comparison fft/fftw/fftw-3.3.4/rdft/scalar/r2cb/r2cb_13.c @ 19:26056e866c29

Add FFTW to comparison table
author Chris Cannam
date Tue, 06 Oct 2015 13:08:39 +0100
parents
children
comparison
equal deleted inserted replaced
18:8db794ca3e0b 19:26056e866c29
1 /*
2 * Copyright (c) 2003, 2007-14 Matteo Frigo
3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
18 *
19 */
20
21 /* This file was automatically generated --- DO NOT EDIT */
22 /* Generated on Tue Mar 4 13:50:24 EST 2014 */
23
24 #include "codelet-rdft.h"
25
26 #ifdef HAVE_FMA
27
28 /* Generated by: ../../../genfft/gen_r2cb.native -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -sign 1 -n 13 -name r2cb_13 -include r2cb.h */
29
30 /*
31 * This function contains 76 FP additions, 58 FP multiplications,
32 * (or, 18 additions, 0 multiplications, 58 fused multiply/add),
33 * 76 stack variables, 26 constants, and 26 memory accesses
34 */
35 #include "r2cb.h"
36
37 static void r2cb_13(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs)
38 {
39 DK(KP968287244, +0.968287244361984016049539446938120421179794516);
40 DK(KP875502302, +0.875502302409147941146295545768755143177842006);
41 DK(KP1_150281458, +1.150281458948006242736771094910906776922003215);
42 DK(KP1_040057143, +1.040057143777729238234261000998465604986476278);
43 DK(KP1_200954543, +1.200954543865330565851538506669526018704025697);
44 DK(KP769338817, +0.769338817572980603471413688209101117038278899);
45 DK(KP600925212, +0.600925212577331548853203544578415991041882762);
46 DK(KP1_033041561, +1.033041561246979445681802577138034271410067244);
47 DK(KP1_007074065, +1.007074065727533254493747707736933954186697125);
48 DK(KP503537032, +0.503537032863766627246873853868466977093348562);
49 DK(KP581704778, +0.581704778510515730456870384989698884939833902);
50 DK(KP859542535, +0.859542535098774820163672132761689612766401925);
51 DK(KP166666666, +0.166666666666666666666666666666666666666666667);
52 DK(KP2_000000000, +2.000000000000000000000000000000000000000000000);
53 DK(KP301479260, +0.301479260047709873958013540496673347309208464);
54 DK(KP226109445, +0.226109445035782405468510155372505010481906348);
55 DK(KP686558370, +0.686558370781754340655719594850823015421401653);
56 DK(KP514918778, +0.514918778086315755491789696138117261566051239);
57 DK(KP957805992, +0.957805992594665126462521754605754580515587217);
58 DK(KP522026385, +0.522026385161275033714027226654165028300441940);
59 DK(KP853480001, +0.853480001859823990758994934970528322872359049);
60 DK(KP038632954, +0.038632954644348171955506895830342264440241080);
61 DK(KP612264650, +0.612264650376756543746494474777125408779395514);
62 DK(KP302775637, +0.302775637731994646559610633735247973125648287);
63 DK(KP866025403, +0.866025403784438646763723170752936183471402627);
64 DK(KP500000000, +0.500000000000000000000000000000000000000000000);
65 {
66 INT i;
67 for (i = v; i > 0; i = i - 1, R0 = R0 + ovs, R1 = R1 + ovs, Cr = Cr + ivs, Ci = Ci + ivs, MAKE_VOLATILE_STRIDE(52, rs), MAKE_VOLATILE_STRIDE(52, csr), MAKE_VOLATILE_STRIDE(52, csi)) {
