comparison fft/fftw/fftw-3.3.4/rdft/scalar/r2cb/r2cb_20.c @ 19:26056e866c29

Add FFTW to comparison table
author Chris Cannam
date Tue, 06 Oct 2015 13:08:39 +0100
parents
children
comparison
equal deleted inserted replaced
18:8db794ca3e0b 19:26056e866c29
1 /*
2 * Copyright (c) 2003, 2007-14 Matteo Frigo
3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
18 *
19 */
20
21 /* This file was automatically generated --- DO NOT EDIT */
22 /* Generated on Tue Mar 4 13:50:24 EST 2014 */
23
24 #include "codelet-rdft.h"
25
26 #ifdef HAVE_FMA
27
28 /* Generated by: ../../../genfft/gen_r2cb.native -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -sign 1 -n 20 -name r2cb_20 -include r2cb.h */
29
30 /*
31 * This function contains 86 FP additions, 44 FP multiplications,
32 * (or, 42 additions, 0 multiplications, 44 fused multiply/add),
33 * 69 stack variables, 5 constants, and 40 memory accesses
34 */
35 #include "r2cb.h"
36
37 static void r2cb_20(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs)
38 {
39 DK(KP1_902113032, +1.902113032590307144232878666758764286811397268);
40 DK(KP1_118033988, +1.118033988749894848204586834365638117720309180);
41 DK(KP500000000, +0.500000000000000000000000000000000000000000000);
42 DK(KP618033988, +0.618033988749894848204586834365638117720309180);
43 DK(KP2_000000000, +2.000000000000000000000000000000000000000000000);
44 {
45 INT i;
46 for (i = v; i > 0; i = i - 1, R0 = R0 + ovs, R1 = R1 + ovs, Cr = Cr + ivs, Ci = Ci + ivs, MAKE_VOLATILE_STRIDE(80, rs), MAKE_VOLATILE_STRIDE(80, csr), MAKE_VOLATILE_STRIDE(80, csi)) {
47 E TY, T1o, T1m, T14, T12, TX, T1n, T1j, TZ, T13;
48 {
49 E Tr, TD, Tl, T5, T1a, T1l, T1d, T1k, TT, T10, TO, T11, TE, TF, Tk;
50 E TI, TC, T1i, To, TG, T16;
51 {
52 E T4, Tq, T1, T2;
53 T4 = Cr[WS(csr, 5)];
54 Tq = Ci[WS(csi, 5)];
55 T1 = Cr[0];
56 T2 = Cr[WS(csr, 10)];
57 {
58 E Ts, T8, T19, TR, T18, Tb, TS, Tv, Tx, Tf, Ty, T1c, TM, T1b, Ti;
59 E Tz, Tt, Tu, TN, TA;
60 {
61 E TP, TQ, T9, Ta;
62 {
63 E T6, T7, Tp, T3;
64 T6 = Cr[WS(csr, 4)];
65 T7 = Cr[WS(csr, 6)];
66 TP = Ci[WS(csi, 4)];
67 Tp = T1 - T2;
68 T3 = T1 + T2;
69 Ts = T6 - T7;
70 T8 = T6 + T7;
71 Tr = FMA(KP2_000000000, Tq, Tp);
72 TD = FNMS(KP2_000000000, Tq, Tp);
73 Tl = FMA(KP2_000000000, T4, T3);
74 T5 = FNMS(KP2_000000000, T4, T3);
75 TQ = Ci[WS(csi, 6)];
76 }
77 T9 = Cr[WS(csr, 9)];
78 Ta = Cr[WS(csr, 1)];
79 Tt = Ci[WS(csi, 9)];
80 T19 = TP + TQ;
81 TR = TP - TQ;
82 T18 = T9 - Ta;
83 Tb = T9 + Ta;
84 Tu = Ci[WS(csi, 1)];
85 }
86 {
87 E TK, TL, Td, Te, Tg, Th;
88 Td = Cr[WS(csr, 8)];
