Mercurial > hg > js-dsp-test
comparison fft/fftw/fftw-3.3.4/rdft/scalar/r2cb/r2cb_15.c @ 19:26056e866c29
Add FFTW to comparison table
author | Chris Cannam |
---|---|
date | Tue, 06 Oct 2015 13:08:39 +0100 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
18:8db794ca3e0b | 19:26056e866c29 |
---|---|
1 /* | |
2 * Copyright (c) 2003, 2007-14 Matteo Frigo | |
3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology | |
4 * | |
5 * This program is free software; you can redistribute it and/or modify | |
6 * it under the terms of the GNU General Public License as published by | |
7 * the Free Software Foundation; either version 2 of the License, or | |
8 * (at your option) any later version. | |
9 * | |
10 * This program is distributed in the hope that it will be useful, | |
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
13 * GNU General Public License for more details. | |
14 * | |
15 * You should have received a copy of the GNU General Public License | |
16 * along with this program; if not, write to the Free Software | |
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA | |
18 * | |
19 */ | |
20 | |
21 /* This file was automatically generated --- DO NOT EDIT */ | |
22 /* Generated on Tue Mar 4 13:50:24 EST 2014 */ | |
23 | |
24 #include "codelet-rdft.h" | |
25 | |
26 #ifdef HAVE_FMA | |
27 | |
28 /* Generated by: ../../../genfft/gen_r2cb.native -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -sign 1 -n 15 -name r2cb_15 -include r2cb.h */ | |
29 | |
30 /* | |
31 * This function contains 64 FP additions, 43 FP multiplications, | |
32 * (or, 21 additions, 0 multiplications, 43 fused multiply/add), | |
33 * 54 stack variables, 9 constants, and 30 memory accesses | |
34 */ | |
35 #include "r2cb.h" | |
36 | |
37 static void r2cb_15(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs) | |
38 { | |
39 DK(KP559016994, +0.559016994374947424102293417182819058860154590); | |
40 DK(KP1_902113032, +1.902113032590307144232878666758764286811397268); | |
41 DK(KP250000000, +0.250000000000000000000000000000000000000000000); | |
42 DK(KP866025403, +0.866025403784438646763723170752936183471402627); | |
43 DK(KP1_118033988, +1.118033988749894848204586834365638117720309180); | |
44 DK(KP618033988, +0.618033988749894848204586834365638117720309180); | |
45 DK(KP500000000, +0.500000000000000000000000000000000000000000000); | |
46 DK(KP1_732050807, +1.732050807568877293527446341505872366942805254); | |
47 DK(KP2_000000000, +2.000000000000000000000000000000000000000000000); | |
48 { | |
49 INT i; | |
50 for (i = v; i > 0; i = i - 1, R0 = R0 + ovs, R1 = R1 + ovs, Cr = Cr + ivs, Ci = Ci + ivs, MAKE_VOLATILE_STRIDE(60, rs), MAKE_VOLATILE_STRIDE(60, csr), MAKE_VOLATILE_STRIDE(60, csi)) { | |
