Mercurial > hg > js-dsp-test
comparison fft/fftw/fftw-3.3.4/rdft/scalar/r2cb/r2cb_13.c @ 19:26056e866c29
Add FFTW to comparison table
author | Chris Cannam |
---|---|
date | Tue, 06 Oct 2015 13:08:39 +0100 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
18:8db794ca3e0b | 19:26056e866c29 |
---|---|
1 /* | |
2 * Copyright (c) 2003, 2007-14 Matteo Frigo | |
3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology | |
4 * | |
5 * This program is free software; you can redistribute it and/or modify | |
6 * it under the terms of the GNU General Public License as published by | |
7 * the Free Software Foundation; either version 2 of the License, or | |
8 * (at your option) any later version. | |
9 * | |
10 * This program is distributed in the hope that it will be useful, | |
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
13 * GNU General Public License for more details. | |
14 * | |
15 * You should have received a copy of the GNU General Public License | |
16 * along with this program; if not, write to the Free Software | |
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA | |
18 * | |
19 */ | |
20 | |
21 /* This file was automatically generated --- DO NOT EDIT */ | |
22 /* Generated on Tue Mar 4 13:50:24 EST 2014 */ | |
23 | |
24 #include "codelet-rdft.h" | |
25 | |
26 #ifdef HAVE_FMA | |
27 | |
28 /* Generated by: ../../../genfft/gen_r2cb.native -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -sign 1 -n 13 -name r2cb_13 -include r2cb.h */ | |
29 | |
30 /* | |
31 * This function contains 76 FP additions, 58 FP multiplications, | |
32 * (or, 18 additions, 0 multiplications, 58 fused multiply/add), | |
33 * 76 stack variables, 26 constants, and 26 memory accesses | |
34 */ | |
35 #include "r2cb.h" | |
36 | |
37 static void r2cb_13(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs) | |
38 { | |
39 DK(KP968287244, +0.968287244361984016049539446938120421179794516); | |
40 DK(KP875502302, +0.875502302409147941146295545768755143177842006); | |
41 DK(KP1_150281458, +1.150281458948006242736771094910906776922003215); | |
42 DK(KP1_040057143, +1.040057143777729238234261000998465604986476278); | |
43 DK(KP1_200954543, +1.200954543865330565851538506669526018704025697); | |
44 DK(KP769338817, +0.769338817572980603471413688209101117038278899); | |
45 DK(KP600925212, +0.600925212577331548853203544578415991041882762); | |
46 DK(KP1_033041561, +1.033041561246979445681802577138034271410067244); | |
47 DK(KP1_007074065, +1.007074065727533254493747707736933954186697125); | |
48 DK(KP503537032, +0.503537032863766627246873853868466977093348562); | |
49 DK(KP581704778, +0.581704778510515730456870384989698884939833902); | |
50 DK(KP859542535, +0.859542535098774820163672132761689612766401925); | |
51 DK(KP166666666, +0.166666666666666666666666666666666666666666667); | |
