comparison fft/fftw/fftw-3.3.4/rdft/scalar/r2cb/r2cbIII_12.c @ 19:26056e866c29

Add FFTW to comparison table
author Chris Cannam
date Tue, 06 Oct 2015 13:08:39 +0100
parents
children
comparison
equal deleted inserted replaced
18:8db794ca3e0b 19:26056e866c29
1 /*
2 * Copyright (c) 2003, 2007-14 Matteo Frigo
3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
18 *
19 */
20
21 /* This file was automatically generated --- DO NOT EDIT */
22 /* Generated on Tue Mar 4 13:50:34 EST 2014 */
23
24 #include "codelet-rdft.h"
25
26 #ifdef HAVE_FMA
27
28 /* Generated by: ../../../genfft/gen_r2cb.native -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -sign 1 -n 12 -name r2cbIII_12 -dft-III -include r2cbIII.h */
29
30 /*
31 * This function contains 42 FP additions, 20 FP multiplications,
32 * (or, 30 additions, 8 multiplications, 12 fused multiply/add),
33 * 37 stack variables, 4 constants, and 24 memory accesses
34 */
35 #include "r2cbIII.h"
36
37 static void r2cbIII_12(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs)
38 {
39 DK(KP707106781, +0.707106781186547524400844362104849039284835938);
40 DK(KP1_414213562, +1.414213562373095048801688724209698078569671875);
41 DK(KP1_732050807, +1.732050807568877293527446341505872366942805254);
42 DK(KP2_000000000, +2.000000000000000000000000000000000000000000000);
43 {
44 INT i;
45 for (i = v; i > 0; i = i - 1, R0 = R0 + ovs, R1 = R1 + ovs, Cr = Cr + ivs, Ci = Ci + ivs, MAKE_VOLATILE_STRIDE(48, rs), MAKE_VOLATILE_STRIDE(48, csr), MAKE_VOLATILE_STRIDE(48, csi)) {
46 E TE, TD, TF, TG;
47 {
48 E Tx, T6, Te, Tb, T5, Tw, Ts, To, Th, Ti, T9, TA;
49 {
50 E T1, Tq, Tc, Td, T4, T2, T3, T7, T8, Tr;
51 T1 = Cr[WS(csr, 1)];
52 T2 = Cr[WS(csr, 5)];
53 T3 = Cr[WS(csr, 2)];
54 Tq = Ci[WS(csi, 1)];
55 Tc = Ci[WS(csi, 5)];
56 Td = Ci[WS(csi, 2)];
57 T4 = T2 + T3;
58 Tx = T2 - T3;
59 T6 = Cr[WS(csr, 4)];
60 Te = Tc + Td;
61 Tr = Td - Tc;
62 Tb = FNMS(KP2_000000000, T1, T4);
63 T5 = T1 + T4;
64 T7 = Cr[0];
65 Tw = FMA(KP2_000000000, Tq, Tr);
66 Ts = Tq - Tr;
67 T8 = Cr[WS(csr, 3)];
68 To = Ci[WS(csi, 4)];
69 Th = Ci[0];
70 Ti = Ci[WS(csi, 3)];
71 T9 = T7 + T8;
72 TA = T7 - T8;
73 }
74 {
75 E Tl, Tm, Tv, TC;
76 {
77 E Tf, Ty, Tk, TB;
78 {
79 E Tj, Tn, Tg, Ta;
80 Tl = FNMS(KP1_732050807, Te, Tb);
81 Tf = FMA(KP1_732050807, Te, Tb);
82 Tj = Th + Ti;
83 Tn = Ti - Th;
84 Tg = FNMS(KP2_000000000, T6, T9);
85 Ta = T6 + T9;
86 {
87 E Tu, Tt, Tz, Tp;
88 Ty = FMA(KP1_732050807, Tx, Tw);
89 TE = FNMS(KP1_732050807, Tx, Tw);
90 Tz = FMA(KP2_000000000, To, Tn);
91 Tp = Tn - To;
92 Tm = FMA(KP1_732050807, Tj, Tg);
93 Tk = FNMS(KP1_732050807, Tj, Tg);
94 Tu = T5 - Ta;
95 R0[0] = KP2_000000000 * (T5 + Ta);
96 Tt = Tp - Ts;
97 R0[WS(rs, 3)] = KP2_000000000 * (Ts + Tp);
98 Tv = Tk - Tf;
99 TD = FMA(KP1_732050807, TA, Tz);
100 TB = FNMS(KP1_732050807, TA, Tz);
101 R1[WS(rs, 4)] = KP1_414213562 * (Tu + Tt);
102 R1[WS(rs, 1)] = KP1_414213562 * (Tt - Tu);
103 }
104 }
105 R0[WS(rs, 2)] = Tf + Tk;
106 TC = Ty + TB;
107 R0[WS(rs, 5)] = TB - Ty;
108 }
109 R1[WS(rs, 3)] = KP707106781 * (Tv + TC);
110 R1[0] = KP707106781 * (Tv - TC);
111 TF = Tl - Tm;
112 R0[WS(rs, 4)] = -(Tl + Tm);
113 }
114 }
115 R0[WS(rs, 1)] = TD - TE;
116 TG = TE + TD;
117 R1[WS(rs, 5)] = KP707106781 * (TF - TG);