51 E TL, Tz, TM, TK; | |
52 { | |
53 E T3, Th, Tt, TD, TI, TH, TY, TC, TZ, Tu, Tm, Tv, Tr, Te, TW; | |
54 E Tg, T1, T2, T12, T10, TV; | |
55 Tg = Ci[WS(csi, 5)]; | |
56 T1 = Cr[0]; | |
57 T2 = Cr[WS(csr, 5)]; | |
58 { | |
59 E T4, TA, T9, TF, T7, Tj, Tc, Tk, TG, Tq, Tf, Tl, TB; | |
60 T4 = Cr[WS(csr, 3)]; | |
61 TA = Ci[WS(csi, 3)]; | |
62 T9 = Cr[WS(csr, 6)]; | |
63 Tf = T1 - T2; | |
64 T3 = FMA(KP2_000000000, T2, T1); | |
65 TF = Ci[WS(csi, 6)]; | |
66 { | |
67 E Ta, Tb, T5, T6, To, Tp; | |
68 T5 = Cr[WS(csr, 7)]; | |
69 T6 = Cr[WS(csr, 2)]; | |
70 Th = FMA(KP1_732050807, Tg, Tf); | |
71 Tt = FNMS(KP1_732050807, Tg, Tf); | |
72 Ta = Cr[WS(csr, 4)]; | |
73 TD = T5 - T6; | |
74 T7 = T5 + T6; | |
75 Tb = Cr[WS(csr, 1)]; | |
76 To = Ci[WS(csi, 4)]; | |
77 Tp = Ci[WS(csi, 1)]; | |
78 Tj = Ci[WS(csi, 7)]; | |
79 Tc = Ta + Tb; | |
80 TI = Ta - Tb; | |
81 Tk = Ci[WS(csi, 2)]; | |
82 TG = Tp - To; | |
83 Tq = To + Tp; | |
84 } | |
85 Tl = Tj - Tk; | |
86 TB = Tj + Tk; | |
87 TH = FNMS(KP500000000, TG, TF); | |
88 TY = TG + TF; | |
89 TC = FMA(KP500000000, TB, TA); | |
90 TZ = TA - TB; | |
91 { | |
92 E Ti, T8, Td, Tn; | |
93 Ti = FNMS(KP2_000000000, T4, T7); | |
94 T8 = T4 + T7; | |
95 Td = T9 + Tc; | |
96 Tn = FNMS(KP2_000000000, T9, Tc); | |
97 Tu = FNMS(KP1_732050807, Tl, Ti); | |
98 Tm = FMA(KP1_732050807, Tl, Ti); | |
99 Tv = FNMS(KP1_732050807, Tq, Tn); | |
100 Tr = FMA(KP1_732050807, Tq, Tn); | |
101 Te = T8 + Td; | |
102 TW = T8 - Td; | |
103 } | |
104 } | |
105 T12 = FMA(KP618033988, TY, TZ); | |
106 T10 = FNMS(KP618033988, TZ, TY); | |
107 TV = FNMS(KP500000000, Te, T3); | |
108 R0[0] = FMA(KP2_000000000, Te, T3); | |
109 { | |
110 E TJ, TE, TT, TP, TU, TS, Ty, Tw, Tx; | |
111 { | |
112 E TO, Ts, TQ, TN, TR, T11, TX; | |
113 TO = Tr - Tm; | |
114 Ts = Tm + Tr; | |
115 T11 = FMA(KP1_118033988, TW, TV); | |
116 TX = FNMS(KP1_118033988, TW, TV); | |
117 TQ = FNMS(KP866025403, TI, TH); | |
118 TJ = FMA(KP866025403, TI, TH); | |
119 TN = FMA(KP250000000, Ts, Th); | |
120 R0[WS(rs, 3)] = FNMS(KP1_902113032, T12, T11); | |
121 R1[WS(rs, 4)] = FMA(KP1_902113032, T12, T11); | |
122 R0[WS(rs, 6)] = FMA(KP1_902113032, T10, TX); | |
123 R1[WS(rs, 1)] = FNMS(KP1_902113032, T10, TX); | |
124 TR = FNMS(KP866025403, TD, TC); | |
125 TE = FMA(KP866025403, TD, TC); | |
126 R1[WS(rs, 2)] = Th - Ts; | |
127 TT = FMA(KP559016994, TO, TN); | |
128 TP = FNMS(KP559016994, TO, TN); | |
129 TU = FMA(KP618033988, TQ, TR); | |
130 TS = FNMS(KP618033988, TR, TQ); | |
131 } | |
132 Ty = Tv - Tu; | |
133 Tw = Tu + Tv; | |
134 R0[WS(rs, 7)] = FMA(KP1_902113032, TU, TT); | |
135 R1[WS(rs, 5)] = FNMS(KP1_902113032, TU, TT); | |