52 DK(KP2_000000000, +2.000000000000000000000000000000000000000000000); | |
53 DK(KP301479260, +0.301479260047709873958013540496673347309208464); | |
54 DK(KP226109445, +0.226109445035782405468510155372505010481906348); | |
55 DK(KP686558370, +0.686558370781754340655719594850823015421401653); | |
56 DK(KP514918778, +0.514918778086315755491789696138117261566051239); | |
57 DK(KP957805992, +0.957805992594665126462521754605754580515587217); | |
58 DK(KP522026385, +0.522026385161275033714027226654165028300441940); | |
59 DK(KP853480001, +0.853480001859823990758994934970528322872359049); | |
60 DK(KP038632954, +0.038632954644348171955506895830342264440241080); | |
61 DK(KP612264650, +0.612264650376756543746494474777125408779395514); | |
62 DK(KP302775637, +0.302775637731994646559610633735247973125648287); | |
63 DK(KP866025403, +0.866025403784438646763723170752936183471402627); | |
64 DK(KP500000000, +0.500000000000000000000000000000000000000000000); | |
65 { | |
66 INT i; | |
67 for (i = v; i > 0; i = i - 1, R0 = R0 + ovs, R1 = R1 + ovs, Cr = Cr + ivs, Ci = Ci + ivs, MAKE_VOLATILE_STRIDE(52, rs), MAKE_VOLATILE_STRIDE(52, csr), MAKE_VOLATILE_STRIDE(52, csi)) { | |
68 E TW, T14, TS, TO, T18, T1e, TY, TX, TQ, Tq, TP, Tl, T1d, Tr; | |
69 { | |
70 E T1, TN, T16, TJ, TV, TG, TU, Tf, T2, T3, Tb, Ti, T4; | |
71 { | |
72 E Ts, TB, Tx, Ty, Tv, TE, Tt, Tu, Tz, TC; | |
73 Ts = Ci[WS(csi, 5)]; | |
74 Tt = Ci[WS(csi, 2)]; | |
75 Tu = Ci[WS(csi, 6)]; | |
76 TB = Ci[WS(csi, 1)]; | |
77 Tx = Ci[WS(csi, 3)]; | |
78 Ty = Ci[WS(csi, 4)]; | |
79 Tv = Tt + Tu; | |
80 TE = Tu - Tt; | |
81 T1 = Cr[0]; | |
82 Tz = Tx + Ty; | |
83 TC = Tx - Ty; | |
84 { | |
85 E TL, Tw, T7, Ta; | |
86 TL = Ts + Tv; | |
87 Tw = FNMS(KP500000000, Tv, Ts); | |
88 T7 = Cr[WS(csr, 5)]; | |
89 { | |
90 E TD, TM, TA, TH; | |
91 TD = FNMS(KP500000000, TC, TB); | |
92 TM = TB + TC; | |
93 TA = FMA(KP866025403, Tz, Tw); | |
94 TH = FNMS(KP866025403, Tz, Tw); | |
95 TN = FMA(KP302775637, TM, TL); | |
96 T16 = FNMS(KP302775637, TL, TM); | |
97 { | |
98 E TF, TI, T8, T9; | |
99 TF = FMA(KP866025403, TE, TD); | |
100 TI = FNMS(KP866025403, TE, TD); | |
101 T8 = Cr[WS(csr, 2)]; | |
102 T9 = Cr[WS(csr, 6)]; | |
103 TJ = FNMS(KP612264650, TI, TH); | |
104 TV = FMA(KP612264650, TH, TI); | |
105 TG = FNMS(KP038632954, TF, TA); | |
106 TU = FMA(KP038632954, TA, TF); | |
107 Tf = T8 - T9; | |
108 Ta = T8 + T9; | |
109 } | |
110 } | |
111 T2 = Cr[WS(csr, 1)]; | |
112 T3 = Cr[WS(csr, 3)]; | |
113 Tb = T7 + Ta; | |
114 Ti = FMS(KP500000000, Ta, T7); | |
115 T4 = Cr[WS(csr, 4)]; | |
116 } | |
117 } | |
118 { | |
119 E T17, TK, T5, Te, Tk, Td; | |
120 TW = FMA(KP853480001, TV, TU); | |
121 T17 = FNMS(KP853480001, TV, TU); | |
122 TK = FNMS(KP853480001, TJ, TG); | |
123 T14 = FMA(KP853480001, TJ, TG); | |
124 T5 = T3 + T4; | |