118 R1[WS(rs, 2)] = KP707106781 * (TF + TG);
119 }
120 }
121 }
122
123 static const kr2c_desc desc = { 12, "r2cbIII_12", {30, 8, 12, 0}, &GENUS };
124
125 void X(codelet_r2cbIII_12) (planner *p) {
126 X(kr2c_register) (p, r2cbIII_12, &desc);
127 }
128
129 #else /* HAVE_FMA */
130
131 /* Generated by: ../../../genfft/gen_r2cb.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 12 -name r2cbIII_12 -dft-III -include r2cbIII.h */
132
133 /*
134 * This function contains 42 FP additions, 20 FP multiplications,
135 * (or, 38 additions, 16 multiplications, 4 fused multiply/add),
136 * 25 stack variables, 4 constants, and 24 memory accesses
137 */
138 #include "r2cbIII.h"
139
140 static void r2cbIII_12(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs)
141 {
142 DK(KP1_414213562, +1.414213562373095048801688724209698078569671875);
143 DK(KP2_000000000, +2.000000000000000000000000000000000000000000000);
144 DK(KP500000000, +0.500000000000000000000000000000000000000000000);
145 DK(KP866025403, +0.866025403784438646763723170752936183471402627);
146 {
147 INT i;
148 for (i = v; i > 0; i = i - 1, R0 = R0 + ovs, R1 = R1 + ovs, Cr = Cr + ivs, Ci = Ci + ivs, MAKE_VOLATILE_STRIDE(48, rs), MAKE_VOLATILE_STRIDE(48, csr), MAKE_VOLATILE_STRIDE(48, csi)) {
149 E T5, Tw, Tb, Te, Tx, Ts, Ta, TA, Tg, Tj, Tz, Tp, Tt, Tu;
150 {
151 E T1, T2, T3, T4;
152 T1 = Cr[WS(csr, 1)];
153 T2 = Cr[WS(csr, 5)];
154 T3 = Cr[WS(csr, 2)];
155 T4 = T2 + T3;
156 T5 = T1 + T4;
157 Tw = KP866025403 * (T2 - T3);
158 Tb = FNMS(KP500000000, T4, T1);
159 }
160 {
161 E Tq, Tc, Td, Tr;
162 Tq = Ci[WS(csi, 1)];
163 Tc = Ci[WS(csi, 5)];
164 Td = Ci[WS(csi, 2)];
165 Tr = Td - Tc;
166 Te = KP866025403 * (Tc + Td);
167 Tx = FMA(KP500000000, Tr, Tq);
168 Ts = Tq - Tr;
169 }
170 {
171 E T6, T7, T8, T9;
172 T6 = Cr[WS(csr, 4)];
173 T7 = Cr[0];
174 T8 = Cr[WS(csr, 3)];
175 T9 = T7 + T8;
176 Ta = T6 + T9;
177 TA = KP866025403 * (T7 - T8);
178 Tg = FNMS(KP500000000, T9, T6);
179 }
180 {
181 E To, Th, Ti, Tn;
182 To = Ci[WS(csi, 4)];
183 Th = Ci[0];
184 Ti = Ci[WS(csi, 3)];
185 Tn = Ti - Th;
186 Tj = KP866025403 * (Th + Ti);
187 Tz = FMA(KP500000000, Tn, To);
188 Tp = Tn - To;
189 }
190 R0[0] = KP2_000000000 * (T5 + Ta);
191 R0[WS(rs, 3)] = KP2_000000000 * (Ts + Tp);
192 Tt = Tp - Ts;
193 Tu = T5 - Ta;
194 R1[WS(rs, 1)] = KP1_414213562 * (Tt - Tu);
195 R1[WS(rs, 4)] = KP1_414213562 * (Tu + Tt);
196 {
197 E Tf, Tk, Tv, Ty, TB, TC;
198 Tf = Tb - Te;
199 Tk = Tg + Tj;
200 Tv = Tf - Tk;
201 Ty = Tw + Tx;
202 TB = Tz - TA;
203 TC = Ty + TB;
204 R0[WS(rs, 2)] = -(KP2_000000000 * (Tf + Tk));
205 R0[WS(rs, 5)] = KP2_000000000 * (TB - Ty);
206 R1[0] = KP1_414213562 * (Tv - TC);
207 R1[WS(rs, 3)] = KP1_414213562 * (Tv + TC);
208 }
209 {
210 E Tl, Tm, TF, TD, TE, TG;
211 Tl = Tb + Te;
212 Tm = Tg - Tj;
213 TF = Tm - Tl;
214 TD = TA + Tz;
215 TE = Tx - Tw;
216 TG = TE + TD;
217 R0[WS(rs, 4)] = KP2_000000000 * (Tl + Tm);
218 R1[WS(rs, 2)] = KP1_414213562 * (TF + TG);
219 R0[WS(rs, 1)] = KP2_000000000 * (TD - TE);
220 R1[WS(rs, 5)] = KP1_414213562 * (TF - TG);
221 }
222 }
223 }
224 }
225
226 static const kr2c_desc desc = { 12, "r2cbIII_12", {38, 16, 4, 0}, &GENUS };
227
228 void X(codelet_r2cbIII_12) (planner *p) {
229 X(kr2c_register) (p, r2cbIII_12, &desc);
230 }
231
232 #endif /* HAVE_FMA */