68 E TW, T14, TS, TO, T18, T1e, TY, TX, TQ, Tq, TP, Tl, T1d, Tr;
69 {
70 E T1, TN, T16, TJ, TV, TG, TU, Tf, T2, T3, Tb, Ti, T4;
71 {
72 E Ts, TB, Tx, Ty, Tv, TE, Tt, Tu, Tz, TC;
73 Ts = Ci[WS(csi, 5)];
74 Tt = Ci[WS(csi, 2)];
75 Tu = Ci[WS(csi, 6)];
76 TB = Ci[WS(csi, 1)];
77 Tx = Ci[WS(csi, 3)];
78 Ty = Ci[WS(csi, 4)];
79 Tv = Tt + Tu;
80 TE = Tu - Tt;
81 T1 = Cr[0];
82 Tz = Tx + Ty;
83 TC = Tx - Ty;
84 {
85 E TL, Tw, T7, Ta;
86 TL = Ts + Tv;
87 Tw = FNMS(KP500000000, Tv, Ts);
88 T7 = Cr[WS(csr, 5)];
89 {
90 E TD, TM, TA, TH;
91 TD = FNMS(KP500000000, TC, TB);
92 TM = TB + TC;
93 TA = FMA(KP866025403, Tz, Tw);
94 TH = FNMS(KP866025403, Tz, Tw);
95 TN = FMA(KP302775637, TM, TL);
96 T16 = FNMS(KP302775637, TL, TM);
97 {
98 E TF, TI, T8, T9;
99 TF = FMA(KP866025403, TE, TD);
100 TI = FNMS(KP866025403, TE, TD);
101 T8 = Cr[WS(csr, 2)];
102 T9 = Cr[WS(csr, 6)];
103 TJ = FNMS(KP612264650, TI, TH);
104 TV = FMA(KP612264650, TH, TI);
105 TG = FNMS(KP038632954, TF, TA);
106 TU = FMA(KP038632954, TA, TF);
107 Tf = T8 - T9;
108 Ta = T8 + T9;
109 }
110 }
111 T2 = Cr[WS(csr, 1)];
112 T3 = Cr[WS(csr, 3)];
113 Tb = T7 + Ta;
114 Ti = FMS(KP500000000, Ta, T7);
115 T4 = Cr[WS(csr, 4)];
116 }
117 }
118 {
119 E T17, TK, T5, Te, Tk, Td;
120 TW = FMA(KP853480001, TV, TU);
121 T17 = FNMS(KP853480001, TV, TU);
122 TK = FNMS(KP853480001, TJ, TG);
123 T14 = FMA(KP853480001, TJ, TG);
124 T5 = T3 + T4;
125 Te = T3 - T4;
126 {
127 E Tn, Tg, Th, T6;
128 TS = FNMS(KP522026385, TK, TN);
129 TO = FMA(KP957805992, TN, TK);
130 Tn = Te - Tf;
131 Tg = Te + Tf;
132 Th = FNMS(KP500000000, T5, T2);
133 T6 = T2 + T5;
134 T18 = FNMS(KP522026385, T17, T16);
135 T1e = FMA(KP957805992, T16, T17);
136 {
137 E Tm, Tj, Tc, Tp, To;
138 Tm = Th + Ti;
139 Tj = Th - Ti;
140 Tc = T6 + Tb;
141 Tp = T6 - Tb;
142 To = FNMS(KP514918778, Tn, Tm);
143 TY = FMA(KP686558370, Tm, Tn);
144 TX = FNMS(KP226109445, Tg, Tj);
145 Tk = FMA(KP301479260, Tj, Tg);
146 R0[0] = FMA(KP2_000000000, Tc, T1);
147 Td = FNMS(KP166666666, Tc, T1);
148 TQ = FNMS(KP859542535, To, Tp);
149 Tq = FMA(KP581704778, Tp, To);
150 }
151 }
152 TP = FNMS(KP503537032, Tk, Td);
153 Tl = FMA(KP1_007074065, Tk, Td);
154 }
155 }
156 T1d = FNMS(KP1_033041561, Tq, Tl);
157 Tr = FMA(KP1_033041561, Tq, Tl);
158 {
159 E T13, TR, T19, TZ;
160 T13 = FNMS(KP600925212, TQ, TP);
161 TR = FMA(KP600925212, TQ, TP);
162 T19 = FMA(KP769338817, TY, TX);
163 TZ = FNMS(KP769338817, TY, TX);
164 R0[WS(rs, 4)] = FMA(KP1_200954543, T1e, T1d);
165 R1[WS(rs, 2)] = FNMS(KP1_200954543, T1e, T1d);
166 R0[WS(rs, 6)] = FMA(KP1_200954543, TO, Tr);
167 R1[0] = FNMS(KP1_200954543, TO, Tr);
168 {
169 E T1b, T15, T11, TT;
170 T1b = FNMS(KP1_040057143, T14, T13);
171 T15 = FMA(KP1_040057143, T14, T13);
172 T11 = FMA(KP1_150281458, TS, TR);
173 TT = FNMS(KP1_150281458, TS, TR);
174 {
175 E T1c, T1a, T12, T10;
176 T1c = FMA(KP875502302, T19, T18);
177 T1a = FNMS(KP875502302, T19, T18);