89 Te = Cr[WS(csr, 2)];
90 TK = Ci[WS(csi, 8)];
91 TS = Tt - Tu;
92 Tv = Tt + Tu;
93 Tx = Td - Te;
94 Tf = Td + Te;
95 TL = Ci[WS(csi, 2)];
96 Tg = Cr[WS(csr, 7)];
97 Th = Cr[WS(csr, 3)];
98 Ty = Ci[WS(csi, 7)];
99 T1c = TK + TL;
100 TM = TK - TL;
101 T1b = Tg - Th;
102 Ti = Tg + Th;
103 Tz = Ci[WS(csi, 3)];
104 }
105 T1a = T18 + T19;
106 T1l = T19 - T18;
107 T1d = T1b + T1c;
108 T1k = T1c - T1b;
109 TT = TR - TS;
110 T10 = TS + TR;
111 TN = Tz - Ty;
112 TA = Ty + Tz;
113 TO = TM - TN;
114 T11 = TN + TM;
115 {
116 E Tm, Tc, Tj, Tn, Tw, TB;
117 Tm = T8 + Tb;
118 Tc = T8 - Tb;
119 Tj = Tf - Ti;
120 Tn = Tf + Ti;
121 TE = Ts - Tv;
122 Tw = Ts + Tv;
123 TB = Tx - TA;
124 TF = Tx + TA;
125 Tk = Tc + Tj;
126 TI = Tc - Tj;
127 TC = Tw + TB;
128 T1i = Tw - TB;
129 TY = Tm - Tn;
130 To = Tm + Tn;
131 }
132 }
133 }
134 R0[WS(rs, 5)] = FMA(KP2_000000000, Tk, T5);
135 R1[WS(rs, 7)] = FMA(KP2_000000000, TC, Tr);
136 TG = TE + TF;
137 T16 = TE - TF;
138 R0[0] = FMA(KP2_000000000, To, Tl);
139 {
140 E TU, TW, T1g, T1e, T15, TV, TJ, TH, T1h, T1f, T17;
141 TU = FNMS(KP618033988, TT, TO);
142 TW = FMA(KP618033988, TO, TT);
143 R1[WS(rs, 2)] = FMA(KP2_000000000, TG, TD);
144 TH = FNMS(KP500000000, Tk, T5);
145 T1g = FNMS(KP618033988, T1a, T1d);
146 T1e = FMA(KP618033988, T1d, T1a);
147 T15 = FNMS(KP500000000, TG, TD);
148 TV = FMA(KP1_118033988, TI, TH);
149 TJ = FNMS(KP1_118033988, TI, TH);
150 T1o = FMA(KP618033988, T1k, T1l);
151 T1m = FNMS(KP618033988, T1l, T1k);
152 R0[WS(rs, 3)] = FNMS(KP1_902113032, TW, TV);
153 R0[WS(rs, 7)] = FMA(KP1_902113032, TW, TV);
154 R0[WS(rs, 1)] = FMA(KP1_902113032, TU, TJ);
155 R0[WS(rs, 9)] = FNMS(KP1_902113032, TU, TJ);
156 T1f = FNMS(KP1_118033988, T16, T15);
157 T17 = FMA(KP1_118033988, T16, T15);
158 T1h = FNMS(KP500000000, TC, Tr);
159 R1[WS(rs, 6)] = FNMS(KP1_902113032, T1g, T1f);
160 R1[WS(rs, 8)] = FMA(KP1_902113032, T1g, T1f);
161 R1[WS(rs, 4)] = FMA(KP1_902113032, T1e, T17);
162 R1[0] = FNMS(KP1_902113032, T1e, T17);
163 T14 = FNMS(KP618033988, T10, T11);
164 T12 = FMA(KP618033988, T11, T10);
165 TX = FNMS(KP500000000, To, Tl);
166 T1n = FMA(KP1_118033988, T1i, T1h);
167 T1j = FNMS(KP1_118033988, T1i, T1h);
168 }
169 }
170 R1[WS(rs, 5)] = FNMS(KP1_902113032, T1o, T1n);
171 R1[WS(rs, 9)] = FMA(KP1_902113032, T1o, T1n);
172 R1[WS(rs, 3)] = FMA(KP1_902113032, T1m, T1j);
173 R1[WS(rs, 1)] = FNMS(KP1_902113032, T1m, T1j);
174 TZ = FMA(KP1_118033988, TY, TX);
175 T13 = FNMS(KP1_118033988, TY, TX);
176 R0[WS(rs, 4)] = FNMS(KP1_902113032, T14, T13);
177 R0[WS(rs, 6)] = FMA(KP1_902113032, T14, T13);
