comparison fft/fftw/fftw-3.3.4/rdft/scalar/r2cb/r2cb_15.c @ 19:26056e866c29

Add FFTW to comparison table
author Chris Cannam
date Tue, 06 Oct 2015 13:08:39 +0100
parents
children
comparison
equal deleted inserted replaced
18:8db794ca3e0b 19:26056e866c29
1 /*
2 * Copyright (c) 2003, 2007-14 Matteo Frigo
3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
18 *
19 */
20
21 /* This file was automatically generated --- DO NOT EDIT */
22 /* Generated on Tue Mar 4 13:50:24 EST 2014 */
23
24 #include "codelet-rdft.h"
25
26 #ifdef HAVE_FMA
27
28 /* Generated by: ../../../genfft/gen_r2cb.native -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -sign 1 -n 15 -name r2cb_15 -include r2cb.h */
29
30 /*
31 * This function contains 64 FP additions, 43 FP multiplications,
32 * (or, 21 additions, 0 multiplications, 43 fused multiply/add),
33 * 54 stack variables, 9 constants, and 30 memory accesses
34 */
35 #include "r2cb.h"
36
37 static void r2cb_15(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs)
38 {
39 DK(KP559016994, +0.559016994374947424102293417182819058860154590);
40 DK(KP1_902113032, +1.902113032590307144232878666758764286811397268);
41 DK(KP250000000, +0.250000000000000000000000000000000000000000000);
42 DK(KP866025403, +0.866025403784438646763723170752936183471402627);
43 DK(KP1_118033988, +1.118033988749894848204586834365638117720309180);
44 DK(KP618033988, +0.618033988749894848204586834365638117720309180);
45 DK(KP500000000, +0.500000000000000000000000000000000000000000000);
46 DK(KP1_732050807, +1.732050807568877293527446341505872366942805254);
47 DK(KP2_000000000, +2.000000000000000000000000000000000000000000000);
48 {
49 INT i;
50 for (i = v; i > 0; i = i - 1, R0 = R0 + ovs, R1 = R1 + ovs, Cr = Cr + ivs, Ci = Ci + ivs, MAKE_VOLATILE_STRIDE(60, rs), MAKE_VOLATILE_STRIDE(60, csr), MAKE_VOLATILE_STRIDE(60, csi)) {
51 E TL, Tz, TM, TK;
52 {
53 E T3, Th, Tt, TD, TI, TH, TY, TC, TZ, Tu, Tm, Tv, Tr, Te, TW;
54 E Tg, T1, T2, T12, T10, TV;
55 Tg = Ci[WS(csi, 5)];
56 T1 = Cr[0];
57 T2 = Cr[WS(csr, 5)];
58 {
59 E T4, TA, T9, TF, T7, Tj, Tc, Tk, TG, Tq, Tf, Tl, TB;
60 T4 = Cr[WS(csr, 3)];
61 TA = Ci[WS(csi, 3)];
62 T9 = Cr[WS(csr, 6)];
63 Tf = T1 - T2;
64 T3 = FMA(KP2_000000000, T2, T1);
65 TF = Ci[WS(csi, 6)];
66 {
67 E Ta, Tb, T5, T6, To, Tp;
68 T5 = Cr[WS(csr, 7)];
69 T6 = Cr[WS(csr, 2)];
70 Th = FMA(KP1_732050807, Tg, Tf);
71 Tt = FNMS(KP1_732050807, Tg, Tf);
72 Ta = Cr[WS(csr, 4)];
73 TD = T5 - T6;
74 T7 = T5 + T6;
75 Tb = Cr[WS(csr, 1)];
76 To = Ci[WS(csi, 4)];
77 Tp = Ci[WS(csi, 1)];
78 Tj = Ci[WS(csi, 7)];
79 Tc = Ta + Tb;
80 TI = Ta - Tb;
81 Tk = Ci[WS(csi, 2)];
82 TG = Tp - To;
83 Tq = To + Tp;
84 }
85 Tl = Tj - Tk;
86 TB = Tj + Tk;
87 TH = FNMS(KP500000000, TG, TF);
88 TY = TG + TF;
89 TC = FMA(KP500000000, TB, TA);
90 TZ = TA - TB;
91 {
92 E Ti, T8, Td, Tn;
93 Ti = FNMS(KP2_000000000, T4, T7);
94 T8 = T4 + T7;
95 Td = T9 + Tc;
96 Tn = FNMS(KP2_000000000, T9, Tc);
97 Tu = FNMS(KP1_732050807, Tl, Ti);
