comparison fft/fftw/fftw-3.3.4/rdft/scalar/r2cb/r2cbIII_20.c @ 19:26056e866c29

Add FFTW to comparison table
author Chris Cannam
date Tue, 06 Oct 2015 13:08:39 +0100
parents
children
comparison
equal deleted inserted replaced
18:8db794ca3e0b 19:26056e866c29
1 /*
2 * Copyright (c) 2003, 2007-14 Matteo Frigo
3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
18 *
19 */
20
21 /* This file was automatically generated --- DO NOT EDIT */
22 /* Generated on Tue Mar 4 13:50:36 EST 2014 */
23
24 #include "codelet-rdft.h"
25
26 #ifdef HAVE_FMA
27
28 /* Generated by: ../../../genfft/gen_r2cb.native -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -sign 1 -n 20 -name r2cbIII_20 -dft-III -include r2cbIII.h */
29
30 /*
31 * This function contains 94 FP additions, 56 FP multiplications,
32 * (or, 58 additions, 20 multiplications, 36 fused multiply/add),
33 * 59 stack variables, 6 constants, and 40 memory accesses
34 */
35 #include "r2cbIII.h"
36
37 static void r2cbIII_20(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs)
38 {
39 DK(KP1_414213562, +1.414213562373095048801688724209698078569671875);
40 DK(KP951056516, +0.951056516295153572116439333379382143405698634);
41 DK(KP559016994, +0.559016994374947424102293417182819058860154590);
42 DK(KP2_000000000, +2.000000000000000000000000000000000000000000000);
43 DK(KP250000000, +0.250000000000000000000000000000000000000000000);
44 DK(KP618033988, +0.618033988749894848204586834365638117720309180);
45 {
46 INT i;
47 for (i = v; i > 0; i = i - 1, R0 = R0 + ovs, R1 = R1 + ovs, Cr = Cr + ivs, Ci = Ci + ivs, MAKE_VOLATILE_STRIDE(80, rs), MAKE_VOLATILE_STRIDE(80, csr), MAKE_VOLATILE_STRIDE(80, csi)) {
48 E TZ, TD, TW, Tw, Tt, TF, T1f, T1b;
49 {
50 E T1l, Tk, T9, Tj, Ta, TV, TI, Ts, TU, T1t, T11, Tx, T13, TC, T1a;
51 E T1i, Th, Tv, Ty;
52 {
53 E TQ, TS, Tr, Tm, Tn;
54 {
55 E T1, T5, T6, T2, T3, T7, TY;
56 T1 = Cr[WS(csr, 2)];
57 T5 = Cr[WS(csr, 9)];
58 T6 = Cr[WS(csr, 5)];
59 T2 = Cr[WS(csr, 6)];
60 T3 = Cr[WS(csr, 1)];
61 TQ = Ci[WS(csi, 2)];
62 T7 = T5 + T6;
63 TY = T5 - T6;
64 {
65 E T4, TX, T8, Tp, Tq;
66 T4 = T2 + T3;
67 TX = T2 - T3;
68 Tp = Ci[WS(csi, 5)];
69 Tq = Ci[WS(csi, 9)];
70 T1l = FNMS(KP618033988, TX, TY);
71 TZ = FMA(KP618033988, TY, TX);
72 Tk = T4 - T7;
73 T8 = T4 + T7;
74 TS = Tp + Tq;
75 Tr = Tp - Tq;
76 T9 = T1 + T8;
77 Tj = FNMS(KP250000000, T8, T1);
78 Tm = Ci[WS(csi, 6)];
79 Tn = Ci[WS(csi, 1)];
80 }
81 }
82 {
83 E Tb, T19, Tg, Tc;
84 Ta = Cr[WS(csr, 7)];
85 {
86 E Te, Tf, To, TR, TT;
87 Te = Cr[0];
88 Tf = Cr[WS(csr, 4)];
89 To = Tm + Tn;
90 TR = Tm - Tn;
91 Tb = Cr[WS(csr, 3)];
92 T19 = Te - Tf;
93 Tg = Te + Tf;
94 TT = TR - TS;
95 TV = TR + TS;
96 TI = FNMS(KP618033988, To, Tr);
97 Ts = FMA(KP618033988, Tr, To);
98 TU = FNMS(KP250000000, TT, TQ);
99 T1t = TT + TQ;
100 Tc = Cr[WS(csr, 8)];
101 }
