comparison fft/fftw/fftw-3.3.4/rdft/scalar/r2cb/r2cbIII_16.c @ 19:26056e866c29

Add FFTW to comparison table
author Chris Cannam
date Tue, 06 Oct 2015 13:08:39 +0100
parents
children
comparison
equal deleted inserted replaced
18:8db794ca3e0b 19:26056e866c29
1 /*
2 * Copyright (c) 2003, 2007-14 Matteo Frigo
3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
18 *
19 */
20
21 /* This file was automatically generated --- DO NOT EDIT */
22 /* Generated on Tue Mar 4 13:50:34 EST 2014 */
23
24 #include "codelet-rdft.h"
25
26 #ifdef HAVE_FMA
27
28 /* Generated by: ../../../genfft/gen_r2cb.native -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -sign 1 -n 16 -name r2cbIII_16 -dft-III -include r2cbIII.h */
29
30 /*
31 * This function contains 66 FP additions, 36 FP multiplications,
32 * (or, 46 additions, 16 multiplications, 20 fused multiply/add),
33 * 55 stack variables, 9 constants, and 32 memory accesses
34 */
35 #include "r2cbIII.h"
36
37 static void r2cbIII_16(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs)
38 {
39 DK(KP668178637, +0.668178637919298919997757686523080761552472251);
40 DK(KP1_662939224, +1.662939224605090474157576755235811513477121624);
41 DK(KP198912367, +0.198912367379658006911597622644676228597850501);
42 DK(KP1_961570560, +1.961570560806460898252364472268478073947867462);
43 DK(KP707106781, +0.707106781186547524400844362104849039284835938);
44 DK(KP1_414213562, +1.414213562373095048801688724209698078569671875);
45 DK(KP414213562, +0.414213562373095048801688724209698078569671875);
46 DK(KP1_847759065, +1.847759065022573512256366378793576573644833252);
47 DK(KP2_000000000, +2.000000000000000000000000000000000000000000000);
48 {
49 INT i;
50 for (i = v; i > 0; i = i - 1, R0 = R0 + ovs, R1 = R1 + ovs, Cr = Cr + ivs, Ci = Ci + ivs, MAKE_VOLATILE_STRIDE(64, rs), MAKE_VOLATILE_STRIDE(64, csr), MAKE_VOLATILE_STRIDE(64, csi)) {
51 E TA, TD, Tv, TG, TE, TF;
52 {
53 E TK, TP, T7, T13, TW, TH, Tj, TC, To, Te, TX, TS, T12, Tt, TB;
54 {
55 E T4, Tf, T3, TU, Tz, T5, Tg, Th;
56 {
57 E T1, T2, Tx, Ty;
58 T1 = Cr[0];
59 T2 = Cr[WS(csr, 7)];
60 Tx = Ci[0];
61 Ty = Ci[WS(csi, 7)];
62 T4 = Cr[WS(csr, 4)];
63 Tf = T1 - T2;
64 T3 = T1 + T2;
65 TU = Ty - Tx;
66 Tz = Tx + Ty;
67 T5 = Cr[WS(csr, 3)];
68 Tg = Ci[WS(csi, 4)];
69 Th = Ci[WS(csi, 3)];
70 }
71 {
72 E Tb, Tk, Ta, TR, Tn, Tc, Tq, Tr;
73 {
74 E T8, T9, Tl, Tm;
75 T8 = Cr[WS(csr, 2)];
76 {
77 E Tw, T6, TV, Ti;
78 Tw = T4 - T5;
79 T6 = T4 + T5;
80 TV = Th - Tg;
81 Ti = Tg + Th;
82 TK = Tw - Tz;
83 TA = Tw + Tz;
84 TP = T3 - T6;
85 T7 = T3 + T6;
86 T13 = TV + TU;
87 TW = TU - TV;
88 TH = Tf + Ti;
89 Tj = Tf - Ti;
90 T9 = Cr[WS(csr, 5)];
91 }
92 Tl = Ci[WS(csi, 2)];
93 Tm = Ci[WS(csi, 5)];
94 Tb = Cr[WS(csr, 1)];
95 Tk = T8 - T9;
96 Ta = T8 + T9;
97 TR = Tl - Tm;
98 Tn = Tl + Tm;
99 Tc = Cr[WS(csr, 6)];
100 Tq = Ci[WS(csi, 1)];
101 Tr = Ci[WS(csi, 6)];
102 }
103 TC = Tk + Tn;
104 To = Tk - Tn;
105 {
106 E Tp, Td, TQ, Ts;
107 Tp = Tb - Tc;
108 Td = Tb + Tc;
109 TQ = Tr - Tq;
110 Ts = Tq + Tr;
111 Te = Ta + Td;
112 TX = Ta - Td;
113 TS = TQ - TR;
114 T12 = TR + TQ;
