144 T2o = TK + TH;
145 }
146 {
147 E Tf, T14, T1b, T1c, Tm, TY, T15, T16, T11, T17, T19, T18;
148 Tf = Cr[WS(csr, 2)];
149 {
150 E T1L, TN, T1I, Ty;
151 T1L = FNMS(KP559016994, TM, TL);
152 TN = FMA(KP559016994, TM, TL);
153 T1I = FNMS(KP559016994, Tx, Tw);
154 Ty = FMA(KP559016994, Tx, Tw);
155 T1N = FMA(KP951056516, T1M, T1L);
156 T2a = FNMS(KP951056516, T1M, T1L);
157 T1t = FNMS(KP951056516, TQ, TN);
158 TR = FMA(KP951056516, TQ, TN);
159 T1K = FMA(KP951056516, T1J, T1I);
160 T29 = FNMS(KP951056516, T1J, T1I);
161 T1u = FMA(KP951056516, TF, Ty);
162 TG = FNMS(KP951056516, TF, Ty);
163 T14 = Ci[WS(csi, 2)];
164 }
165 {
166 E Tg, Th, Tj, Tk;
167 Tg = Cr[WS(csr, 7)];
168 Th = Cr[WS(csr, 3)];
169 Tj = Cr[WS(csr, 12)];
170 Tk = Cr[WS(csr, 8)];
171 {
172 E TW, Ti, Tl, TX, TZ, T10;
173 TW = Ci[WS(csi, 7)];
174 T1b = Th - Tg;
175 Ti = Tg + Th;
176 T1c = Tj - Tk;
177 Tl = Tj + Tk;
178 TX = Ci[WS(csi, 3)];
179 TZ = Ci[WS(csi, 12)];
180 T10 = Ci[WS(csi, 8)];
181 Tm = Ti + Tl;
182 TU = Tl - Ti;
183 TY = TW + TX;
184 T15 = TW - TX;
185 T16 = TZ - T10;
186 T11 = TZ + T10;
187 }
188 }
189 TT = FNMS(KP250000000, Tm, Tf);
190 Tn = Tf + Tm;
191 T17 = T15 + T16;
192 T19 = T16 - T15;
193 T1d = FNMS(KP618033988, T1c, T1b);
194 T1Q = FMA(KP618033988, T1b, T1c);
195 T18 = FNMS(KP250000000, T17, T14);
196 T2p = T17 + T14;
197 T1T = FNMS(KP618033988, TY, T11);
198 T12 = FMA(KP618033988, T11, TY);
199 T1P = FMA(KP559016994, T19, T18);
200 T1a = FNMS(KP559016994, T19, T18);
201 }
202 }
203 }
204 {
205 E T1R, T1e, T1q, T1U, T13, T1r, T2b, T28, T25, T2i, T2k;
206 {
207 E T2m, To, T26, T27, TV, T1S;
208 T2m = Te - Tn;
209 To = Te + Tn;
210 TV = FNMS(KP559016994, TU, TT);
211 T1S = FMA(KP559016994, TU, TT);
212 T26 = FMA(KP951056516, T1Q, T1P);
213 T1R = FNMS(KP951056516, T1Q, T1P);
214 T1e = FNMS(KP951056516, T1d, T1a);
215 T1q = FMA(KP951056516, T1d, T1a);
216 T27 = FNMS(KP951056516, T1T, T1S);
217 T1U = FMA(KP951056516, T1T, T1S);
218 T13 = FNMS(KP951056516, T12, TV);
219 T1r = FMA(KP951056516, T12, TV);
220 {
221 E T2g, T2q, T2s, T2h, T2n, T2r, T2l;
222 T2g = FMA(KP939062505, T29, T2a);
223 T2b = FNMS(KP939062505, T2a, T29);
224 R0[0] = FMA(KP2_000000000, To, T5);
225 T2l = FNMS(KP500000000, To, T5);
226 T2q = FMA(KP618033988, T2p, T2o);
227 T2s = FNMS(KP618033988, T2o, T2p);
228 T28 = FNMS(KP062914667, T27, T26);
229 T2h = FMA(KP062914667, T26, T27);
230 T2n = FMA(KP1_118033988, T2m, T2l);
231 T2r = FNMS(KP1_118033988, T2m, T2l);
232 T25 = FMA(KP1_902113032, T1G, T1F);