178 T12 = FMA(KP968287244, TZ, TW);
179 T10 = FNMS(KP968287244, TZ, TW);
180 R1[WS(rs, 5)] = FMA(KP1_150281458, T1c, T1b);
181 R0[WS(rs, 3)] = FNMS(KP1_150281458, T1c, T1b);
182 R1[WS(rs, 3)] = FMA(KP1_150281458, T1a, T15);
183 R0[WS(rs, 1)] = FNMS(KP1_150281458, T1a, T15);
184 R0[WS(rs, 5)] = FMA(KP1_040057143, T12, T11);
185 R0[WS(rs, 2)] = FNMS(KP1_040057143, T12, T11);
186 R1[WS(rs, 4)] = FMA(KP1_040057143, T10, TT);
187 R1[WS(rs, 1)] = FNMS(KP1_040057143, T10, TT);
188 }
189 }
190 }
191 }
192 }
193 }
194
195 static const kr2c_desc desc = { 13, "r2cb_13", {18, 0, 58, 0}, &GENUS };
196
197 void X(codelet_r2cb_13) (planner *p) {
198 X(kr2c_register) (p, r2cb_13, &desc);
199 }
200
201 #else /* HAVE_FMA */
202
203 /* Generated by: ../../../genfft/gen_r2cb.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 13 -name r2cb_13 -include r2cb.h */
204
205 /*
206 * This function contains 76 FP additions, 35 FP multiplications,
207 * (or, 56 additions, 15 multiplications, 20 fused multiply/add),
208 * 56 stack variables, 19 constants, and 26 memory accesses
209 */
210 #include "r2cb.h"
211
212 static void r2cb_13(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs)
213 {
214 DK(KP1_007074065, +1.007074065727533254493747707736933954186697125);
215 DK(KP227708958, +0.227708958111581597949308691735310621069285120);
216 DK(KP531932498, +0.531932498429674575175042127684371897596660533);
217 DK(KP774781170, +0.774781170935234584261351932853525703557550433);
218 DK(KP265966249, +0.265966249214837287587521063842185948798330267);
219 DK(KP516520780, +0.516520780623489722840901288569017135705033622);
220 DK(KP151805972, +0.151805972074387731966205794490207080712856746);
221 DK(KP503537032, +0.503537032863766627246873853868466977093348562);
222 DK(KP166666666, +0.166666666666666666666666666666666666666666667);
223 DK(KP600925212, +0.600925212577331548853203544578415991041882762);
224 DK(KP500000000, +0.500000000000000000000000000000000000000000000);
225 DK(KP256247671, +0.256247671582936600958684654061725059144125175);
226 DK(KP156891391, +0.156891391051584611046832726756003269660212636);
227 DK(KP348277202, +0.348277202304271810011321589858529485233929352);
228 DK(KP1_150281458, +1.150281458948006242736771094910906776922003215);
229 DK(KP300238635, +0.300238635966332641462884626667381504676006424);
230 DK(KP011599105, +0.011599105605768290721655456654083252189827041);
231 DK(KP1_732050807, +1.732050807568877293527446341505872366942805254);
232 DK(KP2_000000000, +2.000000000000000000000000000000000000000000000);
233 {
234 INT i;
235 for (i = v; i > 0; i = i - 1, R0 = R0 + ovs, R1 = R1 + ovs, Cr = Cr + ivs, Ci = Ci + ivs, MAKE_VOLATILE_STRIDE(52, rs), MAKE_VOLATILE_STRIDE(52, csr), MAKE_VOLATILE_STRIDE(52, csi)) {
236 E TG, TS, TR, T15, TJ, TT, T1, Tm, Tc, Td, Tg, Tj, Tk, Tn, To;
237 E Tp;
238 {
239 E Ts, Tv, Tw, TE, TC, TB, Tz, TD, TA, TF;
240 {
241 E Tt, Tu, Tx, Ty;
242 Ts = Ci[WS(csi, 1)];
243 Tt = Ci[WS(csi, 3)];
244 Tu = Ci[WS(csi, 4)];
