Mercurial > hg > js-dsp-test
comparison fft/fftw/fftw-3.3.4/rdft/scalar/r2cb/hc2cbdft_12.c @ 19:26056e866c29
Add FFTW to comparison table
author | Chris Cannam |
---|---|
date | Tue, 06 Oct 2015 13:08:39 +0100 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
18:8db794ca3e0b | 19:26056e866c29 |
---|---|
1 /* | |
2 * Copyright (c) 2003, 2007-14 Matteo Frigo | |
3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology | |
4 * | |
5 * This program is free software; you can redistribute it and/or modify | |
6 * it under the terms of the GNU General Public License as published by | |
7 * the Free Software Foundation; either version 2 of the License, or | |
8 * (at your option) any later version. | |
9 * | |
10 * This program is distributed in the hope that it will be useful, | |
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
13 * GNU General Public License for more details. | |
14 * | |
15 * You should have received a copy of the GNU General Public License | |
16 * along with this program; if not, write to the Free Software | |
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA | |
18 * | |
19 */ | |
20 | |
21 /* This file was automatically generated --- DO NOT EDIT */ | |
22 /* Generated on Tue Mar 4 13:50:44 EST 2014 */ | |
23 | |
24 #include "codelet-rdft.h" | |
25 | |
26 #ifdef HAVE_FMA | |
27 | |
28 /* Generated by: ../../../genfft/gen_hc2cdft.native -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -sign 1 -n 12 -dif -name hc2cbdft_12 -include hc2cb.h */ | |
29 | |
30 /* | |
31 * This function contains 142 FP additions, 68 FP multiplications, | |
32 * (or, 96 additions, 22 multiplications, 46 fused multiply/add), | |
33 * 81 stack variables, 2 constants, and 48 memory accesses | |
34 */ | |
35 #include "hc2cb.h" | |
36 | |
37 static void hc2cbdft_12(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) | |
38 { | |
39 DK(KP866025403, +0.866025403784438646763723170752936183471402627); | |
40 DK(KP500000000, +0.500000000000000000000000000000000000000000000); | |
41 { | |
42 INT m; | |
43 for (m = mb, W = W + ((mb - 1) * 22); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 22, MAKE_VOLATILE_STRIDE(48, rs)) { | |
44 E T2S, T2V, T2w, T2Z, T2T, T2I, T2Q, T2Y, T2U, T2K, T2G, T30, T2W; | |
45 { | |
46 E Tb, T1Z, T2D, T1E, T1N, T2y, TD, T2t, T1U, T1e, T2o, TY, T1f, TI, T1g; | |
47 E TN, Tm, T1V, T2z, T1H, T1Q, T2E, T19, T2u; | |
48 { | |
49 E T1c, TU, T1d, TX; | |
50 { | |
51 E Tu, T6, TT, TS, T5, Tt, Tw, Tx, TB, T9, Ty; | |
52 { | |
53 E T1, Tp, Tq, Tr, T4, T2, T3, T7, T8, Ts; | |
54 T1 = Rp[0]; | |
55 T2 = Rp[WS(rs, 4)]; | |
56 T3 = Rm[WS(rs, 3)]; | |
57 Tp = Ip[0]; | |
58 Tq = Ip[WS(rs, 4)]; | |
59 Tr = Im[WS(rs, 3)]; | |