125 Te = T3 - T4; | |
126 { | |
127 E Tn, Tg, Th, T6; | |
128 TS = FNMS(KP522026385, TK, TN); | |
129 TO = FMA(KP957805992, TN, TK); | |
130 Tn = Te - Tf; | |
131 Tg = Te + Tf; | |
132 Th = FNMS(KP500000000, T5, T2); | |
133 T6 = T2 + T5; | |
134 T18 = FNMS(KP522026385, T17, T16); | |
135 T1e = FMA(KP957805992, T16, T17); | |
136 { | |
137 E Tm, Tj, Tc, Tp, To; | |
138 Tm = Th + Ti; | |
139 Tj = Th - Ti; | |
140 Tc = T6 + Tb; | |
141 Tp = T6 - Tb; | |
142 To = FNMS(KP514918778, Tn, Tm); | |
143 TY = FMA(KP686558370, Tm, Tn); | |
144 TX = FNMS(KP226109445, Tg, Tj); | |
145 Tk = FMA(KP301479260, Tj, Tg); | |
146 R0[0] = FMA(KP2_000000000, Tc, T1); | |
147 Td = FNMS(KP166666666, Tc, T1); | |
148 TQ = FNMS(KP859542535, To, Tp); | |
149 Tq = FMA(KP581704778, Tp, To); | |
150 } | |
151 } | |
152 TP = FNMS(KP503537032, Tk, Td); | |
153 Tl = FMA(KP1_007074065, Tk, Td); | |
154 } | |
155 } | |
156 T1d = FNMS(KP1_033041561, Tq, Tl); | |
157 Tr = FMA(KP1_033041561, Tq, Tl); | |
158 { | |
159 E T13, TR, T19, TZ; | |
160 T13 = FNMS(KP600925212, TQ, TP); | |
161 TR = FMA(KP600925212, TQ, TP); | |
162 T19 = FMA(KP769338817, TY, TX); | |
163 TZ = FNMS(KP769338817, TY, TX); | |
164 R0[WS(rs, 4)] = FMA(KP1_200954543, T1e, T1d); | |
165 R1[WS(rs, 2)] = FNMS(KP1_200954543, T1e, T1d); | |
166 R0[WS(rs, 6)] = FMA(KP1_200954543, TO, Tr); | |
167 R1[0] = FNMS(KP1_200954543, TO, Tr); | |
168 { | |
169 E T1b, T15, T11, TT; | |
170 T1b = FNMS(KP1_040057143, T14, T13); | |
171 T15 = FMA(KP1_040057143, T14, T13); | |
172 T11 = FMA(KP1_150281458, TS, TR); | |
173 TT = FNMS(KP1_150281458, TS, TR); | |
174 { | |
175 E T1c, T1a, T12, T10; | |
176 T1c = FMA(KP875502302, T19, T18); | |
177 T1a = FNMS(KP875502302, T19, T18); | |
178 T12 = FMA(KP968287244, TZ, TW); | |
179 T10 = FNMS(KP968287244, TZ, TW); | |
180 R1[WS(rs, 5)] = FMA(KP1_150281458, T1c, T1b); | |
181 R0[WS(rs, 3)] = FNMS(KP1_150281458, T1c, T1b); | |
182 R1[WS(rs, 3)] = FMA(KP1_150281458, T1a, T15); | |
183 R0[WS(rs, 1)] = FNMS(KP1_150281458, T1a, T15); | |
184 R0[WS(rs, 5)] = FMA(KP1_040057143, T12, T11); | |
185 R0[WS(rs, 2)] = FNMS(KP1_040057143, T12, T11); | |
186 R1[WS(rs, 4)] = FMA(KP1_040057143, T10, TT); | |
187 R1[WS(rs, 1)] = FNMS(KP1_040057143, T10, TT); | |
188 } | |
189 } | |
190 } | |
191 } | |
192 } | |
193 } | |
194 | |
195 static const kr2c_desc desc = { 13, "r2cb_13", {18, 0, 58, 0}, &GENUS }; | |
196 | |
197 void X(codelet_r2cb_13) (planner *p) { | |
198 X(kr2c_register) (p, r2cb_13, &desc); | |
199 } | |
200 | |
201 #else /* HAVE_FMA */ | |
202 | |
203 /* Generated by: ../../../genfft/gen_r2cb.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 13 -name r2cb_13 -include r2cb.h */ | |
204 | |
205 /* | |
206 * This function contains 76 FP additions, 35 FP multiplications, | |
207 * (or, 56 additions, 15 multiplications, 20 fused multiply/add), | |