102 T11 = Ci[WS(csi, 7)];
103 {
104 E TA, TB, Td, T18;
105 TA = Ci[WS(csi, 4)];
106 TB = Ci[0];
107 Td = Tb + Tc;
108 T18 = Tb - Tc;
109 Tx = Ci[WS(csi, 3)];
110 T13 = TB + TA;
111 TC = TA - TB;
112 T1a = FMA(KP618033988, T19, T18);
113 T1i = FNMS(KP618033988, T18, T19);
114 Th = Td + Tg;
115 Tv = Td - Tg;
116 Ty = Ci[WS(csi, 8)];
117 }
118 }
119 }
120 {
121 E Tu, T1w, T16, TL, T15, T1u;
122 {
123 E Ti, T12, Tz, T14;
124 Tu = FNMS(KP250000000, Th, Ta);
125 Ti = Ta + Th;
126 T12 = Tx - Ty;
127 Tz = Tx + Ty;
128 T1w = T9 - Ti;
129 T14 = T12 - T13;
130 T16 = T12 + T13;
131 TL = FNMS(KP618033988, Tz, TC);
132 TD = FMA(KP618033988, TC, Tz);
133 T15 = FNMS(KP250000000, T14, T11);
134 T1u = T14 + T11;
135 R0[0] = KP2_000000000 * (T9 + Ti);
136 }
137 {
138 E Tl, TJ, TN, T1q, T1m, TK, T1h, T17, TH, T1k, T1v;
139 Tl = FMA(KP559016994, Tk, Tj);
140 TH = FNMS(KP559016994, Tk, Tj);
141 T1k = FNMS(KP559016994, TV, TU);
142 TW = FMA(KP559016994, TV, TU);
143 R0[WS(rs, 5)] = KP2_000000000 * (T1u - T1t);
144 T1v = T1t + T1u;
145 TJ = FNMS(KP951056516, TI, TH);
146 TN = FMA(KP951056516, TI, TH);
147 T1q = FMA(KP951056516, T1l, T1k);
148 T1m = FNMS(KP951056516, T1l, T1k);
149 R1[WS(rs, 7)] = KP1_414213562 * (T1w + T1v);
150 R1[WS(rs, 2)] = KP1_414213562 * (T1v - T1w);
151 Tw = FMA(KP559016994, Tv, Tu);
152 TK = FNMS(KP559016994, Tv, Tu);
153 T1h = FNMS(KP559016994, T16, T15);
154 T17 = FMA(KP559016994, T16, T15);
155 {
156 E TM, TO, T1j, T1r;
157 TM = FMA(KP951056516, TL, TK);
158 TO = FNMS(KP951056516, TL, TK);
159 T1j = FMA(KP951056516, T1i, T1h);
160 T1r = FNMS(KP951056516, T1i, T1h);
161 Tt = FNMS(KP951056516, Ts, Tl);
162 TF = FMA(KP951056516, Ts, Tl);
163 {
164 E T1n, T1p, T1s, T1o;
165 T1n = TN - TO;
166 R0[WS(rs, 6)] = -(KP2_000000000 * (TN + TO));
167 T1p = TM - TJ;
168 R0[WS(rs, 4)] = KP2_000000000 * (TJ + TM);
169 T1s = T1q + T1r;
170 R0[WS(rs, 9)] = KP2_000000000 * (T1r - T1q);
171 T1o = T1m + T1j;
172 R0[WS(rs, 1)] = KP2_000000000 * (T1j - T1m);
173 R1[WS(rs, 6)] = KP1_414213562 * (T1p + T1s);
174 R1[WS(rs, 1)] = KP1_414213562 * (T1p - T1s);
175 R1[WS(rs, 3)] = KP1_414213562 * (T1n + T1o);
176 R1[WS(rs, 8)] = KP1_414213562 * (T1n - T1o);
177 T1f = FMA(KP951056516, T1a, T17);
178 T1b = FNMS(KP951056516, T1a, T17);
179 }
180 }
181 }
182 }
183 }
184 {
185 E TE, TG, T10, T1e;
186 TE = FMA(KP951056516, TD, Tw);
187 TG = FNMS(KP951056516, TD, Tw);
188 T10 = FMA(KP951056516, TZ, TW);
189 T1e = FNMS(KP951056516, TZ, TW);
190 {
191 E T1d, TP, T1g, T1c;
192 T1d = TF - TG;
193 R0[WS(rs, 2)] = -(KP2_000000000 * (TF + TG));
194 TP = Tt - TE;
195 R0[WS(rs, 8)] = KP2_000000000 * (Tt + TE);
196 T1g = T1e + T1f;
197 R0[WS(rs, 7)] = KP2_000000000 * (T1e - T1f);
198 T1c = T10 + T1b;
199 R0[WS(rs, 3)] = KP2_000000000 * (T10 - T1b);
200 R1[WS(rs, 9)] = -(KP1_414213562 * (T1d + T1g));
