Mercurial > hg > js-dsp-test
comparison fft/fftw/fftw-3.3.4/rdft/scalar/r2cb/r2cbIII_10.c @ 19:26056e866c29
Add FFTW to comparison table
author | Chris Cannam |
---|---|
date | Tue, 06 Oct 2015 13:08:39 +0100 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
18:8db794ca3e0b | 19:26056e866c29 |
---|---|
1 /* | |
2 * Copyright (c) 2003, 2007-14 Matteo Frigo | |
3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology | |
4 * | |
5 * This program is free software; you can redistribute it and/or modify | |
6 * it under the terms of the GNU General Public License as published by | |
7 * the Free Software Foundation; either version 2 of the License, or | |
8 * (at your option) any later version. | |
9 * | |
10 * This program is distributed in the hope that it will be useful, | |
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
13 * GNU General Public License for more details. | |
14 * | |
15 * You should have received a copy of the GNU General Public License | |
16 * along with this program; if not, write to the Free Software | |
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA | |
18 * | |
19 */ | |
20 | |
21 /* This file was automatically generated --- DO NOT EDIT */ | |
22 /* Generated on Tue Mar 4 13:50:33 EST 2014 */ | |
23 | |
24 #include "codelet-rdft.h" | |
25 | |
26 #ifdef HAVE_FMA | |
27 | |
28 /* Generated by: ../../../genfft/gen_r2cb.native -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -sign 1 -n 10 -name r2cbIII_10 -dft-III -include r2cbIII.h */ | |
29 | |
30 /* | |
31 * This function contains 32 FP additions, 28 FP multiplications, | |
32 * (or, 14 additions, 10 multiplications, 18 fused multiply/add), | |
33 * 38 stack variables, 5 constants, and 20 memory accesses | |
34 */ | |
35 #include "r2cbIII.h" | |
36 | |
37 static void r2cbIII_10(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs) | |
38 { | |
39 DK(KP951056516, +0.951056516295153572116439333379382143405698634); | |
40 DK(KP559016994, +0.559016994374947424102293417182819058860154590); | |
41 DK(KP250000000, +0.250000000000000000000000000000000000000000000); | |
42 DK(KP618033988, +0.618033988749894848204586834365638117720309180); | |
43 DK(KP2_000000000, +2.000000000000000000000000000000000000000000000); | |
44 { | |
45 INT i; | |
46 for (i = v; i > 0; i = i - 1, R0 = R0 + ovs, R1 = R1 + ovs, Cr = Cr + ivs, Ci = Ci + ivs, MAKE_VOLATILE_STRIDE(40, rs), MAKE_VOLATILE_STRIDE(40, csr), MAKE_VOLATILE_STRIDE(40, csi)) { | |
47 E Tq, Ti, Tk, Tu, Tw, Tp, Tb, Tj, Tr, Tv; | |
48 { | |
49 E T1, To, Ts, Tt, T8, Ta, Te, Tl, Tm, Th, Tn, T9; | |
50 T1 = Cr[WS(csr, 2)]; | |
51 To = Ci[WS(csi, 2)]; | |
52 { | |
53 E T2, T3, T5, T6; | |
54 T2 = Cr[WS(csr, 4)]; | |
55 T3 = Cr[0]; | |
56 T5 = Cr[WS(csr, 3)]; | |
57 T6 = Cr[WS(csr, 1)]; | |
58 { | |
59 E Tc, T4, T7, Td, Tf, Tg; | |
60 Tc = Ci[WS(csi, 3)]; | |
61 Ts = T2 - T3; | |
62 T4 = T2 + T3; | |
63 Tt = T5 - T6; | |
64 T7 = T5 + T6; | |
65 Td = Ci[WS(csi, 1)]; | |
66 Tf = Ci[WS(csi, 4)]; | |
67 Tg = Ci[0]; | |
68 T8 = T4 + T7; | |
69 Ta = T7 - T4; | |
70 Te = Tc - Td; | |
71 Tl = Tc + Td; | |
72 Tm = Tf + Tg; | |
73 Th = Tf - Tg; | |
74 } | |
75 } | |
76 R0[0] = KP2_000000000 * (T1 + T8); | |
77 Tn = Tl - Tm; | |
78 Tq = Tl + Tm; | |
79 Ti = FMA(KP618033988, Th, Te); | |
80 Tk = FNMS(KP618033988, Te, Th); | |
81 R1[WS(rs, 2)] = KP2_000000000 * (Tn - To); | |
82 T9 = FMS(KP250000000, T8, T1); | |
83 Tu = FMA(KP618033988, Tt, Ts); | |
84 Tw = FNMS(KP618033988, Ts, Tt); | |
85 Tp = FMA(KP250000000, Tn, To); | |
86 Tb = FNMS(KP559016994, Ta, T9); | |
87 Tj = FMA(KP559016994, Ta, T9); | |
88 } | |
89 Tr = FMA(KP559016994, Tq, Tp); | |
90 Tv = FNMS(KP559016994, Tq, Tp); | |
91 R0[WS(rs, 2)] = -(KP2_000000000 * (FNMS(KP951056516, Tk, Tj))); | |