60 T4 = T2 + T3; | |
61 Tu = T2 - T3; | |
62 T6 = Rm[WS(rs, 5)]; | |
63 TT = Tr + Tq; | |
64 Ts = Tq - Tr; | |
65 TS = FNMS(KP500000000, T4, T1); | |
66 T5 = T1 + T4; | |
67 T7 = Rm[WS(rs, 1)]; | |
68 T8 = Rp[WS(rs, 2)]; | |
69 T1c = Tp + Ts; | |
70 Tt = FNMS(KP500000000, Ts, Tp); | |
71 Tw = Im[WS(rs, 5)]; | |
72 Tx = Im[WS(rs, 1)]; | |
73 TB = T7 - T8; | |
74 T9 = T7 + T8; | |
75 Ty = Ip[WS(rs, 2)]; | |
76 } | |
77 { | |
78 E T1L, Tv, Ta, TV, TW, Tz; | |
79 T1L = FNMS(KP866025403, Tu, Tt); | |
80 Tv = FMA(KP866025403, Tu, Tt); | |
81 Ta = T6 + T9; | |
82 TV = FNMS(KP500000000, T9, T6); | |
83 TW = Tx + Ty; | |
84 Tz = Tx - Ty; | |
85 { | |
86 E TC, T1M, T1C, TA, T1D; | |
87 T1C = FMA(KP866025403, TT, TS); | |
88 TU = FNMS(KP866025403, TT, TS); | |
89 T1d = Tw + Tz; | |
90 TA = FNMS(KP500000000, Tz, Tw); | |
91 T1D = FNMS(KP866025403, TW, TV); | |
92 TX = FMA(KP866025403, TW, TV); | |
93 Tb = T5 + Ta; | |
94 T1Z = T5 - Ta; | |
95 TC = FNMS(KP866025403, TB, TA); | |
96 T1M = FMA(KP866025403, TB, TA); | |
97 T2D = T1C - T1D; | |
98 T1E = T1C + T1D; | |
99 T1N = T1L - T1M; | |
100 T2y = T1L + T1M; | |
101 TD = Tv + TC; | |
102 T2t = Tv - TC; | |
103 } | |
104 } | |
105 } | |
106 { | |
107 E T12, Th, TH, TE, Tg, T11, T14, TK, T17, Tk, TL; | |
108 { | |
109 E Tc, TZ, TF, TG, Tf, Td, Te, Ti, Tj, T10; | |
110 Tc = Rp[WS(rs, 3)]; | |
111 T1U = T1c + T1d; | |
112 T1e = T1c - T1d; | |
113 T2o = TU + TX; | |
114 TY = TU - TX; | |
115 Td = Rm[WS(rs, 4)]; | |
116 Te = Rm[0]; | |
117 TZ = Ip[WS(rs, 3)]; | |
118 TF = Im[WS(rs, 4)]; | |
119 TG = Im[0]; | |
120 Tf = Td + Te; | |
121 T12 = Td - Te; | |
122 Th = Rm[WS(rs, 2)]; | |
123 TH = TF - TG; | |
124 T10 = TF + TG; | |
125 TE = FNMS(KP500000000, Tf, Tc); | |
126 Tg = Tc + Tf; | |
127 Ti = Rp[WS(rs, 1)]; | |
128 Tj = Rp[WS(rs, 5)]; | |
129 T1f = TZ - T10; | |
130 T11 = FMA(KP500000000, T10, TZ); | |
131 T14 = Im[WS(rs, 2)]; | |
132 TK = Ip[WS(rs, 5)]; | |
133 T17 = Ti - Tj; | |
134 Tk = Ti + Tj; | |
135 TL = Ip[WS(rs, 1)]; | |
136 } | |
137 { | |
138 E T1O, T13, Tl, TJ, TM, T15; | |
139 T1O = FNMS(KP866025403, T12, T11); | |
140 T13 = FMA(KP866025403, T12, T11); | |
141 Tl = Th + Tk; | |
142 TJ = FNMS(KP500000000, Tk, Th); | |
143 TM = TK - TL; | |
144 T15 = TK + TL; | |
145 { | |
146 E T18, T1P, T1F, T16, T1G; | |
147 T1F = FNMS(KP866025403, TH, TE); | |
148 TI = FMA(KP866025403, TH, TE); | |
149 T1g = T15 - T14; | |
150 T16 = FMA(KP500000000, T15, T14); | |
151 T1G = FNMS(KP866025403, TM, TJ); | |
152 TN = FMA(KP866025403, TM, TJ); | |
153 Tm = Tg + Tl; | |
154 T1V = Tg - Tl; | |
155 T18 = FNMS(KP866025403, T17, T16); | |
156 T1P = FMA(KP866025403, T17, T16); | |
157 T2z = T1F - T1G; | |