115 Tt = Tp - Ts;
116 TB = Tp + Ts;
117 }
118 }
119 }
120 {
121 E T10, TT, TY, TZ;
122 R0[0] = KP2_000000000 * (T7 + Te);
123 R0[WS(rs, 4)] = KP2_000000000 * (T13 - T12);
124 T10 = TP - TS;
125 TT = TP + TS;
126 TY = TW - TX;
127 TZ = TX + TW;
128 {
129 E T11, T14, TI, TL, Tu;
130 T11 = T7 - Te;
131 T14 = T12 + T13;
132 R0[WS(rs, 5)] = KP1_847759065 * (FNMS(KP414213562, TT, TY));
133 R0[WS(rs, 1)] = KP1_847759065 * (FMA(KP414213562, TY, TT));
134 R0[WS(rs, 6)] = KP1_414213562 * (T14 - T11);
135 R0[WS(rs, 2)] = KP1_414213562 * (T11 + T14);
136 TD = TB - TC;
137 TI = TC + TB;
138 TL = To - Tt;
139 Tu = To + Tt;
140 {
141 E TO, TJ, TN, TM;
142 R0[WS(rs, 7)] = -(KP1_847759065 * (FNMS(KP414213562, TZ, T10)));
143 R0[WS(rs, 3)] = KP1_847759065 * (FMA(KP414213562, T10, TZ));
144 TO = FMA(KP707106781, TI, TH);
145 TJ = FNMS(KP707106781, TI, TH);
146 TN = FMA(KP707106781, TL, TK);
147 TM = FNMS(KP707106781, TL, TK);
148 Tv = FMA(KP707106781, Tu, Tj);
149 TG = FNMS(KP707106781, Tu, Tj);
150 R1[WS(rs, 3)] = KP1_961570560 * (FMA(KP198912367, TO, TN));
151 R1[WS(rs, 7)] = -(KP1_961570560 * (FNMS(KP198912367, TN, TO)));
152 R1[WS(rs, 5)] = KP1_662939224 * (FNMS(KP668178637, TJ, TM));
153 R1[WS(rs, 1)] = KP1_662939224 * (FMA(KP668178637, TM, TJ));
154 }
155 }
156 }
157 }
158 TE = FNMS(KP707106781, TD, TA);
159 TF = FMA(KP707106781, TD, TA);
160 R1[WS(rs, 2)] = -(KP1_662939224 * (FNMS(KP668178637, TG, TF)));
161 R1[WS(rs, 6)] = -(KP1_662939224 * (FMA(KP668178637, TF, TG)));
162 R1[WS(rs, 4)] = -(KP1_961570560 * (FMA(KP198912367, Tv, TE)));
163 R1[0] = KP1_961570560 * (FNMS(KP198912367, TE, Tv));
164 }
165 }
166 }
167
168 static const kr2c_desc desc = { 16, "r2cbIII_16", {46, 16, 20, 0}, &GENUS };
169
170 void X(codelet_r2cbIII_16) (planner *p) {
171 X(kr2c_register) (p, r2cbIII_16, &desc);
172 }
173
174 #else /* HAVE_FMA */
175
176 /* Generated by: ../../../genfft/gen_r2cb.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 16 -name r2cbIII_16 -dft-III -include r2cbIII.h */
177
178 /*
179 * This function contains 66 FP additions, 32 FP multiplications,
180 * (or, 54 additions, 20 multiplications, 12 fused multiply/add),
181 * 40 stack variables, 9 constants, and 32 memory accesses
182 */
183 #include "r2cbIII.h"
184
185 static void r2cbIII_16(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs)
186 {
187 DK(KP1_961570560, +1.961570560806460898252364472268478073947867462);
188 DK(KP390180644, +0.390180644032256535696569736954044481855383236);
189 DK(KP1_111140466, +1.111140466039204449485661627897065748749874382);
190 DK(KP1_662939224, +1.662939224605090474157576755235811513477121624);
191 DK(KP707106781, +0.707106781186547524400844362104849039284835938);
192 DK(KP1_414213562, +1.414213562373095048801688724209698078569671875);
193 DK(KP765366864, +0.765366864730179543456919968060797733522689125);
194 DK(KP1_847759065, +1.847759065022573512256366378793576573644833252);
195 DK(KP2_000000000, +2.000000000000000000000000000000000000000000000);
196 {
197 INT i;