233 T1H = FNMS(KP1_902113032, T1G, T1F);
234 T2i = FMA(KP846146756, T2h, T2g);
235 T2k = FNMS(KP451418159, T2g, T2h);
236 R0[WS(rs, 10)] = FMA(KP1_902113032, T2q, T2n);
237 R1[WS(rs, 2)] = FNMS(KP1_902113032, T2q, T2n);
238 R0[WS(rs, 5)] = FMA(KP1_902113032, T2s, T2r);
239 R1[WS(rs, 7)] = FNMS(KP1_902113032, T2s, T2r);
240 }
241 }
242 {
243 E TS, T1f, T1p, Tv, T2e, T1o, T1m, T2d, T1k, T1l, T2c;
244 TS = FNMS(KP256756360, TR, TG);
245 T1k = FMA(KP256756360, TG, TR);
246 T1l = FMA(KP549754652, T13, T1e);
247 T1f = FNMS(KP549754652, T1e, T13);
248 T1p = FMA(KP1_902113032, Tu, Tr);
249 Tv = FNMS(KP1_902113032, Tu, Tr);
250 T2e = FMA(KP730409924, T2b, T28);
251 T2c = FNMS(KP730409924, T2b, T28);
252 T1o = FNMS(KP683113946, T1k, T1l);
253 T1m = FMA(KP559154169, T1l, T1k);
254 R1[WS(rs, 1)] = FNMS(KP1_996053456, T2c, T25);
255 T2d = FMA(KP499013364, T2c, T25);
256 {
257 E T1C, T1E, T1y, T1w;
258 {
259 E T1s, T1v, T1i, T1h, T1n, T1j;
260 {
261 E T1A, T1B, T2f, T2j, T1g;
262 T1A = FNMS(KP470564281, T1q, T1r);
263 T1s = FMA(KP470564281, T1r, T1q);
264 T1v = FNMS(KP634619297, T1u, T1t);
265 T1B = FMA(KP634619297, T1t, T1u);
266 T2f = FMA(KP1_115827804, T2e, T2d);
267 T2j = FNMS(KP1_115827804, T2e, T2d);
268 T1i = FNMS(KP904730450, T1f, TS);
269 T1g = FMA(KP904730450, T1f, TS);
270 R1[WS(rs, 11)] = FMA(KP1_386580726, T2i, T2f);
271 R0[WS(rs, 4)] = FNMS(KP1_386580726, T2i, T2f);
272 R1[WS(rs, 6)] = FMA(KP1_898359647, T2k, T2j);
273 R0[WS(rs, 9)] = FNMS(KP1_898359647, T2k, T2j);
274 R1[0] = FMA(KP1_937166322, T1g, Tv);
275 T1h = FNMS(KP484291580, T1g, Tv);
276 T1C = FNMS(KP576710603, T1B, T1A);
277 T1E = FMA(KP662318342, T1A, T1B);
278 }
279 T1n = FNMS(KP1_082908895, T1i, T1h);
280 T1j = FMA(KP1_082908895, T1i, T1h);
281 R1[WS(rs, 10)] = FMA(KP1_842354653, T1m, T1j);
282 R0[WS(rs, 3)] = FNMS(KP1_842354653, T1m, T1j);
283 R1[WS(rs, 5)] = FMA(KP1_666834356, T1o, T1n);
284 R0[WS(rs, 8)] = FNMS(KP1_666834356, T1o, T1n);
285 T1y = FNMS(KP933137358, T1v, T1s);
286 T1w = FMA(KP933137358, T1v, T1s);
287 }
288 {
289 E T1O, T20, T21, T1V, T1x, T1z, T1D;
290 T1O = FNMS(KP549754652, T1N, T1K);
291 T20 = FMA(KP549754652, T1K, T1N);
292 T21 = FMA(KP634619297, T1R, T1U);
293 T1V = FNMS(KP634619297, T1U, T1R);
294 R0[WS(rs, 2)] = FNMS(KP1_809654104, T1w, T1p);
295 T1x = FMA(KP452413526, T1w, T1p);
296 T24 = FNMS(KP641441904, T20, T21);
297 T22 = FMA(KP595480289, T21, T20);
298 T1z = FNMS(KP1_011627398, T1y, T1x);
299 T1D = FMA(KP1_011627398, T1y, T1x);