201 R1[WS(rs, 4)] = KP1_414213562 * (T1d - T1g);
202 R1[WS(rs, 5)] = -(KP1_414213562 * (TP + T1c));
203 R1[0] = KP1_414213562 * (TP - T1c);
204 }
205 }
206 }
207 }
208 }
209
210 static const kr2c_desc desc = { 20, "r2cbIII_20", {58, 20, 36, 0}, &GENUS };
211
212 void X(codelet_r2cbIII_20) (planner *p) {
213 X(kr2c_register) (p, r2cbIII_20, &desc);
214 }
215
216 #else /* HAVE_FMA */
217
218 /* Generated by: ../../../genfft/gen_r2cb.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 20 -name r2cbIII_20 -dft-III -include r2cbIII.h */
219
220 /*
221 * This function contains 94 FP additions, 44 FP multiplications,
222 * (or, 82 additions, 32 multiplications, 12 fused multiply/add),
223 * 43 stack variables, 6 constants, and 40 memory accesses
224 */
225 #include "r2cbIII.h"
226
227 static void r2cbIII_20(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs)
228 {
229 DK(KP1_414213562, +1.414213562373095048801688724209698078569671875);
230 DK(KP2_000000000, +2.000000000000000000000000000000000000000000000);
231 DK(KP250000000, +0.250000000000000000000000000000000000000000000);
232 DK(KP951056516, +0.951056516295153572116439333379382143405698634);
233 DK(KP587785252, +0.587785252292473129168705954639072768597652438);
234 DK(KP559016994, +0.559016994374947424102293417182819058860154590);
235 {
236 INT i;
237 for (i = v; i > 0; i = i - 1, R0 = R0 + ovs, R1 = R1 + ovs, Cr = Cr + ivs, Ci = Ci + ivs, MAKE_VOLATILE_STRIDE(80, rs), MAKE_VOLATILE_STRIDE(80, csr), MAKE_VOLATILE_STRIDE(80, csi)) {
238 E T1, Tj, T1k, T13, T8, Tk, T17, Ts, T16, TI, T18, T19, Ta, Tu, T1i;
239 E TS, Th, Tv, TX, TD, TV, TL, TW, TY;
240 {
241 E T7, T12, T4, T11;
242 T1 = Cr[WS(csr, 2)];
243 {
244 E T5, T6, T2, T3;
245 T5 = Cr[WS(csr, 9)];
246 T6 = Cr[WS(csr, 5)];
247 T7 = T5 + T6;
248 T12 = T5 - T6;
249 T2 = Cr[WS(csr, 6)];
250 T3 = Cr[WS(csr, 1)];
251 T4 = T2 + T3;
252 T11 = T2 - T3;
253 }
254 Tj = KP559016994 * (T4 - T7);
255 T1k = FNMS(KP951056516, T12, KP587785252 * T11);
256 T13 = FMA(KP951056516, T11, KP587785252 * T12);
257 T8 = T4 + T7;
258 Tk = FNMS(KP250000000, T8, T1);
259 }
260 {
261 E Tr, T15, To, T14;
262 T17 = Ci[WS(csi, 2)];
263 {
264 E Tp, Tq, Tm, Tn;
265 Tp = Ci[WS(csi, 5)];
266 Tq = Ci[WS(csi, 9)];
267 Tr = Tp - Tq;
268 T15 = Tp + Tq;
269 Tm = Ci[WS(csi, 6)];
270 Tn = Ci[WS(csi, 1)];
271 To = Tm + Tn;
272 T14 = Tm - Tn;
273 }
274 Ts = FMA(KP951056516, To, KP587785252 * Tr);
275 T16 = KP559016994 * (T14 + T15);
276 TI = FNMS(KP951056516, Tr, KP587785252 * To);
277 T18 = T14 - T15;
278 T19 = FNMS(KP250000000, T18, T17);
279 }
280 {
281 E Tg, TR, Td, TQ;
282 Ta = Cr[WS(csr, 7)];
283 {
284 E Te, Tf, Tb, Tc;
285 Te = Cr[0];
286 Tf = Cr[WS(csr, 4)];
287 Tg = Te + Tf;
288 TR = Te - Tf;
289 Tb = Cr[WS(csr, 3)];
290 Tc = Cr[WS(csr, 8)];
291 Td = Tb + Tc;
292 TQ = Tb - Tc;
293 }
294 Tu = KP559016994 * (Td - Tg);