158 T1H = T1F + T1G; | |
159 T1Q = T1O - T1P; | |
160 T2E = T1O + T1P; | |
161 T19 = T13 + T18; | |
162 T2u = T13 - T18; | |
163 } | |
164 } | |
165 } | |
166 } | |
167 { | |
168 E T20, T2p, T1v, T1s, T1q, T1y, T1u, T1z, T1t; | |
169 { | |
170 E T1m, Tn, T1a, T1p, T1i, To, TP, TR, T1h, TO; | |
171 T1m = Tb - Tm; | |
172 Tn = Tb + Tm; | |
173 T20 = T1f - T1g; | |
174 T1h = T1f + T1g; | |
175 T2p = TI + TN; | |
176 TO = TI - TN; | |
177 T1a = TY - T19; | |
178 T1v = TY + T19; | |
179 T1p = T1e - T1h; | |
180 T1i = T1e + T1h; | |
181 To = W[0]; | |
182 T1s = TD - TO; | |
183 TP = TD + TO; | |
184 TR = W[1]; | |
185 { | |
186 E T1l, T1o, T1n, T1x, T1r; | |
187 { | |
188 E T1j, TQ, T1k, T1b; | |
189 T1j = To * T1a; | |
190 TQ = To * TP; | |
191 T1l = W[10]; | |
192 T1k = FNMS(TR, TP, T1j); | |
193 T1b = FMA(TR, T1a, TQ); | |
194 T1o = W[11]; | |
195 T1n = T1l * T1m; | |
196 Im[0] = T1k - T1i; | |
197 Ip[0] = T1i + T1k; | |
198 Rm[0] = Tn + T1b; | |
199 Rp[0] = Tn - T1b; | |
200 T1x = T1o * T1m; | |
201 T1r = W[12]; | |
202 } | |
203 T1q = FNMS(T1o, T1p, T1n); | |
204 T1y = FMA(T1l, T1p, T1x); | |
205 T1u = W[13]; | |
206 T1z = T1r * T1v; | |
207 T1t = T1r * T1s; | |
208 } | |
209 } | |
210 { | |
211 E T2e, T2h, T1S, T2j, T2f, T26, T2c, T2m, T2g, T24, T22; | |
212 { | |
213 E T2b, T1R, T27, T2a, T1B, T29, T2l, T1K, T1J, T1W, T21, T25, T2d, T23, T1X; | |
214 E T1Y; | |
215 { | |
216 E T1I, T28, T1A, T1w, T1T; | |
217 T1A = FNMS(T1u, T1s, T1z); | |
218 T1w = FMA(T1u, T1v, T1t); | |
219 T1I = T1E - T1H; | |
220 T28 = T1E + T1H; | |
221 T2b = T1N + T1Q; | |
222 T1R = T1N - T1Q; | |
223 Im[WS(rs, 3)] = T1A - T1y; | |
224 Ip[WS(rs, 3)] = T1y + T1A; | |
225 Rm[WS(rs, 3)] = T1q + T1w; | |
226 Rp[WS(rs, 3)] = T1q - T1w; | |
227 T27 = W[14]; | |
228 T2a = W[15]; | |
229 T1B = W[2]; | |
230 T29 = T27 * T28; | |
231 T2l = T2a * T28; | |
232 T1K = W[3]; | |
233 T1J = T1B * T1I; | |
234 T1W = T1U - T1V; | |
235 T2e = T1V + T1U; | |
236 T2h = T1Z - T20; | |
237 T21 = T1Z + T20; | |
238 T25 = T1K * T1I; | |
239 T1T = W[4]; | |
240 T2d = W[16]; | |
241 T23 = T1T * T21; | |
242 T1X = T1T * T1W; | |
243 } | |
244 T1S = FNMS(T1K, T1R, T1J); | |
245 T2j = T2d * T2h; | |
246 T2f = T2d * T2e; | |
247 T26 = FMA(T1B, T1R, T25); | |
248 T1Y = W[5]; | |
249 T2c = FNMS(T2a, T2b, T29); | |
250 T2m = FMA(T27, T2b, T2l); | |
251 T2g = W[17]; | |
252 T24 = FNMS(T1Y, T1W, T23); | |
253 T22 = FMA(T1Y, T21, T1X); | |
254 } | |
255 { | |
256 E T2L, T2O, T2P, T2v, T2N, T2X, T2n, T2s, T2A, T2F, T2r, T2H, T2R, T2J, T2B; | |
257 E T2C; | |
258 { | |
259 E T2q, T2k, T2i, T2M, T2x; | |
260 T2k = FNMS(T2g, T2e, T2j); | |
261 T2i = FMA(T2g, T2h, T2f); | |
262 Im[WS(rs, 1)] = T24 - T26; | |