92 R0[WS(rs, 3)] = KP2_000000000 * (FMA(KP951056516, Tk, Tj)); | |
93 R0[WS(rs, 4)] = -(KP2_000000000 * (FNMS(KP951056516, Ti, Tb))); | |
94 R0[WS(rs, 1)] = KP2_000000000 * (FMA(KP951056516, Ti, Tb)); | |
95 R1[WS(rs, 1)] = KP2_000000000 * (FMA(KP951056516, Tw, Tv)); | |
96 R1[WS(rs, 3)] = KP2_000000000 * (FNMS(KP951056516, Tw, Tv)); | |
97 R1[WS(rs, 4)] = -(KP2_000000000 * (FNMS(KP951056516, Tu, Tr))); | |
98 R1[0] = -(KP2_000000000 * (FMA(KP951056516, Tu, Tr))); | |
99 } | |
100 } | |
101 } | |
102 | |
103 static const kr2c_desc desc = { 10, "r2cbIII_10", {14, 10, 18, 0}, &GENUS }; | |
104 | |
105 void X(codelet_r2cbIII_10) (planner *p) { | |
106 X(kr2c_register) (p, r2cbIII_10, &desc); | |
107 } | |
108 | |
109 #else /* HAVE_FMA */ | |
110 | |
111 /* Generated by: ../../../genfft/gen_r2cb.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 10 -name r2cbIII_10 -dft-III -include r2cbIII.h */ | |
112 | |
113 /* | |
114 * This function contains 32 FP additions, 16 FP multiplications, | |
115 * (or, 26 additions, 10 multiplications, 6 fused multiply/add), | |
116 * 22 stack variables, 5 constants, and 20 memory accesses | |
117 */ | |
118 #include "r2cbIII.h" | |
119 | |
120 static void r2cbIII_10(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs) | |
121 { | |
122 DK(KP500000000, +0.500000000000000000000000000000000000000000000); | |
123 DK(KP1_902113032, +1.902113032590307144232878666758764286811397268); | |
124 DK(KP1_175570504, +1.175570504584946258337411909278145537195304875); | |
125 DK(KP2_000000000, +2.000000000000000000000000000000000000000000000); | |
126 DK(KP1_118033988, +1.118033988749894848204586834365638117720309180); | |
127 { | |
128 INT i; | |
129 for (i = v; i > 0; i = i - 1, R0 = R0 + ovs, R1 = R1 + ovs, Cr = Cr + ivs, Ci = Ci + ivs, MAKE_VOLATILE_STRIDE(40, rs), MAKE_VOLATILE_STRIDE(40, csr), MAKE_VOLATILE_STRIDE(40, csi)) { | |
130 E T1, To, T8, Tq, Ta, Tp, Te, Ts, Th, Tn; | |
131 T1 = Cr[WS(csr, 2)]; | |
132 To = Ci[WS(csi, 2)]; | |
133 { | |
134 E T2, T3, T4, T5, T6, T7; | |
135 T2 = Cr[WS(csr, 4)]; | |
136 T3 = Cr[0]; | |
137 T4 = T2 + T3; | |
138 T5 = Cr[WS(csr, 3)]; | |
139 T6 = Cr[WS(csr, 1)]; | |
140 T7 = T5 + T6; | |
141 T8 = T4 + T7; | |
142 Tq = T5 - T6; | |
143 Ta = KP1_118033988 * (T7 - T4); | |
144 Tp = T2 - T3; | |
145 } | |
146 { | |
147 E Tc, Td, Tm, Tf, Tg, Tl; | |
148 Tc = Ci[WS(csi, 4)]; | |
149 Td = Ci[0]; | |
150 Tm = Tc + Td; | |
151 Tf = Ci[WS(csi, 1)]; | |
152 Tg = Ci[WS(csi, 3)]; | |
153 Tl = Tg + Tf; | |
154 Te = Tc - Td; | |
155 Ts = KP1_118033988 * (Tl + Tm); | |
156 Th = Tf - Tg; | |
157 Tn = Tl - Tm; | |
158 } | |
159 R0[0] = KP2_000000000 * (T1 + T8); | |
160 R1[WS(rs, 2)] = KP2_000000000 * (Tn - To); | |
161 { | |
162 E Ti, Tj, Tb, Tk, T9; | |
163 Ti = FNMS(KP1_902113032, Th, KP1_175570504 * Te); | |
164 Tj = FMA(KP1_175570504, Th, KP1_902113032 * Te); | |
165 T9 = FNMS(KP2_000000000, T1, KP500000000 * T8); | |
166 Tb = T9 - Ta; | |
167 Tk = T9 + Ta; | |
168 R0[WS(rs, 1)] = Tb + Ti; | |
169 R0[WS(rs, 3)] = Tk + Tj; | |
170 R0[WS(rs, 4)] = Ti - Tb; | |
171 R0[WS(rs, 2)] = Tj - Tk; | |
172 } | |
173 { | |
174 E Tr, Tv, Tu, Tw, Tt; | |
175 Tr = FMA(KP1_902113032, Tp, KP1_175570504 * Tq); | |
176 Tv = FNMS(KP1_175570504, Tp, KP1_902113032 * Tq); | |
177 Tt = FMA(KP500000000, Tn, KP2_000000000 * To); | |
178 Tu = Ts + Tt; | |
179 Tw = Tt - Ts; | |
180 R1[0] = -(Tr + Tu); | |
181 R1[WS(rs, 3)] = Tw - Tv; | |
182 R1[WS(rs, 4)] = Tr - Tu; | |
183 R1[WS(rs, 1)] = Tv + Tw; | |
184 } | |
185 } | |
186 } | |
187 } | |
188 | |
189 static const kr2c_desc desc = { 10, "r2cbIII_10", {26, 10, 6, 0}, &GENUS }; | |
190 | |
191 void X(codelet_r2cbIII_10) (planner *p) { | |
192 X(kr2c_register) (p, r2cbIII_10, &desc); | |
193 } | |
194 | |
195 #endif /* HAVE_FMA */ |