208 * 56 stack variables, 19 constants, and 26 memory accesses | |
209 */ | |
210 #include "r2cb.h" | |
211 | |
212 static void r2cb_13(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs) | |
213 { | |
214 DK(KP1_007074065, +1.007074065727533254493747707736933954186697125); | |
215 DK(KP227708958, +0.227708958111581597949308691735310621069285120); | |
216 DK(KP531932498, +0.531932498429674575175042127684371897596660533); | |
217 DK(KP774781170, +0.774781170935234584261351932853525703557550433); | |
218 DK(KP265966249, +0.265966249214837287587521063842185948798330267); | |
219 DK(KP516520780, +0.516520780623489722840901288569017135705033622); | |
220 DK(KP151805972, +0.151805972074387731966205794490207080712856746); | |
221 DK(KP503537032, +0.503537032863766627246873853868466977093348562); | |
222 DK(KP166666666, +0.166666666666666666666666666666666666666666667); | |
223 DK(KP600925212, +0.600925212577331548853203544578415991041882762); | |
224 DK(KP500000000, +0.500000000000000000000000000000000000000000000); | |
225 DK(KP256247671, +0.256247671582936600958684654061725059144125175); | |
226 DK(KP156891391, +0.156891391051584611046832726756003269660212636); | |
227 DK(KP348277202, +0.348277202304271810011321589858529485233929352); | |
228 DK(KP1_150281458, +1.150281458948006242736771094910906776922003215); | |
229 DK(KP300238635, +0.300238635966332641462884626667381504676006424); | |
230 DK(KP011599105, +0.011599105605768290721655456654083252189827041); | |
231 DK(KP1_732050807, +1.732050807568877293527446341505872366942805254); | |
232 DK(KP2_000000000, +2.000000000000000000000000000000000000000000000); | |
233 { | |
234 INT i; | |
235 for (i = v; i > 0; i = i - 1, R0 = R0 + ovs, R1 = R1 + ovs, Cr = Cr + ivs, Ci = Ci + ivs, MAKE_VOLATILE_STRIDE(52, rs), MAKE_VOLATILE_STRIDE(52, csr), MAKE_VOLATILE_STRIDE(52, csi)) { | |
236 E TG, TS, TR, T15, TJ, TT, T1, Tm, Tc, Td, Tg, Tj, Tk, Tn, To; | |
237 E Tp; | |
238 { | |
239 E Ts, Tv, Tw, TE, TC, TB, Tz, TD, TA, TF; | |
240 { | |
241 E Tt, Tu, Tx, Ty; | |
242 Ts = Ci[WS(csi, 1)]; | |
243 Tt = Ci[WS(csi, 3)]; | |
244 Tu = Ci[WS(csi, 4)]; | |
245 Tv = Tt - Tu; | |
246 Tw = FMS(KP2_000000000, Ts, Tv); | |
247 TE = KP1_732050807 * (Tt + Tu); | |
248 TC = Ci[WS(csi, 5)]; | |
249 Tx = Ci[WS(csi, 6)]; | |
250 Ty = Ci[WS(csi, 2)]; | |
251 TB = Tx + Ty; | |
252 Tz = KP1_732050807 * (Tx - Ty); | |
253 TD = FNMS(KP2_000000000, TC, TB); | |
254 } | |
255 TA = Tw + Tz; | |
256 TF = TD - TE; | |
257 TG = FMA(KP011599105, TA, KP300238635 * TF); | |
258 TS = FNMS(KP011599105, TF, KP300238635 * TA); | |
259 { | |
260 E TP, TQ, TH, TI; | |
261 TP = Ts + Tv; | |
262 TQ = TB + TC; | |
263 TR = FNMS(KP348277202, TQ, KP1_150281458 * TP); | |
264 T15 = FMA(KP348277202, TP, KP1_150281458 * TQ); | |
265 TH = Tw - Tz; | |