263 Ip[WS(rs, 1)] = T24 + T26; | |
264 Rm[WS(rs, 1)] = T22 + T1S; | |
265 Rp[WS(rs, 1)] = T1S - T22; | |
266 Im[WS(rs, 4)] = T2k - T2m; | |
267 Ip[WS(rs, 4)] = T2k + T2m; | |
268 Rm[WS(rs, 4)] = T2i + T2c; | |
269 Rp[WS(rs, 4)] = T2c - T2i; | |
270 T2q = T2o + T2p; | |
271 T2M = T2o - T2p; | |
272 T2L = W[18]; | |
273 T2O = W[19]; | |
274 T2P = T2t - T2u; | |
275 T2v = T2t + T2u; | |
276 T2N = T2L * T2M; | |
277 T2X = T2O * T2M; | |
278 T2n = W[6]; | |
279 T2s = W[7]; | |
280 T2S = T2y - T2z; | |
281 T2A = T2y + T2z; | |
282 T2F = T2D - T2E; | |
283 T2V = T2D + T2E; | |
284 T2r = T2n * T2q; | |
285 T2H = T2s * T2q; | |
286 T2x = W[8]; | |
287 T2R = W[20]; | |
288 T2J = T2x * T2F; | |
289 T2B = T2x * T2A; | |
290 } | |
291 T2w = FNMS(T2s, T2v, T2r); | |
292 T2Z = T2R * T2V; | |
293 T2T = T2R * T2S; | |
294 T2I = FMA(T2n, T2v, T2H); | |
295 T2C = W[9]; | |
296 T2Q = FNMS(T2O, T2P, T2N); | |
297 T2Y = FMA(T2L, T2P, T2X); | |
298 T2U = W[21]; | |
299 T2K = FNMS(T2C, T2A, T2J); | |
300 T2G = FMA(T2C, T2F, T2B); | |
301 } | |
302 } | |
303 } | |
304 } | |
305 T30 = FNMS(T2U, T2S, T2Z); | |
306 T2W = FMA(T2U, T2V, T2T); | |
307 Im[WS(rs, 2)] = T2K - T2I; | |
308 Ip[WS(rs, 2)] = T2I + T2K; | |
309 Rm[WS(rs, 2)] = T2w + T2G; | |
310 Rp[WS(rs, 2)] = T2w - T2G; | |
311 Im[WS(rs, 5)] = T30 - T2Y; | |
312 Ip[WS(rs, 5)] = T2Y + T30; | |
313 Rm[WS(rs, 5)] = T2Q + T2W; | |
314 Rp[WS(rs, 5)] = T2Q - T2W; | |
315 } | |
316 } | |
317 } | |
318 | |
319 static const tw_instr twinstr[] = { | |
320 {TW_FULL, 1, 12}, | |
321 {TW_NEXT, 1, 0} | |
322 }; | |
323 | |
324 static const hc2c_desc desc = { 12, "hc2cbdft_12", twinstr, &GENUS, {96, 22, 46, 0} }; | |
325 | |
326 void X(codelet_hc2cbdft_12) (planner *p) { | |
327 X(khc2c_register) (p, hc2cbdft_12, &desc, HC2C_VIA_DFT); | |
328 } | |
329 #else /* HAVE_FMA */ | |
330 | |
331 /* Generated by: ../../../genfft/gen_hc2cdft.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 12 -dif -name hc2cbdft_12 -include hc2cb.h */ | |
332 | |
333 /* | |
334 * This function contains 142 FP additions, 60 FP multiplications, | |
335 * (or, 112 additions, 30 multiplications, 30 fused multiply/add), | |
336 * 47 stack variables, 2 constants, and 48 memory accesses | |
337 */ | |
338 #include "hc2cb.h" | |
339 | |
340 static void hc2cbdft_12(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) | |
341 { | |
342 DK(KP500000000, +0.500000000000000000000000000000000000000000000); | |
343 DK(KP866025403, +0.866025403784438646763723170752936183471402627); | |
344 { | |
345 INT m; | |
346 for (m = mb, W = W + ((mb - 1) * 22); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 22, MAKE_VOLATILE_STRIDE(48, rs)) { | |