178 R0[WS(rs, 2)] = FMA(KP1_902113032, T12, TZ);
179 R0[WS(rs, 8)] = FNMS(KP1_902113032, T12, TZ);
180 }
181 }
182 }
183
184 static const kr2c_desc desc = { 20, "r2cb_20", {42, 0, 44, 0}, &GENUS };
185
186 void X(codelet_r2cb_20) (planner *p) {
187 X(kr2c_register) (p, r2cb_20, &desc);
188 }
189
190 #else /* HAVE_FMA */
191
192 /* Generated by: ../../../genfft/gen_r2cb.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 20 -name r2cb_20 -include r2cb.h */
193
194 /*
195 * This function contains 86 FP additions, 30 FP multiplications,
196 * (or, 70 additions, 14 multiplications, 16 fused multiply/add),
197 * 50 stack variables, 5 constants, and 40 memory accesses
198 */
199 #include "r2cb.h"
200
201 static void r2cb_20(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs)
202 {
203 DK(KP1_118033988, +1.118033988749894848204586834365638117720309180);
204 DK(KP500000000, +0.500000000000000000000000000000000000000000000);
205 DK(KP1_902113032, +1.902113032590307144232878666758764286811397268);
206 DK(KP1_175570504, +1.175570504584946258337411909278145537195304875);
207 DK(KP2_000000000, +2.000000000000000000000000000000000000000000000);
208 {
209 INT i;
210 for (i = v; i > 0; i = i - 1, R0 = R0 + ovs, R1 = R1 + ovs, Cr = Cr + ivs, Ci = Ci + ivs, MAKE_VOLATILE_STRIDE(80, rs), MAKE_VOLATILE_STRIDE(80, csr), MAKE_VOLATILE_STRIDE(80, csi)) {
211 E T6, TF, Tm, Tt, TQ, T1n, T1f, T12, T1m, TV, T13, T1c, Td, Tk, Tl;
212 E Ty, TD, TE, Tn, To, Tp, TG, TH, TI;
213 {
214 E T5, Ts, T3, Tq;
215 {
216 E T4, Tr, T1, T2;
217 T4 = Cr[WS(csr, 5)];
218 T5 = KP2_000000000 * T4;
219 Tr = Ci[WS(csi, 5)];
220 Ts = KP2_000000000 * Tr;
221 T1 = Cr[0];
222 T2 = Cr[WS(csr, 10)];
223 T3 = T1 + T2;
224 Tq = T1 - T2;
225 }
226 T6 = T3 - T5;
227 TF = Tq - Ts;
228 Tm = T3 + T5;
229 Tt = Tq + Ts;
230 }
231 {
232 E T9, Tu, TO, T1b, Tc, T1a, Tx, TP, Tg, Tz, TT, T1e, Tj, T1d, TC;
233 E TU;
234 {
235 E T7, T8, TM, TN;
236 T7 = Cr[WS(csr, 4)];
237 T8 = Cr[WS(csr, 6)];
238 T9 = T7 + T8;
239 Tu = T7 - T8;
240 TM = Ci[WS(csi, 4)];
241 TN = Ci[WS(csi, 6)];
242 TO = TM - TN;
243 T1b = TM + TN;
244 }
245 {
246 E Ta, Tb, Tv, Tw;
247 Ta = Cr[WS(csr, 9)];
248 Tb = Cr[WS(csr, 1)];
249 Tc = Ta + Tb;
250 T1a = Ta - Tb;
251 Tv = Ci[WS(csi, 9)];
252 Tw = Ci[WS(csi, 1)];
253 Tx = Tv + Tw;
254 TP = Tv - Tw;
255 }
256 {
257 E Te, Tf, TR, TS;
258 Te = Cr[WS(csr, 8)];
259 Tf = Cr[WS(csr, 2)];
260 Tg = Te + Tf;
261 Tz = Te - Tf;
262 TR = Ci[WS(csi, 8)];
263 TS = Ci[WS(csi, 2)];
264 TT = TR - TS;
265 T1e = TR + TS;
266 }
267 {