266 TI = TE + TD; | |
267 TJ = FMA(KP156891391, TH, KP256247671 * TI); | |
268 TT = FNMS(KP256247671, TH, KP156891391 * TI); | |
269 } | |
270 } | |
271 { | |
272 E Tb, Ti, Tf, T6, Th, Te; | |
273 T1 = Cr[0]; | |
274 { | |
275 E T7, T8, T9, Ta; | |
276 T7 = Cr[WS(csr, 5)]; | |
277 T8 = Cr[WS(csr, 2)]; | |
278 T9 = Cr[WS(csr, 6)]; | |
279 Ta = T8 + T9; | |
280 Tb = T7 + Ta; | |
281 Ti = FNMS(KP500000000, Ta, T7); | |
282 Tf = T8 - T9; | |
283 } | |
284 { | |
285 E T2, T3, T4, T5; | |
286 T2 = Cr[WS(csr, 1)]; | |
287 T3 = Cr[WS(csr, 3)]; | |
288 T4 = Cr[WS(csr, 4)]; | |
289 T5 = T3 + T4; | |
290 T6 = T2 + T5; | |
291 Th = FNMS(KP500000000, T5, T2); | |
292 Te = T3 - T4; | |
293 } | |
294 Tm = KP600925212 * (T6 - Tb); | |
295 Tc = T6 + Tb; | |
296 Td = FNMS(KP166666666, Tc, T1); | |
297 Tg = Te + Tf; | |
298 Tj = Th + Ti; | |
299 Tk = FMA(KP503537032, Tg, KP151805972 * Tj); | |
300 Tn = Th - Ti; | |
301 To = Te - Tf; | |
302 Tp = FNMS(KP265966249, To, KP516520780 * Tn); | |
303 } | |
304 R0[0] = FMA(KP2_000000000, Tc, T1); | |
305 { | |
306 E TK, T1b, TV, T12, T16, T18, TO, T1a, Tr, T17, T11, T13; | |
307 { | |
308 E TU, T14, TM, TN; | |
309 TK = KP1_732050807 * (TG + TJ); | |
310 T1b = KP1_732050807 * (TS - TT); | |
311 TU = TS + TT; | |
312 TV = TR - TU; | |
313 T12 = FMA(KP2_000000000, TU, TR); | |
314 T14 = TG - TJ; | |
315 T16 = FMS(KP2_000000000, T14, T15); | |
316 T18 = T14 + T15; | |
317 TM = FMA(KP774781170, To, KP531932498 * Tn); | |
318 TN = FNMS(KP1_007074065, Tj, KP227708958 * Tg); | |
319 TO = TM - TN; | |
320 T1a = TM + TN; | |
321 { | |
322 E Tl, Tq, TZ, T10; | |
323 Tl = Td - Tk; | |
324 Tq = Tm - Tp; | |
325 Tr = Tl - Tq; | |
326 T17 = Tq + Tl; | |
327 TZ = FMA(KP2_000000000, Tk, Td); | |
328 T10 = FMA(KP2_000000000, Tp, Tm); | |
329 T11 = TZ - T10; | |
330 T13 = T10 + TZ; | |
331 } | |
332 } | |
333 R1[WS(rs, 2)] = T11 - T12; | |
334 R0[WS(rs, 6)] = T13 - T16; | |
335 R1[0] = T13 + T16; | |
336 R0[WS(rs, 4)] = T11 + T12; | |
337 { | |
338 E TL, TW, T19, T1c; | |
339 TL = Tr - TK; | |
340 TW = TO - TV; | |
341 R1[WS(rs, 3)] = TL - TW; | |
342 R0[WS(rs, 1)] = TL + TW; | |
343 T19 = T17 - T18; | |
344 T1c = T1a + T1b; | |
345 R1[WS(rs, 1)] = T19 - T1c; | |
346 R1[WS(rs, 4)] = T1c + T19; | |
347 } | |
348 { | |
349 E T1d, T1e, TX, TY; | |
350 T1d = T1a - T1b; | |
351 T1e = T17 + T18; | |
352 R0[WS(rs, 2)] = T1d + T1e; | |
353 R0[WS(rs, 5)] = T1e - T1d; | |
354 TX = Tr + TK; | |
355 TY = TO + TV; | |
356 R0[WS(rs, 3)] = TX - TY; | |
357 R1[WS(rs, 5)] = TX + TY; | |
358 } | |
359 } | |
360 } | |
361 } | |
362 } | |
363 | |
364 static const kr2c_desc desc = { 13, "r2cb_13", {56, 15, 20, 0}, &GENUS }; | |
365 | |
366 void X(codelet_r2cb_13) (planner *p) { | |
367 X(kr2c_register) (p, r2cb_13, &desc); | |
368 } | |
369 | |
370 #endif /* HAVE_FMA */ |