98 Tm = FMA(KP1_732050807, Tl, Ti);
99 Tv = FNMS(KP1_732050807, Tq, Tn);
100 Tr = FMA(KP1_732050807, Tq, Tn);
101 Te = T8 + Td;
102 TW = T8 - Td;
103 }
104 }
105 T12 = FMA(KP618033988, TY, TZ);
106 T10 = FNMS(KP618033988, TZ, TY);
107 TV = FNMS(KP500000000, Te, T3);
108 R0[0] = FMA(KP2_000000000, Te, T3);
109 {
110 E TJ, TE, TT, TP, TU, TS, Ty, Tw, Tx;
111 {
112 E TO, Ts, TQ, TN, TR, T11, TX;
113 TO = Tr - Tm;
114 Ts = Tm + Tr;
115 T11 = FMA(KP1_118033988, TW, TV);
116 TX = FNMS(KP1_118033988, TW, TV);
117 TQ = FNMS(KP866025403, TI, TH);
118 TJ = FMA(KP866025403, TI, TH);
119 TN = FMA(KP250000000, Ts, Th);
120 R0[WS(rs, 3)] = FNMS(KP1_902113032, T12, T11);
121 R1[WS(rs, 4)] = FMA(KP1_902113032, T12, T11);
122 R0[WS(rs, 6)] = FMA(KP1_902113032, T10, TX);
123 R1[WS(rs, 1)] = FNMS(KP1_902113032, T10, TX);
124 TR = FNMS(KP866025403, TD, TC);
125 TE = FMA(KP866025403, TD, TC);
126 R1[WS(rs, 2)] = Th - Ts;
127 TT = FMA(KP559016994, TO, TN);
128 TP = FNMS(KP559016994, TO, TN);
129 TU = FMA(KP618033988, TQ, TR);
130 TS = FNMS(KP618033988, TR, TQ);
131 }
132 Ty = Tv - Tu;
133 Tw = Tu + Tv;
134 R0[WS(rs, 7)] = FMA(KP1_902113032, TU, TT);
135 R1[WS(rs, 5)] = FNMS(KP1_902113032, TU, TT);
136 R0[WS(rs, 1)] = FMA(KP1_902113032, TS, TP);
137 R0[WS(rs, 4)] = FNMS(KP1_902113032, TS, TP);
138 Tx = FMA(KP250000000, Tw, Tt);
139 R0[WS(rs, 5)] = Tt - Tw;
140 TL = FNMS(KP559016994, Ty, Tx);
141 Tz = FMA(KP559016994, Ty, Tx);
142 TM = FNMS(KP618033988, TE, TJ);
143 TK = FMA(KP618033988, TJ, TE);
144 }
145 }
146 R1[WS(rs, 3)] = FMA(KP1_902113032, TM, TL);
147 R1[WS(rs, 6)] = FNMS(KP1_902113032, TM, TL);
148 R0[WS(rs, 2)] = FMA(KP1_902113032, TK, Tz);
149 R1[0] = FNMS(KP1_902113032, TK, Tz);
150 }
151 }
152 }
153
154 static const kr2c_desc desc = { 15, "r2cb_15", {21, 0, 43, 0}, &GENUS };
155
156 void X(codelet_r2cb_15) (planner *p) {
157 X(kr2c_register) (p, r2cb_15, &desc);
158 }
159
160 #else /* HAVE_FMA */
161
162 /* Generated by: ../../../genfft/gen_r2cb.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 15 -name r2cb_15 -include r2cb.h */
163
164 /*
165 * This function contains 64 FP additions, 31 FP multiplications,
166 * (or, 47 additions, 14 multiplications, 17 fused multiply/add),
167 * 44 stack variables, 7 constants, and 30 memory accesses
168 */
169 #include "r2cb.h"
170
171 static void r2cb_15(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs)
172 {
173 DK(KP1_118033988, +1.118033988749894848204586834365638117720309180);
174 DK(KP1_902113032, +1.902113032590307144232878666758764286811397268);
175 DK(KP1_175570504, +1.175570504584946258337411909278145537195304875);
176 DK(KP500000000, +0.500000000000000000000000000000000000000000000);
177 DK(KP866025403, +0.866025403784438646763723170752936183471402627);
178 DK(KP2_000000000, +2.000000000000000000000000000000000000000000000);
179 DK(KP1_732050807, +1.732050807568877293527446341505872366942805254);
180 {
181 INT i;