268 E Th, Ti, TA, TB;
269 Th = Cr[WS(csr, 7)];
270 Ti = Cr[WS(csr, 3)];
271 Tj = Th + Ti;
272 T1d = Th - Ti;
273 TA = Ci[WS(csi, 7)];
274 TB = Ci[WS(csi, 3)];
275 TC = TA + TB;
276 TU = TB - TA;
277 }
278 TQ = TO - TP;
279 T1n = T1e - T1d;
280 T1f = T1d + T1e;
281 T12 = TP + TO;
282 T1m = T1b - T1a;
283 TV = TT - TU;
284 T13 = TU + TT;
285 T1c = T1a + T1b;
286 Td = T9 - Tc;
287 Tk = Tg - Tj;
288 Tl = Td + Tk;
289 Ty = Tu + Tx;
290 TD = Tz - TC;
291 TE = Ty + TD;
292 Tn = T9 + Tc;
293 To = Tg + Tj;
294 Tp = Tn + To;
295 TG = Tu - Tx;
296 TH = Tz + TC;
297 TI = TG + TH;
298 }
299 R0[WS(rs, 5)] = FMA(KP2_000000000, Tl, T6);
300 R1[WS(rs, 7)] = FMA(KP2_000000000, TE, Tt);
301 R1[WS(rs, 2)] = FMA(KP2_000000000, TI, TF);
302 R0[0] = FMA(KP2_000000000, Tp, Tm);
303 {
304 E TW, TY, TL, TX, TJ, TK;
305 TW = FNMS(KP1_902113032, TV, KP1_175570504 * TQ);
306 TY = FMA(KP1_902113032, TQ, KP1_175570504 * TV);
307 TJ = FNMS(KP500000000, Tl, T6);
308 TK = KP1_118033988 * (Td - Tk);
309 TL = TJ - TK;
310 TX = TK + TJ;
311 R0[WS(rs, 1)] = TL - TW;
312 R0[WS(rs, 7)] = TX + TY;
313 R0[WS(rs, 9)] = TL + TW;
314 R0[WS(rs, 3)] = TX - TY;
315 }
316 {
317 E T1g, T1i, T19, T1h, T17, T18;
318 T1g = FNMS(KP1_902113032, T1f, KP1_175570504 * T1c);
319 T1i = FMA(KP1_902113032, T1c, KP1_175570504 * T1f);
320 T17 = FNMS(KP500000000, TI, TF);
321 T18 = KP1_118033988 * (TG - TH);
322 T19 = T17 - T18;
323 T1h = T18 + T17;
324 R1[WS(rs, 8)] = T19 - T1g;
325 R1[WS(rs, 4)] = T1h + T1i;
326 R1[WS(rs, 6)] = T19 + T1g;
327 R1[0] = T1h - T1i;
328 }
329 {
330 E T1o, T1q, T1l, T1p, T1j, T1k;
331 T1o = FNMS(KP1_902113032, T1n, KP1_175570504 * T1m);
332 T1q = FMA(KP1_902113032, T1m, KP1_175570504 * T1n);
333 T1j = FNMS(KP500000000, TE, Tt);
334 T1k = KP1_118033988 * (Ty - TD);
335 T1l = T1j - T1k;
336 T1p = T1k + T1j;
337 R1[WS(rs, 3)] = T1l - T1o;
338 R1[WS(rs, 9)] = T1p + T1q;
339 R1[WS(rs, 1)] = T1l + T1o;
340 R1[WS(rs, 5)] = T1p - T1q;
341 }
342 {
343 E T14, T16, T11, T15, TZ, T10;
344 T14 = FNMS(KP1_902113032, T13, KP1_175570504 * T12);
345 T16 = FMA(KP1_902113032, T12, KP1_175570504 * T13);
346 TZ = FNMS(KP500000000, Tp, Tm);
347 T10 = KP1_118033988 * (Tn - To);
348 T11 = TZ - T10;
349 T15 = T10 + TZ;
350 R0[WS(rs, 6)] = T11 - T14;
351 R0[WS(rs, 2)] = T15 + T16;
352 R0[WS(rs, 4)] = T11 + T14;
353 R0[WS(rs, 8)] = T15 - T16;
354 }
355 }
356 }
357 }
358
359 static const kr2c_desc desc = { 20, "r2cb_20", {70, 14, 16, 0}, &GENUS };
360
361 void X(codelet_r2cb_20) (planner *p) {
362 X(kr2c_register) (p, r2cb_20, &desc);
363 }
364
365 #endif /* HAVE_FMA */