245 Tv = Tt - Tu;
246 Tw = FMS(KP2_000000000, Ts, Tv);
247 TE = KP1_732050807 * (Tt + Tu);
248 TC = Ci[WS(csi, 5)];
249 Tx = Ci[WS(csi, 6)];
250 Ty = Ci[WS(csi, 2)];
251 TB = Tx + Ty;
252 Tz = KP1_732050807 * (Tx - Ty);
253 TD = FNMS(KP2_000000000, TC, TB);
254 }
255 TA = Tw + Tz;
256 TF = TD - TE;
257 TG = FMA(KP011599105, TA, KP300238635 * TF);
258 TS = FNMS(KP011599105, TF, KP300238635 * TA);
259 {
260 E TP, TQ, TH, TI;
261 TP = Ts + Tv;
262 TQ = TB + TC;
263 TR = FNMS(KP348277202, TQ, KP1_150281458 * TP);
264 T15 = FMA(KP348277202, TP, KP1_150281458 * TQ);
265 TH = Tw - Tz;
266 TI = TE + TD;
267 TJ = FMA(KP156891391, TH, KP256247671 * TI);
268 TT = FNMS(KP256247671, TH, KP156891391 * TI);
269 }
270 }
271 {
272 E Tb, Ti, Tf, T6, Th, Te;
273 T1 = Cr[0];
274 {
275 E T7, T8, T9, Ta;
276 T7 = Cr[WS(csr, 5)];
277 T8 = Cr[WS(csr, 2)];
278 T9 = Cr[WS(csr, 6)];
279 Ta = T8 + T9;
280 Tb = T7 + Ta;
281 Ti = FNMS(KP500000000, Ta, T7);
282 Tf = T8 - T9;
283 }
284 {
285 E T2, T3, T4, T5;
286 T2 = Cr[WS(csr, 1)];
287 T3 = Cr[WS(csr, 3)];
288 T4 = Cr[WS(csr, 4)];
289 T5 = T3 + T4;
290 T6 = T2 + T5;
291 Th = FNMS(KP500000000, T5, T2);
292 Te = T3 - T4;
293 }
294 Tm = KP600925212 * (T6 - Tb);
295 Tc = T6 + Tb;
296 Td = FNMS(KP166666666, Tc, T1);
297 Tg = Te + Tf;
298 Tj = Th + Ti;
299 Tk = FMA(KP503537032, Tg, KP151805972 * Tj);
300 Tn = Th - Ti;
301 To = Te - Tf;
302 Tp = FNMS(KP265966249, To, KP516520780 * Tn);
303 }
304 R0[0] = FMA(KP2_000000000, Tc, T1);
305 {
306 E TK, T1b, TV, T12, T16, T18, TO, T1a, Tr, T17, T11, T13;
307 {
308 E TU, T14, TM, TN;
309 TK = KP1_732050807 * (TG + TJ);
310 T1b = KP1_732050807 * (TS - TT);
311 TU = TS + TT;
312 TV = TR - TU;
313 T12 = FMA(KP2_000000000, TU, TR);
314 T14 = TG - TJ;
315 T16 = FMS(KP2_000000000, T14, T15);
316 T18 = T14 + T15;
317 TM = FMA(KP774781170, To, KP531932498 * Tn);
318 TN = FNMS(KP1_007074065, Tj, KP227708958 * Tg);
319 TO = TM - TN;
320 T1a = TM + TN;
321 {
322 E Tl, Tq, TZ, T10;
323 Tl = Td - Tk;
324 Tq = Tm - Tp;
325 Tr = Tl - Tq;
326 T17 = Tq + Tl;
327 TZ = FMA(KP2_000000000, Tk, Td);
328 T10 = FMA(KP2_000000000, Tp, Tm);
329 T11 = TZ - T10;
330 T13 = T10 + TZ;
331 }
332 }
333 R1[WS(rs, 2)] = T11 - T12;
334 R0[WS(rs, 6)] = T13 - T16;
335 R1[0] = T13 + T16;
336 R0[WS(rs, 4)] = T11 + T12;
337 {
338 E TL, TW, T19, T1c;
339 TL = Tr - TK;
340 TW = TO - TV;
341 R1[WS(rs, 3)] = TL - TW;
342 R0[WS(rs, 1)] = TL + TW;
343 T19 = T17 - T18;
344 T1c = T1a + T1b;
345 R1[WS(rs, 1)] = T19 - T1c;
346 R1[WS(rs, 4)] = T1c + T19;
347 }
348 {
349 E T1d, T1e, TX, TY;
350 T1d = T1a - T1b;
351 T1e = T17 + T18;
352 R0[WS(rs, 2)] = T1d + T1e;
353 R0[WS(rs, 5)] = T1e - T1d;
354 TX = Tr + TK;
355 TY = TO + TV;
356 R0[WS(rs, 3)] = TX - TY;
357 R1[WS(rs, 5)] = TX + TY;
358 }
359 }
360 }
361 }
362 }
363
364 static const kr2c_desc desc = { 13, "r2cb_13", {56, 15, 20, 0}, &GENUS };
365
366 void X(codelet_r2cb_13) (planner *p) {
367 X(kr2c_register) (p, r2cb_13, &desc);
368 }
369
370 #endif /* HAVE_FMA */