182 for (i = v; i > 0; i = i - 1, R0 = R0 + ovs, R1 = R1 + ovs, Cr = Cr + ivs, Ci = Ci + ivs, MAKE_VOLATILE_STRIDE(60, rs), MAKE_VOLATILE_STRIDE(60, csr), MAKE_VOLATILE_STRIDE(60, csi)) {
183 E T3, Tu, Ti, TB, TZ, T10, TE, TG, TJ, Tn, Tv, Ts, Tw, T8, Td;
184 E Te;
185 {
186 E Th, T1, T2, Tf, Tg;
187 Tg = Ci[WS(csi, 5)];
188 Th = KP1_732050807 * Tg;
189 T1 = Cr[0];
190 T2 = Cr[WS(csr, 5)];
191 Tf = T1 - T2;
192 T3 = FMA(KP2_000000000, T2, T1);
193 Tu = Tf - Th;
194 Ti = Tf + Th;
195 }
196 {
197 E T4, TD, T9, TI, T5, T6, T7, Ta, Tb, Tc, Tr, TH, Tm, TC, Tj;
198 E To;
199 T4 = Cr[WS(csr, 3)];
200 TD = Ci[WS(csi, 3)];
201 T9 = Cr[WS(csr, 6)];
202 TI = Ci[WS(csi, 6)];
203 T5 = Cr[WS(csr, 7)];
204 T6 = Cr[WS(csr, 2)];
205 T7 = T5 + T6;
206 Ta = Cr[WS(csr, 4)];
207 Tb = Cr[WS(csr, 1)];
208 Tc = Ta + Tb;
209 {
210 E Tp, Tq, Tk, Tl;
211 Tp = Ci[WS(csi, 4)];
212 Tq = Ci[WS(csi, 1)];
213 Tr = KP866025403 * (Tp + Tq);
214 TH = Tp - Tq;
215 Tk = Ci[WS(csi, 7)];
216 Tl = Ci[WS(csi, 2)];
217 Tm = KP866025403 * (Tk - Tl);
218 TC = Tk + Tl;
219 }
220 TB = KP866025403 * (T5 - T6);
221 TZ = TD - TC;
222 T10 = TI - TH;
223 TE = FMA(KP500000000, TC, TD);
224 TG = KP866025403 * (Ta - Tb);
225 TJ = FMA(KP500000000, TH, TI);
226 Tj = FNMS(KP500000000, T7, T4);
227 Tn = Tj - Tm;
228 Tv = Tj + Tm;
229 To = FNMS(KP500000000, Tc, T9);
230 Ts = To - Tr;
231 Tw = To + Tr;
232 T8 = T4 + T7;
233 Td = T9 + Tc;
234 Te = T8 + Td;
235 }
236 R0[0] = FMA(KP2_000000000, Te, T3);
237 {
238 E T11, T13, TY, T12, TW, TX;
239 T11 = FNMS(KP1_902113032, T10, KP1_175570504 * TZ);
240 T13 = FMA(KP1_902113032, TZ, KP1_175570504 * T10);
241 TW = FNMS(KP500000000, Te, T3);
242 TX = KP1_118033988 * (T8 - Td);
243 TY = TW - TX;
244 T12 = TX + TW;
245 R0[WS(rs, 6)] = TY - T11;
246 R1[WS(rs, 4)] = T12 + T13;
247 R1[WS(rs, 1)] = TY + T11;
248 R0[WS(rs, 3)] = T12 - T13;
249 }
250 {
251 E TP, Tt, TO, TT, TV, TR, TS, TU, TQ;
252 TP = KP1_118033988 * (Tn - Ts);
253 Tt = Tn + Ts;
254 TO = FNMS(KP500000000, Tt, Ti);
255 TR = TE - TB;
256 TS = TJ - TG;
257 TT = FNMS(KP1_902113032, TS, KP1_175570504 * TR);
258 TV = FMA(KP1_902113032, TR, KP1_175570504 * TS);
259 R1[WS(rs, 2)] = FMA(KP2_000000000, Tt, Ti);
260 TU = TP + TO;
261 R1[WS(rs, 5)] = TU - TV;
262 R0[WS(rs, 7)] = TU + TV;
263 TQ = TO - TP;
264 R0[WS(rs, 1)] = TQ - TT;
265 R0[WS(rs, 4)] = TQ + TT;
266 }
267 {
268 E Tz, Tx, Ty, TL, TN, TF, TK, TM, TA;
269 Tz = KP1_118033988 * (Tv - Tw);
270 Tx = Tv + Tw;
271 Ty = FNMS(KP500000000, Tx, Tu);
272 TF = TB + TE;
273 TK = TG + TJ;
274 TL = FNMS(KP1_902113032, TK, KP1_175570504 * TF);
275 TN = FMA(KP1_902113032, TF, KP1_175570504 * TK);
276 R0[WS(rs, 5)] = FMA(KP2_000000000, Tx, Tu);
277 TM = Tz + Ty;
278 R1[0] = TM - TN;
279 R0[WS(rs, 2)] = TM + TN;
280 TA = Ty - Tz;
281 R1[WS(rs, 3)] = TA - TL;
282 R1[WS(rs, 6)] = TA + TL;
283 }
284 }
285 }
286 }
287
288 static const kr2c_desc desc = { 15, "r2cb_15", {47, 14, 17, 0}, &GENUS };
289
290 void X(codelet_r2cb_15) (planner *p) {
291 X(kr2c_register) (p, r2cb_15, &desc);
292 }
293
294 #endif /* HAVE_FMA */