347 E Tv, T1E, TC, T1F, TW, T1x, TT, T1w, T1d, T1N, Tb, T1R, TI, T1z, TN; | |
348 E T1A, T17, T1I, T12, T1H, T1g, T1S, Tm, T1O; | |
349 { | |
350 E T1, Tq, T6, TA, T4, Tp, Tt, TS, T9, Tw, Tz, TV; | |
351 T1 = Rp[0]; | |
352 Tq = Ip[0]; | |
353 T6 = Rm[WS(rs, 5)]; | |
354 TA = Im[WS(rs, 5)]; | |
355 { | |
356 E T2, T3, Tr, Ts; | |
357 T2 = Rp[WS(rs, 4)]; | |
358 T3 = Rm[WS(rs, 3)]; | |
359 T4 = T2 + T3; | |
360 Tp = KP866025403 * (T2 - T3); | |
361 Tr = Im[WS(rs, 3)]; | |
362 Ts = Ip[WS(rs, 4)]; | |
363 Tt = Tr - Ts; | |
364 TS = KP866025403 * (Tr + Ts); | |
365 } | |
366 { | |
367 E T7, T8, Tx, Ty; | |
368 T7 = Rm[WS(rs, 1)]; | |
369 T8 = Rp[WS(rs, 2)]; | |
370 T9 = T7 + T8; | |
371 Tw = KP866025403 * (T7 - T8); | |
372 Tx = Im[WS(rs, 1)]; | |
373 Ty = Ip[WS(rs, 2)]; | |
374 Tz = Tx - Ty; | |
375 TV = KP866025403 * (Tx + Ty); | |
376 } | |
377 { | |
378 E Tu, TB, TU, TR; | |
379 Tu = FMA(KP500000000, Tt, Tq); | |
380 Tv = Tp + Tu; | |
381 T1E = Tu - Tp; | |
382 TB = FMS(KP500000000, Tz, TA); | |
383 TC = Tw + TB; | |
384 T1F = TB - Tw; | |
385 TU = FNMS(KP500000000, T9, T6); | |
386 TW = TU + TV; | |
387 T1x = TU - TV; | |
388 TR = FNMS(KP500000000, T4, T1); | |
389 TT = TR - TS; | |
390 T1w = TR + TS; | |
391 { | |
392 E T1b, T1c, T5, Ta; | |
393 T1b = Tq - Tt; | |
394 T1c = Tz + TA; | |
395 T1d = T1b - T1c; | |
396 T1N = T1b + T1c; | |
397 T5 = T1 + T4; | |
398 Ta = T6 + T9; | |
399 Tb = T5 + Ta; | |
400 T1R = T5 - Ta; | |
401 } | |
402 } | |
403 } | |
404 { | |
405 E Tc, T10, Th, T15, Tf, TY, TH, TZ, Tk, T13, TM, T14; | |
406 Tc = Rp[WS(rs, 3)]; | |
407 T10 = Ip[WS(rs, 3)]; | |
408 Th = Rm[WS(rs, 2)]; | |
409 T15 = Im[WS(rs, 2)]; | |
410 { | |
411 E Td, Te, TF, TG; | |
412 Td = Rm[WS(rs, 4)]; | |
413 Te = Rm[0]; | |
414 Tf = Td + Te; | |
415 TY = KP866025403 * (Td - Te); | |
416 TF = Im[WS(rs, 4)]; | |
417 TG = Im[0]; | |
418 TH = KP866025403 * (TF - TG); | |
419 TZ = TF + TG; | |
420 } | |
421 { | |
422 E Ti, Tj, TK, TL; | |
423 Ti = Rp[WS(rs, 1)]; | |
424 Tj = Rp[WS(rs, 5)]; | |
425 Tk = Ti + Tj; | |
426 T13 = KP866025403 * (Ti - Tj); | |
427 TK = Ip[WS(rs, 5)]; | |
428 TL = Ip[WS(rs, 1)]; | |
429 TM = KP866025403 * (TK - TL); | |
430 T14 = TK + TL; | |
431 } | |
432 { | |
433 E TE, TJ, T16, T11; | |
434 TE = FNMS(KP500000000, Tf, Tc); | |
435 TI = TE + TH; | |
436 T1z = TE - TH; | |
437 TJ = FNMS(KP500000000, Tk, Th); | |
438 TN = TJ + TM; | |
439 T1A = TJ - TM; | |
440 T16 = FMA(KP500000000, T14, T15); | |
441 T17 = T13 - T16; | |
442 T1I = T13 + T16; | |
443 T11 = FMA(KP500000000, TZ, T10); | |
444 T12 = TY + T11; | |
445 T1H = T11 - TY; | |
446 { | |
447 E T1e, T1f, Tg, Tl; | |
448 T1e = T10 - TZ; | |
449 T1f = T14 - T15; | |