136 R0[WS(rs, 1)] = FMA(KP1_902113032, TS, TP); | |
137 R0[WS(rs, 4)] = FNMS(KP1_902113032, TS, TP); | |
138 Tx = FMA(KP250000000, Tw, Tt); | |
139 R0[WS(rs, 5)] = Tt - Tw; | |
140 TL = FNMS(KP559016994, Ty, Tx); | |
141 Tz = FMA(KP559016994, Ty, Tx); | |
142 TM = FNMS(KP618033988, TE, TJ); | |
143 TK = FMA(KP618033988, TJ, TE); | |
144 } | |
145 } | |
146 R1[WS(rs, 3)] = FMA(KP1_902113032, TM, TL); | |
147 R1[WS(rs, 6)] = FNMS(KP1_902113032, TM, TL); | |
148 R0[WS(rs, 2)] = FMA(KP1_902113032, TK, Tz); | |
149 R1[0] = FNMS(KP1_902113032, TK, Tz); | |
150 } | |
151 } | |
152 } | |
153 | |
154 static const kr2c_desc desc = { 15, "r2cb_15", {21, 0, 43, 0}, &GENUS }; | |
155 | |
156 void X(codelet_r2cb_15) (planner *p) { | |
157 X(kr2c_register) (p, r2cb_15, &desc); | |
158 } | |
159 | |
160 #else /* HAVE_FMA */ | |
161 | |
162 /* Generated by: ../../../genfft/gen_r2cb.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 15 -name r2cb_15 -include r2cb.h */ | |
163 | |
164 /* | |
165 * This function contains 64 FP additions, 31 FP multiplications, | |
166 * (or, 47 additions, 14 multiplications, 17 fused multiply/add), | |
167 * 44 stack variables, 7 constants, and 30 memory accesses | |
168 */ | |
169 #include "r2cb.h" | |
170 | |
171 static void r2cb_15(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs) | |
172 { | |
173 DK(KP1_118033988, +1.118033988749894848204586834365638117720309180); | |
174 DK(KP1_902113032, +1.902113032590307144232878666758764286811397268); | |
175 DK(KP1_175570504, +1.175570504584946258337411909278145537195304875); | |
176 DK(KP500000000, +0.500000000000000000000000000000000000000000000); | |
177 DK(KP866025403, +0.866025403784438646763723170752936183471402627); | |
178 DK(KP2_000000000, +2.000000000000000000000000000000000000000000000); | |
179 DK(KP1_732050807, +1.732050807568877293527446341505872366942805254); | |
180 { | |
181 INT i; | |
182 for (i = v; i > 0; i = i - 1, R0 = R0 + ovs, R1 = R1 + ovs, Cr = Cr + ivs, Ci = Ci + ivs, MAKE_VOLATILE_STRIDE(60, rs), MAKE_VOLATILE_STRIDE(60, csr), MAKE_VOLATILE_STRIDE(60, csi)) { | |
183 E T3, Tu, Ti, TB, TZ, T10, TE, TG, TJ, Tn, Tv, Ts, Tw, T8, Td; | |
184 E Te; | |
185 { | |
186 E Th, T1, T2, Tf, Tg; | |
187 Tg = Ci[WS(csi, 5)]; | |
188 Th = KP1_732050807 * Tg; | |
189 T1 = Cr[0]; | |
190 T2 = Cr[WS(csr, 5)]; | |
191 Tf = T1 - T2; | |
192 T3 = FMA(KP2_000000000, T2, T1); | |
193 Tu = Tf - Th; | |
194 Ti = Tf + Th; | |
195 } | |
196 { | |
197 E T4, TD, T9, TI, T5, T6, T7, Ta, Tb, Tc, Tr, TH, Tm, TC, Tj; | |
198 E To; | |
199 T4 = Cr[WS(csr, 3)]; | |
200 TD = Ci[WS(csi, 3)]; | |
201 T9 = Cr[WS(csr, 6)]; | |
202 TI = Ci[WS(csi, 6)]; | |
203 T5 = Cr[WS(csr, 7)]; | |