295 T1i = FNMS(KP951056516, TR, KP587785252 * TQ);
296 TS = FMA(KP951056516, TQ, KP587785252 * TR);
297 Th = Td + Tg;
298 Tv = FNMS(KP250000000, Th, Ta);
299 }
300 {
301 E TC, TU, Tz, TT;
302 TX = Ci[WS(csi, 7)];
303 {
304 E TA, TB, Tx, Ty;
305 TA = Ci[WS(csi, 4)];
306 TB = Ci[0];
307 TC = TA - TB;
308 TU = TB + TA;
309 Tx = Ci[WS(csi, 3)];
310 Ty = Ci[WS(csi, 8)];
311 Tz = Tx + Ty;
312 TT = Ty - Tx;
313 }
314 TD = FMA(KP951056516, Tz, KP587785252 * TC);
315 TV = KP559016994 * (TT - TU);
316 TL = FNMS(KP587785252, Tz, KP951056516 * TC);
317 TW = TT + TU;
318 TY = FMA(KP250000000, TW, TX);
319 }
320 {
321 E T9, Ti, T1w, T1t, T1u, T1v;
322 T9 = T1 + T8;
323 Ti = Ta + Th;
324 T1w = T9 - Ti;
325 T1t = T18 + T17;
326 T1u = TX - TW;
327 T1v = T1t + T1u;
328 R0[0] = KP2_000000000 * (T9 + Ti);
329 R0[WS(rs, 5)] = KP2_000000000 * (T1u - T1t);
330 R1[WS(rs, 2)] = KP1_414213562 * (T1v - T1w);
331 R1[WS(rs, 7)] = KP1_414213562 * (T1w + T1v);
332 }
333 {
334 E TJ, TO, T1m, T1q, TM, TN, T1j, T1r;
335 {
336 E TH, T1l, TK, T1h;
337 TH = Tk - Tj;
338 TJ = TH + TI;
339 TO = TH - TI;
340 T1l = T19 - T16;
341 T1m = T1k + T1l;
342 T1q = T1l - T1k;
343 TK = Tv - Tu;
344 TM = TK + TL;
345 TN = TL - TK;
346 T1h = TV + TY;
347 T1j = T1h - T1i;
348 T1r = T1i + T1h;
349 }
350 R0[WS(rs, 4)] = KP2_000000000 * (TJ + TM);
351 R0[WS(rs, 6)] = KP2_000000000 * (TN - TO);
352 R0[WS(rs, 9)] = KP2_000000000 * (T1r - T1q);
353 R0[WS(rs, 1)] = KP2_000000000 * (T1j - T1m);
354 {
355 E T1p, T1s, T1n, T1o;
356 T1p = TM - TJ;
357 T1s = T1q + T1r;
358 R1[WS(rs, 1)] = KP1_414213562 * (T1p - T1s);
359 R1[WS(rs, 6)] = KP1_414213562 * (T1p + T1s);
360 T1n = TO + TN;
361 T1o = T1m + T1j;
362 R1[WS(rs, 8)] = KP1_414213562 * (T1n - T1o);
363 R1[WS(rs, 3)] = KP1_414213562 * (T1n + T1o);
364 }
365 }
366 {
367 E Tt, TG, T1b, T1f, TE, TF, T10, T1e;
368 {
369 E Tl, T1a, Tw, TZ;
370 Tl = Tj + Tk;
371 Tt = Tl - Ts;
372 TG = Tl + Ts;
373 T1a = T16 + T19;
374 T1b = T13 + T1a;
375 T1f = T1a - T13;
376 Tw = Tu + Tv;
377 TE = Tw + TD;
378 TF = TD - Tw;
379 TZ = TV - TY;
380 T10 = TS + TZ;
381 T1e = TZ - TS;
382 }
383 R0[WS(rs, 8)] = KP2_000000000 * (Tt + TE);
384 R0[WS(rs, 2)] = KP2_000000000 * (TF - TG);
385 R0[WS(rs, 7)] = KP2_000000000 * (T1f + T1e);
386 R0[WS(rs, 3)] = KP2_000000000 * (T1b + T10);
387 {
388 E T1d, T1g, TP, T1c;
389 T1d = TG + TF;
390 T1g = T1e - T1f;
391 R1[WS(rs, 4)] = KP1_414213562 * (T1d + T1g);
392 R1[WS(rs, 9)] = KP1_414213562 * (T1g - T1d);
393 TP = Tt - TE;
394 T1c = T10 - T1b;
395 R1[0] = KP1_414213562 * (TP + T1c);
396 R1[WS(rs, 5)] = KP1_414213562 * (T1c - TP);
397 }
398 }
399 }
400 }
401 }
402
403 static const kr2c_desc desc = { 20, "r2cbIII_20", {82, 32, 12, 0}, &GENUS };
404
405 void X(codelet_r2cbIII_20) (planner *p) {
406 X(kr2c_register) (p, r2cbIII_20, &desc);
407 }
408
409 #endif /* HAVE_FMA */