300 R1[WS(rs, 9)] = FNMS(KP1_721083328, T1C, T1z);
301 R0[WS(rs, 7)] = FMA(KP1_721083328, T1C, T1z);
302 R0[WS(rs, 12)] = FMA(KP1_606007150, T1E, T1D);
303 R1[WS(rs, 4)] = FNMS(KP1_606007150, T1E, T1D);
304 T1W = FNMS(KP963507348, T1V, T1O);
305 T1Y = FMA(KP963507348, T1V, T1O);
306 }
307 }
308 }
309 }
310 }
311 R0[WS(rs, 1)] = FMA(KP1_752613360, T1W, T1H);
312 T1X = FNMS(KP438153340, T1W, T1H);
313 T1Z = FMA(KP979740652, T1Y, T1X);
314 T23 = FNMS(KP979740652, T1Y, T1X);
315 R0[WS(rs, 11)] = FMA(KP1_666834356, T22, T1Z);
316 R1[WS(rs, 3)] = FNMS(KP1_666834356, T22, T1Z);
317 R1[WS(rs, 8)] = FNMS(KP1_606007150, T24, T23);
318 R0[WS(rs, 6)] = FMA(KP1_606007150, T24, T23);
319 }
320 }
321 }
322
323 static const kr2c_desc desc = { 25, "r2cb_25", {32, 0, 120, 0}, &GENUS };
324
325 void X(codelet_r2cb_25) (planner *p) {
326 X(kr2c_register) (p, r2cb_25, &desc);
327 }
328
329 #else /* HAVE_FMA */
330
331 /* Generated by: ../../../genfft/gen_r2cb.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 25 -name r2cb_25 -include r2cb.h */
332
333 /*
334 * This function contains 152 FP additions, 98 FP multiplications,
335 * (or, 100 additions, 46 multiplications, 52 fused multiply/add),
336 * 65 stack variables, 21 constants, and 50 memory accesses
337 */
338 #include "r2cb.h"
339
340 static void r2cb_25(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs)
341 {
342 DK(KP425779291, +0.425779291565072648862502445744251703979973042);
343 DK(KP904827052, +0.904827052466019527713668647932697593970413911);
344 DK(KP535826794, +0.535826794978996618271308767867639978063575346);
345 DK(KP844327925, +0.844327925502015078548558063966681505381659241);
346 DK(KP876306680, +0.876306680043863587308115903922062583399064238);
347 DK(KP481753674, +0.481753674101715274987191502872129653528542010);
348 DK(KP968583161, +0.968583161128631119490168375464735813836012403);
349 DK(KP248689887, +0.248689887164854788242283746006447968417567406);
350 DK(KP062790519, +0.062790519529313376076178224565631133122484832);
351 DK(KP998026728, +0.998026728428271561952336806863450553336905220);
352 DK(KP728968627, +0.728968627421411523146730319055259111372571664);
353 DK(KP684547105, +0.684547105928688673732283357621209269889519233);
354 DK(KP250000000, +0.250000000000000000000000000000000000000000000);
355 DK(KP587785252, +0.587785252292473129168705954639072768597652438);
356 DK(KP951056516, +0.951056516295153572116439333379382143405698634);
357 DK(KP559016994, +0.559016994374947424102293417182819058860154590);