204 T6 = Cr[WS(csr, 2)]; | |
205 T7 = T5 + T6; | |
206 Ta = Cr[WS(csr, 4)]; | |
207 Tb = Cr[WS(csr, 1)]; | |
208 Tc = Ta + Tb; | |
209 { | |
210 E Tp, Tq, Tk, Tl; | |
211 Tp = Ci[WS(csi, 4)]; | |
212 Tq = Ci[WS(csi, 1)]; | |
213 Tr = KP866025403 * (Tp + Tq); | |
214 TH = Tp - Tq; | |
215 Tk = Ci[WS(csi, 7)]; | |
216 Tl = Ci[WS(csi, 2)]; | |
217 Tm = KP866025403 * (Tk - Tl); | |
218 TC = Tk + Tl; | |
219 } | |
220 TB = KP866025403 * (T5 - T6); | |
221 TZ = TD - TC; | |
222 T10 = TI - TH; | |
223 TE = FMA(KP500000000, TC, TD); | |
224 TG = KP866025403 * (Ta - Tb); | |
225 TJ = FMA(KP500000000, TH, TI); | |
226 Tj = FNMS(KP500000000, T7, T4); | |
227 Tn = Tj - Tm; | |
228 Tv = Tj + Tm; | |
229 To = FNMS(KP500000000, Tc, T9); | |
230 Ts = To - Tr; | |
231 Tw = To + Tr; | |
232 T8 = T4 + T7; | |
233 Td = T9 + Tc; | |
234 Te = T8 + Td; | |
235 } | |
236 R0[0] = FMA(KP2_000000000, Te, T3); | |
237 { | |
238 E T11, T13, TY, T12, TW, TX; | |
239 T11 = FNMS(KP1_902113032, T10, KP1_175570504 * TZ); | |
240 T13 = FMA(KP1_902113032, TZ, KP1_175570504 * T10); | |
241 TW = FNMS(KP500000000, Te, T3); | |
242 TX = KP1_118033988 * (T8 - Td); | |
243 TY = TW - TX; | |
244 T12 = TX + TW; | |
245 R0[WS(rs, 6)] = TY - T11; | |
246 R1[WS(rs, 4)] = T12 + T13; | |
247 R1[WS(rs, 1)] = TY + T11; | |
248 R0[WS(rs, 3)] = T12 - T13; | |
249 } | |
250 { | |
251 E TP, Tt, TO, TT, TV, TR, TS, TU, TQ; | |
252 TP = KP1_118033988 * (Tn - Ts); | |
253 Tt = Tn + Ts; | |
254 TO = FNMS(KP500000000, Tt, Ti); | |
255 TR = TE - TB; | |
256 TS = TJ - TG; | |
257 TT = FNMS(KP1_902113032, TS, KP1_175570504 * TR); | |
258 TV = FMA(KP1_902113032, TR, KP1_175570504 * TS); | |
259 R1[WS(rs, 2)] = FMA(KP2_000000000, Tt, Ti); | |
260 TU = TP + TO; | |
261 R1[WS(rs, 5)] = TU - TV; | |
262 R0[WS(rs, 7)] = TU + TV; | |
263 TQ = TO - TP; | |
264 R0[WS(rs, 1)] = TQ - TT; | |
265 R0[WS(rs, 4)] = TQ + TT; | |
266 } | |
267 { | |
268 E Tz, Tx, Ty, TL, TN, TF, TK, TM, TA; | |
269 Tz = KP1_118033988 * (Tv - Tw); | |
270 Tx = Tv + Tw; | |
271 Ty = FNMS(KP500000000, Tx, Tu); | |
272 TF = TB + TE; | |
273 TK = TG + TJ; | |
274 TL = FNMS(KP1_902113032, TK, KP1_175570504 * TF); | |
275 TN = FMA(KP1_902113032, TF, KP1_175570504 * TK); | |
276 R0[WS(rs, 5)] = FMA(KP2_000000000, Tx, Tu); | |
277 TM = Tz + Ty; | |
278 R1[0] = TM - TN; | |
279 R0[WS(rs, 2)] = TM + TN; | |
280 TA = Ty - Tz; | |
281 R1[WS(rs, 3)] = TA - TL; | |
282 R1[WS(rs, 6)] = TA + TL; | |
283 } | |
284 } | |
285 } | |
286 } | |
287 | |
288 static const kr2c_desc desc = { 15, "r2cb_15", {47, 14, 17, 0}, &GENUS }; | |
289 | |
290 void X(codelet_r2cb_15) (planner *p) { | |
291 X(kr2c_register) (p, r2cb_15, &desc); | |
292 } | |
293 | |
294 #endif /* HAVE_FMA */ |