comparison fft/fftw/fftw-3.3.4/rdft/scalar/r2cb/r2cbIII_10.c @ 19:26056e866c29

Add FFTW to comparison table
author Chris Cannam
date Tue, 06 Oct 2015 13:08:39 +0100
parents
children
comparison
equal deleted inserted replaced
18:8db794ca3e0b 19:26056e866c29
1 /*
2 * Copyright (c) 2003, 2007-14 Matteo Frigo
3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
18 *
19 */
20
21 /* This file was automatically generated --- DO NOT EDIT */
22 /* Generated on Tue Mar 4 13:50:33 EST 2014 */
23
24 #include "codelet-rdft.h"
25
26 #ifdef HAVE_FMA
27
28 /* Generated by: ../../../genfft/gen_r2cb.native -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -sign 1 -n 10 -name r2cbIII_10 -dft-III -include r2cbIII.h */
29
30 /*
31 * This function contains 32 FP additions, 28 FP multiplications,
32 * (or, 14 additions, 10 multiplications, 18 fused multiply/add),
33 * 38 stack variables, 5 constants, and 20 memory accesses
34 */
35 #include "r2cbIII.h"
36
37 static void r2cbIII_10(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs)
38 {
39 DK(KP951056516, +0.951056516295153572116439333379382143405698634);
40 DK(KP559016994, +0.559016994374947424102293417182819058860154590);
41 DK(KP250000000, +0.250000000000000000000000000000000000000000000);
42 DK(KP618033988, +0.618033988749894848204586834365638117720309180);
43 DK(KP2_000000000, +2.000000000000000000000000000000000000000000000);
44 {
45 INT i;
46 for (i = v; i > 0; i = i - 1, R0 = R0 + ovs, R1 = R1 + ovs, Cr = Cr + ivs, Ci = Ci + ivs, MAKE_VOLATILE_STRIDE(40, rs), MAKE_VOLATILE_STRIDE(40, csr), MAKE_VOLATILE_STRIDE(40, csi)) {
47 E Tq, Ti, Tk, Tu, Tw, Tp, Tb, Tj, Tr, Tv;
48 {
49 E T1, To, Ts, Tt, T8, Ta, Te, Tl, Tm, Th, Tn, T9;
50 T1 = Cr[WS(csr, 2)];
51 To = Ci[WS(csi, 2)];
52 {
53 E T2, T3, T5, T6;
54 T2 = Cr[WS(csr, 4)];
55 T3 = Cr[0];
56 T5 = Cr[WS(csr, 3)];
57 T6 = Cr[WS(csr, 1)];
58 {
59 E Tc, T4, T7, Td, Tf, Tg;
60 Tc = Ci[WS(csi, 3)];
61 Ts = T2 - T3;
62 T4 = T2 + T3;
63 Tt = T5 - T6;
64 T7 = T5 + T6;
65 Td = Ci[WS(csi, 1)];
66 Tf = Ci[WS(csi, 4)];
67 Tg = Ci[0];
68 T8 = T4 + T7;
69 Ta = T7 - T4;
70 Te = Tc - Td;
71 Tl = Tc + Td;
72 Tm = Tf + Tg;
73 Th = Tf - Tg;
74 }
75 }
76 R0[0] = KP2_000000000 * (T1 + T8);
77 Tn = Tl - Tm;
78 Tq = Tl + Tm;
79 Ti = FMA(KP618033988, Th, Te);
80 Tk = FNMS(KP618033988, Te, Th);
81 R1[WS(rs, 2)] = KP2_000000000 * (Tn - To);
82 T9 = FMS(KP250000000, T8, T1);
83 Tu = FMA(KP618033988, Tt, Ts);
84 Tw = FNMS(KP618033988, Ts, Tt);
85 Tp = FMA(KP250000000, Tn, To);
86 Tb = FNMS(KP559016994, Ta, T9);
87 Tj = FMA(KP559016994, Ta, T9);
88 }
89 Tr = FMA(KP559016994, Tq, Tp);
90 Tv = FNMS(KP559016994, Tq, Tp);
91 R0[WS(rs, 2)] = -(KP2_000000000 * (FNMS(KP951056516, Tk, Tj)));
92 R0[WS(rs, 3)] = KP2_000000000 * (FMA(KP951056516, Tk, Tj));
93 R0[WS(rs, 4)] = -(KP2_000000000 * (FNMS(KP951056516, Ti, Tb)));
94 R0[WS(rs, 1)] = KP2_000000000 * (FMA(KP951056516, Ti, Tb));
95 R1[WS(rs, 1)] = KP2_000000000 * (FMA(KP951056516, Tw, Tv));
96 R1[WS(rs, 3)] = KP2_000000000 * (FNMS(KP951056516, Tw, Tv));