358 DK(KP500000000, +0.500000000000000000000000000000000000000000000);
359 DK(KP2_000000000, +2.000000000000000000000000000000000000000000000);
360 DK(KP1_118033988, +1.118033988749894848204586834365638117720309180);
361 DK(KP1_175570504, +1.175570504584946258337411909278145537195304875);
362 DK(KP1_902113032, +1.902113032590307144232878666758764286811397268);
363 {
364 INT i;
365 for (i = v; i > 0; i = i - 1, R0 = R0 + ovs, R1 = R1 + ovs, Cr = Cr + ivs, Ci = Ci + ivs, MAKE_VOLATILE_STRIDE(100, rs), MAKE_VOLATILE_STRIDE(100, csr), MAKE_VOLATILE_STRIDE(100, csi)) {
366 E Tu, T1G, T5, Tr, T1F, TN, TO, Te, TR, T27, T1r, T1N, TG, T26, T1q;
367 E T1K, T1a, T1b, Tn, T1e, T2a, T1u, T1U, T13, T29, T1t, T1R, Ts, Tt;
368 Ts = Ci[WS(csi, 5)];
369 Tt = Ci[WS(csi, 10)];
370 Tu = FMA(KP1_902113032, Ts, KP1_175570504 * Tt);
371 T1G = FNMS(KP1_902113032, Tt, KP1_175570504 * Ts);
372 {
373 E T1, T4, Tp, T2, T3, Tq;
374 T1 = Cr[0];
375 T2 = Cr[WS(csr, 5)];
376 T3 = Cr[WS(csr, 10)];
377 T4 = T2 + T3;
378 Tp = KP1_118033988 * (T2 - T3);
379 T5 = FMA(KP2_000000000, T4, T1);
380 Tq = FNMS(KP500000000, T4, T1);
381 Tr = Tp + Tq;
382 T1F = Tq - Tp;
383 }
384 {
385 E T6, Td, TI, Tw, TH, TB, TE, TM;
386 T6 = Cr[WS(csr, 1)];
387 TN = Ci[WS(csi, 1)];
388 {
389 E T7, T8, T9, Ta, Tb, Tc;
390 T7 = Cr[WS(csr, 6)];
391 T8 = Cr[WS(csr, 4)];
392 T9 = T7 + T8;
393 Ta = Cr[WS(csr, 11)];
394 Tb = Cr[WS(csr, 9)];
395 Tc = Ta + Tb;
396 Td = T9 + Tc;
397 TI = Ta - Tb;
398 Tw = KP559016994 * (T9 - Tc);
399 TH = T7 - T8;
400 }
401 {
402 E Tz, TA, TK, TC, TD, TL;
403 Tz = Ci[WS(csi, 6)];
404 TA = Ci[WS(csi, 4)];
405 TK = Tz - TA;
406 TC = Ci[WS(csi, 11)];
407 TD = Ci[WS(csi, 9)];
408 TL = TC - TD;
409 TB = Tz + TA;
410 TO = TK + TL;
411 TE = TC + TD;
412 TM = KP559016994 * (TK - TL);
413 }
414 Te = T6 + Td;
415 {
416 E TJ, T1L, TQ, T1M, TP;
417 TJ = FMA(KP951056516, TH, KP587785252 * TI);
418 T1L = FNMS(KP951056516, TI, KP587785252 * TH);
419 TP = FNMS(KP250000000, TO, TN);
420 TQ = TM + TP;
421 T1M = TP - TM;
422 TR = TJ + TQ;
423 T27 = T1M - T1L;
424 T1r = TQ - TJ;
425 T1N = T1L + T1M;
426 }
427 {
428 E TF, T1J, Ty, T1I, Tx;
429 TF = FMA(KP951056516, TB, KP587785252 * TE);
430 T1J = FNMS(KP951056516, TE, KP587785252 * TB);
431 Tx = FNMS(KP250000000, Td, T6);
432 Ty = Tw + Tx;
433 T1I = Tx - Tw;
434 TG = Ty - TF;
435 T26 = T1I + T1J;
436 T1q = Ty + TF;
437 T1K = T1I - T1J;
438 }
439 }
440 {
441 E Tf, Tm, T15, TT, T14, TY, T11, T19;
442 Tf = Cr[WS(csr, 2)];