198 for (i = v; i > 0; i = i - 1, R0 = R0 + ovs, R1 = R1 + ovs, Cr = Cr + ivs, Ci = Ci + ivs, MAKE_VOLATILE_STRIDE(64, rs), MAKE_VOLATILE_STRIDE(64, csr), MAKE_VOLATILE_STRIDE(64, csi)) {
199 E T7, TW, T13, Tj, TD, TK, TP, TH, Te, TX, T12, To, Tt, Tx, TS;
200 E Tw, TT, TY;
201 {
202 E T3, Tf, TC, TV, T6, Tz, Ti, TU;
203 {
204 E T1, T2, TA, TB;
205 T1 = Cr[0];
206 T2 = Cr[WS(csr, 7)];
207 T3 = T1 + T2;
208 Tf = T1 - T2;
209 TA = Ci[0];
210 TB = Ci[WS(csi, 7)];
211 TC = TA + TB;
212 TV = TB - TA;
213 }
214 {
215 E T4, T5, Tg, Th;
216 T4 = Cr[WS(csr, 4)];
217 T5 = Cr[WS(csr, 3)];
218 T6 = T4 + T5;
219 Tz = T4 - T5;
220 Tg = Ci[WS(csi, 4)];
221 Th = Ci[WS(csi, 3)];
222 Ti = Tg + Th;
223 TU = Tg - Th;
224 }
225 T7 = T3 + T6;
226 TW = TU + TV;
227 T13 = TV - TU;
228 Tj = Tf - Ti;
229 TD = Tz + TC;
230 TK = Tz - TC;
231 TP = T3 - T6;
232 TH = Tf + Ti;
233 }
234 {
235 E Ta, Tk, Tn, TR, Td, Tp, Ts, TQ;
236 {
237 E T8, T9, Tl, Tm;
238 T8 = Cr[WS(csr, 2)];
239 T9 = Cr[WS(csr, 5)];
240 Ta = T8 + T9;
241 Tk = T8 - T9;
242 Tl = Ci[WS(csi, 2)];
243 Tm = Ci[WS(csi, 5)];
244 Tn = Tl + Tm;
245 TR = Tl - Tm;
246 }
247 {
248 E Tb, Tc, Tq, Tr;
249 Tb = Cr[WS(csr, 1)];
250 Tc = Cr[WS(csr, 6)];
251 Td = Tb + Tc;
252 Tp = Tb - Tc;
253 Tq = Ci[WS(csi, 1)];
254 Tr = Ci[WS(csi, 6)];
255 Ts = Tq + Tr;
256 TQ = Tr - Tq;
257 }
258 Te = Ta + Td;
259 TX = Ta - Td;
260 T12 = TR + TQ;
261 To = Tk - Tn;
262 Tt = Tp - Ts;
263 Tx = Tp + Ts;
264 TS = TQ - TR;
265 Tw = Tk + Tn;
266 }
267 R0[0] = KP2_000000000 * (T7 + Te);
268 R0[WS(rs, 4)] = KP2_000000000 * (T13 - T12);
269 TT = TP + TS;
270 TY = TW - TX;
271 R0[WS(rs, 1)] = FMA(KP1_847759065, TT, KP765366864 * TY);
272 R0[WS(rs, 5)] = FNMS(KP765366864, TT, KP1_847759065 * TY);
273 {
274 E T11, T14, TZ, T10;
275 T11 = T7 - Te;
276 T14 = T12 + T13;
277 R0[WS(rs, 2)] = KP1_414213562 * (T11 + T14);
278 R0[WS(rs, 6)] = KP1_414213562 * (T14 - T11);
279 TZ = TP - TS;
280 T10 = TX + TW;
281 R0[WS(rs, 3)] = FMA(KP765366864, TZ, KP1_847759065 * T10);
282 R0[WS(rs, 7)] = FNMS(KP1_847759065, TZ, KP765366864 * T10);
283 }
284 {
285 E TJ, TN, TM, TO, TI, TL;
286 TI = KP707106781 * (Tw + Tx);
287 TJ = TH - TI;
288 TN = TH + TI;
289 TL = KP707106781 * (To - Tt);
290 TM = TK - TL;
291 TO = TL + TK;
292 R1[WS(rs, 1)] = FMA(KP1_662939224, TJ, KP1_111140466 * TM);
293 R1[WS(rs, 7)] = FNMS(KP1_961570560, TN, KP390180644 * TO);
294 R1[WS(rs, 5)] = FNMS(KP1_111140466, TJ, KP1_662939224 * TM);
295 R1[WS(rs, 3)] = FMA(KP390180644, TN, KP1_961570560 * TO);
296 }
297 {
298 E Tv, TF, TE, TG, Tu, Ty;
299 Tu = KP707106781 * (To + Tt);
300 Tv = Tj + Tu;
301 TF = Tj - Tu;
302 Ty = KP707106781 * (Tw - Tx);
303 TE = Ty + TD;
304 TG = Ty - TD;
305 R1[0] = FNMS(KP390180644, TE, KP1_961570560 * Tv);
306 R1[WS(rs, 6)] = FNMS(KP1_662939224, TF, KP1_111140466 * TG);
307 R1[WS(rs, 4)] = -(FMA(KP390180644, Tv, KP1_961570560 * TE));
308 R1[WS(rs, 2)] = FMA(KP1_111140466, TF, KP1_662939224 * TG);
309 }
310 }
311 }
312 }
313
314 static const kr2c_desc desc = { 16, "r2cbIII_16", {54, 20, 12, 0}, &GENUS };
315
316 void X(codelet_r2cbIII_16) (planner *p) {
317 X(kr2c_register) (p, r2cbIII_16, &desc);
318 }
319
320 #endif /* HAVE_FMA */