97 R1[WS(rs, 4)] = -(KP2_000000000 * (FNMS(KP951056516, Tu, Tr)));
98 R1[0] = -(KP2_000000000 * (FMA(KP951056516, Tu, Tr)));
99 }
100 }
101 }
102
103 static const kr2c_desc desc = { 10, "r2cbIII_10", {14, 10, 18, 0}, &GENUS };
104
105 void X(codelet_r2cbIII_10) (planner *p) {
106 X(kr2c_register) (p, r2cbIII_10, &desc);
107 }
108
109 #else /* HAVE_FMA */
110
111 /* Generated by: ../../../genfft/gen_r2cb.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 10 -name r2cbIII_10 -dft-III -include r2cbIII.h */
112
113 /*
114 * This function contains 32 FP additions, 16 FP multiplications,
115 * (or, 26 additions, 10 multiplications, 6 fused multiply/add),
116 * 22 stack variables, 5 constants, and 20 memory accesses
117 */
118 #include "r2cbIII.h"
119
120 static void r2cbIII_10(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs)
121 {
122 DK(KP500000000, +0.500000000000000000000000000000000000000000000);
123 DK(KP1_902113032, +1.902113032590307144232878666758764286811397268);
124 DK(KP1_175570504, +1.175570504584946258337411909278145537195304875);
125 DK(KP2_000000000, +2.000000000000000000000000000000000000000000000);
126 DK(KP1_118033988, +1.118033988749894848204586834365638117720309180);
127 {
128 INT i;
129 for (i = v; i > 0; i = i - 1, R0 = R0 + ovs, R1 = R1 + ovs, Cr = Cr + ivs, Ci = Ci + ivs, MAKE_VOLATILE_STRIDE(40, rs), MAKE_VOLATILE_STRIDE(40, csr), MAKE_VOLATILE_STRIDE(40, csi)) {
130 E T1, To, T8, Tq, Ta, Tp, Te, Ts, Th, Tn;
131 T1 = Cr[WS(csr, 2)];
132 To = Ci[WS(csi, 2)];
133 {
134 E T2, T3, T4, T5, T6, T7;
135 T2 = Cr[WS(csr, 4)];
136 T3 = Cr[0];
137 T4 = T2 + T3;
138 T5 = Cr[WS(csr, 3)];
139 T6 = Cr[WS(csr, 1)];
140 T7 = T5 + T6;
141 T8 = T4 + T7;
142 Tq = T5 - T6;
143 Ta = KP1_118033988 * (T7 - T4);
144 Tp = T2 - T3;
145 }
146 {
147 E Tc, Td, Tm, Tf, Tg, Tl;
148 Tc = Ci[WS(csi, 4)];
149 Td = Ci[0];
150 Tm = Tc + Td;
151 Tf = Ci[WS(csi, 1)];
152 Tg = Ci[WS(csi, 3)];
153 Tl = Tg + Tf;
154 Te = Tc - Td;
155 Ts = KP1_118033988 * (Tl + Tm);
156 Th = Tf - Tg;
157 Tn = Tl - Tm;
158 }
159 R0[0] = KP2_000000000 * (T1 + T8);
160 R1[WS(rs, 2)] = KP2_000000000 * (Tn - To);
161 {
162 E Ti, Tj, Tb, Tk, T9;
163 Ti = FNMS(KP1_902113032, Th, KP1_175570504 * Te);
164 Tj = FMA(KP1_175570504, Th, KP1_902113032 * Te);
165 T9 = FNMS(KP2_000000000, T1, KP500000000 * T8);
166 Tb = T9 - Ta;
167 Tk = T9 + Ta;
168 R0[WS(rs, 1)] = Tb + Ti;
169 R0[WS(rs, 3)] = Tk + Tj;
170 R0[WS(rs, 4)] = Ti - Tb;
171 R0[WS(rs, 2)] = Tj - Tk;
172 }
173 {
174 E Tr, Tv, Tu, Tw, Tt;
175 Tr = FMA(KP1_902113032, Tp, KP1_175570504 * Tq);
176 Tv = FNMS(KP1_175570504, Tp, KP1_902113032 * Tq);
177 Tt = FMA(KP500000000, Tn, KP2_000000000 * To);
178 Tu = Ts + Tt;
179 Tw = Tt - Ts;
180 R1[0] = -(Tr + Tu);
181 R1[WS(rs, 3)] = Tw - Tv;
182 R1[WS(rs, 4)] = Tr - Tu;
183 R1[WS(rs, 1)] = Tv + Tw;
184 }
185 }
186 }
187 }
188
189 static const kr2c_desc desc = { 10, "r2cbIII_10", {26, 10, 6, 0}, &GENUS };
190
191 void X(codelet_r2cbIII_10) (planner *p) {
192 X(kr2c_register) (p, r2cbIII_10, &desc);
193 }
194
195 #endif /* HAVE_FMA */