443 T1a = Ci[WS(csi, 2)];
444 {
445 E Tg, Th, Ti, Tj, Tk, Tl;
446 Tg = Cr[WS(csr, 7)];
447 Th = Cr[WS(csr, 3)];
448 Ti = Tg + Th;
449 Tj = Cr[WS(csr, 12)];
450 Tk = Cr[WS(csr, 8)];
451 Tl = Tj + Tk;
452 Tm = Ti + Tl;
453 T15 = Tj - Tk;
454 TT = KP559016994 * (Ti - Tl);
455 T14 = Tg - Th;
456 }
457 {
458 E TW, TX, T17, TZ, T10, T18;
459 TW = Ci[WS(csi, 7)];
460 TX = Ci[WS(csi, 3)];
461 T17 = TW - TX;
462 TZ = Ci[WS(csi, 12)];
463 T10 = Ci[WS(csi, 8)];
464 T18 = TZ - T10;
465 TY = TW + TX;
466 T1b = T17 + T18;
467 T11 = TZ + T10;
468 T19 = KP559016994 * (T17 - T18);
469 }
470 Tn = Tf + Tm;
471 {
472 E T16, T1S, T1d, T1T, T1c;
473 T16 = FMA(KP951056516, T14, KP587785252 * T15);
474 T1S = FNMS(KP951056516, T15, KP587785252 * T14);
475 T1c = FNMS(KP250000000, T1b, T1a);
476 T1d = T19 + T1c;
477 T1T = T1c - T19;
478 T1e = T16 + T1d;
479 T2a = T1T - T1S;
480 T1u = T1d - T16;
481 T1U = T1S + T1T;
482 }
483 {
484 E T12, T1Q, TV, T1P, TU;
485 T12 = FMA(KP951056516, TY, KP587785252 * T11);
486 T1Q = FNMS(KP951056516, T11, KP587785252 * TY);
487 TU = FNMS(KP250000000, Tm, Tf);
488 TV = TT + TU;
489 T1P = TU - TT;
490 T13 = TV - T12;
491 T29 = T1P + T1Q;
492 T1t = TV + T12;
493 T1R = T1P - T1Q;
494 }
495 }
496 {
497 E T2m, To, T2l, T2q, T2s, T2o, T2p, T2r, T2n;
498 T2m = KP1_118033988 * (Te - Tn);
499 To = Te + Tn;
500 T2l = FNMS(KP500000000, To, T5);
501 T2o = TO + TN;
502 T2p = T1b + T1a;
503 T2q = FNMS(KP1_902113032, T2p, KP1_175570504 * T2o);
504 T2s = FMA(KP1_902113032, T2o, KP1_175570504 * T2p);
505 R0[0] = FMA(KP2_000000000, To, T5);
506 T2r = T2m + T2l;
507 R1[WS(rs, 2)] = T2r - T2s;
508 R0[WS(rs, 10)] = T2r + T2s;
509 T2n = T2l - T2m;
510 R0[WS(rs, 5)] = T2n - T2q;
511 R1[WS(rs, 7)] = T2n + T2q;
512 }
513 {
514 E T2i, T2k, T25, T2c, T2d, T2e, T2j, T2f;
515 {
516 E T2g, T2h, T28, T2b;
517 T2g = FMA(KP684547105, T26, KP728968627 * T27);
518 T2h = FMA(KP998026728, T29, KP062790519 * T2a);
519 T2i = FNMS(KP1_902113032, T2h, KP1_175570504 * T2g);
520 T2k = FMA(KP1_902113032, T2g, KP1_175570504 * T2h);
521 T25 = T1F + T1G;
522 T28 = FNMS(KP684547105, T27, KP728968627 * T26);
523 T2b = FNMS(KP998026728, T2a, KP062790519 * T29);
524 T2c = T28 + T2b;
525 T2d = FNMS(KP500000000, T2c, T25);
526 T2e = KP1_118033988 * (T28 - T2b);
527 }
528 R1[WS(rs, 1)] = FMA(KP2_000000000, T2c, T25);
529 T2j = T2e + T2d;
530 R0[WS(rs, 4)] = T2j - T2k;
531 R1[WS(rs, 11)] = T2j + T2k;
532 T2f = T2d - T2e;
533 R1[WS(rs, 6)] = T2f - T2i;
534 R0[WS(rs, 9)] = T2f + T2i;
535 }
536 {
537 E T1m, T1o, Tv, T1g, T1h, T1i, T1n, T1j;
538 {
539 E T1k, T1l, TS, T1f;
540 T1k = FMA(KP248689887, TG, KP968583161 * TR);
541 T1l = FMA(KP481753674, T13, KP876306680 * T1e);
542 T1m = FNMS(KP1_902113032, T1l, KP1_175570504 * T1k);
543 T1o = FMA(KP1_902113032, T1k, KP1_175570504 * T1l);
544 Tv = Tr - Tu;
545 TS = FNMS(KP248689887, TR, KP968583161 * TG);
546 T1f = FNMS(KP481753674, T1e, KP876306680 * T13);
547 T1g = TS + T1f;
548 T1h = FNMS(KP500000000, T1g, Tv);
549 T1i = KP1_118033988 * (TS - T1f);
550 }
551 R1[0] = FMA(KP2_000000000, T1g, Tv);
552 T1n = T1i + T1h;
553 R0[WS(rs, 3)] = T1n - T1o;
554 R1[WS(rs, 10)] = T1n + T1o;
555 T1j = T1h - T1i;
556 R1[WS(rs, 5)] = T1j - T1m;
557 R0[WS(rs, 8)] = T1j + T1m;
558 }
559 {
560 E T1C, T1E, T1p, T1w, T1x, T1y, T1D, T1z;
561 {
562 E T1A, T1B, T1s, T1v;
563 T1A = FMA(KP844327925, T1q, KP535826794 * T1r);
564 T1B = FNMS(KP425779291, T1u, KP904827052 * T1t);
565 T1C = FNMS(KP1_902113032, T1B, KP1_175570504 * T1A);
566 T1E = FMA(KP1_902113032, T1A, KP1_175570504 * T1B);
567 T1p = Tr + Tu;
568 T1s = FNMS(KP844327925, T1r, KP535826794 * T1q);
569 T1v = FMA(KP425779291, T1t, KP904827052 * T1u);
570 T1w = T1s - T1v;
571 T1x = FNMS(KP500000000, T1w, T1p);
572 T1y = KP1_118033988 * (T1s + T1v);
573 }
574 R0[WS(rs, 2)] = FMA(KP2_000000000, T1w, T1p);
575 T1D = T1x + T1y;
576 R1[WS(rs, 4)] = T1D - T1E;
577 R0[WS(rs, 12)] = T1E + T1D;
578 T1z = T1x - T1y;
579 R0[WS(rs, 7)] = T1z - T1C;
580 R1[WS(rs, 9)] = T1C + T1z;
581 }
582 {
583 E T22, T24, T1H, T1W, T1X, T1Y, T23, T1Z;
584 {
585 E T20, T21, T1O, T1V;
586 T20 = FMA(KP481753674, T1K, KP876306680 * T1N);
587 T21 = FMA(KP844327925, T1R, KP535826794 * T1U);
588 T22 = FNMS(KP1_902113032, T21, KP1_175570504 * T20);
589 T24 = FMA(KP1_902113032, T20, KP1_175570504 * T21);
590 T1H = T1F - T1G;
591 T1O = FNMS(KP481753674, T1N, KP876306680 * T1K);
592 T1V = FNMS(KP844327925, T1U, KP535826794 * T1R);
593 T1W = T1O + T1V;
594 T1X = FNMS(KP500000000, T1W, T1H);
595 T1Y = KP1_118033988 * (T1O - T1V);
596 }
597 R0[WS(rs, 1)] = FMA(KP2_000000000, T1W, T1H);
598 T23 = T1Y + T1X;
599 R1[WS(rs, 3)] = T23 - T24;
600 R0[WS(rs, 11)] = T23 + T24;
601 T1Z = T1X - T1Y;
602 R0[WS(rs, 6)] = T1Z - T22;
603 R1[WS(rs, 8)] = T1Z + T22;
604 }
605 }
606 }
607 }
608
609 static const kr2c_desc desc = { 25, "r2cb_25", {100, 46, 52, 0}, &GENUS };
610
611 void X(codelet_r2cb_25) (planner *p) {
612 X(kr2c_register) (p, r2cb_25, &desc);
613 }
614
615 #endif /* HAVE_FMA */