450 T1g = T1e + T1f; | |
451 T1S = T1e - T1f; | |
452 Tg = Tc + Tf; | |
453 Tl = Th + Tk; | |
454 Tm = Tg + Tl; | |
455 T1O = Tg - Tl; | |
456 } | |
457 } | |
458 } | |
459 { | |
460 E Tn, T1h, TP, T1p, T19, T1r, T1n, T1t; | |
461 Tn = Tb + Tm; | |
462 T1h = T1d + T1g; | |
463 { | |
464 E TD, TO, TX, T18; | |
465 TD = Tv - TC; | |
466 TO = TI - TN; | |
467 TP = TD + TO; | |
468 T1p = TD - TO; | |
469 TX = TT - TW; | |
470 T18 = T12 - T17; | |
471 T19 = TX - T18; | |
472 T1r = TX + T18; | |
473 { | |
474 E T1k, T1m, T1j, T1l; | |
475 T1k = Tb - Tm; | |
476 T1m = T1d - T1g; | |
477 T1j = W[10]; | |
478 T1l = W[11]; | |
479 T1n = FNMS(T1l, T1m, T1j * T1k); | |
480 T1t = FMA(T1l, T1k, T1j * T1m); | |
481 } | |
482 } | |
483 { | |
484 E T1a, T1i, To, TQ; | |
485 To = W[0]; | |
486 TQ = W[1]; | |
487 T1a = FMA(To, TP, TQ * T19); | |
488 T1i = FNMS(TQ, TP, To * T19); | |
489 Rp[0] = Tn - T1a; | |
490 Ip[0] = T1h + T1i; | |
491 Rm[0] = Tn + T1a; | |
492 Im[0] = T1i - T1h; | |
493 } | |
494 { | |
495 E T1s, T1u, T1o, T1q; | |
496 T1o = W[12]; | |
497 T1q = W[13]; | |
498 T1s = FMA(T1o, T1p, T1q * T1r); | |
499 T1u = FNMS(T1q, T1p, T1o * T1r); | |
500 Rp[WS(rs, 3)] = T1n - T1s; | |
501 Ip[WS(rs, 3)] = T1t + T1u; | |
502 Rm[WS(rs, 3)] = T1n + T1s; | |
503 Im[WS(rs, 3)] = T1u - T1t; | |
504 } | |
505 } | |
506 { | |
507 E T1C, T1Y, T1K, T20, T1U, T1V, T26, T27; | |
508 { | |
509 E T1y, T1B, T1G, T1J; | |
510 T1y = T1w + T1x; | |
511 T1B = T1z + T1A; | |
512 T1C = T1y - T1B; | |
513 T1Y = T1y + T1B; | |
514 T1G = T1E + T1F; | |
515 T1J = T1H - T1I; | |
516 T1K = T1G - T1J; | |
517 T20 = T1G + T1J; | |
518 } | |
519 { | |
520 E T1P, T1T, T1M, T1Q; | |
521 T1P = T1N - T1O; | |
522 T1T = T1R + T1S; | |
523 T1M = W[4]; | |
524 T1Q = W[5]; | |
525 T1U = FMA(T1M, T1P, T1Q * T1T); | |
526 T1V = FNMS(T1Q, T1P, T1M * T1T); | |
527 } | |
528 { | |
529 E T23, T25, T22, T24; | |
530 T23 = T1O + T1N; | |
531 T25 = T1R - T1S; | |
532 T22 = W[16]; | |
533 T24 = W[17]; | |
534 T26 = FMA(T22, T23, T24 * T25); | |
535 T27 = FNMS(T24, T23, T22 * T25); | |
536 } | |
537 { | |
538 E T1L, T1W, T1v, T1D; | |
539 T1v = W[2]; | |
540 T1D = W[3]; | |
541 T1L = FNMS(T1D, T1K, T1v * T1C); | |
542 T1W = FMA(T1D, T1C, T1v * T1K); | |
543 Rp[WS(rs, 1)] = T1L - T1U; | |
544 Ip[WS(rs, 1)] = T1V + T1W; | |
545 Rm[WS(rs, 1)] = T1U + T1L; | |
546 Im[WS(rs, 1)] = T1V - T1W; | |
547 } | |
548 { | |
549 E T21, T28, T1X, T1Z; | |
550 T1X = W[14]; | |
551 T1Z = W[15]; | |
552 T21 = FNMS(T1Z, T20, T1X * T1Y); | |
553 T28 = FMA(T1Z, T1Y, T1X * T20); | |
554 Rp[WS(rs, 4)] = T21 - T26; | |
555 Ip[WS(rs, 4)] = T27 + T28; | |
556 Rm[WS(rs, 4)] = T26 + T21; | |
557 Im[WS(rs, 4)] = T27 - T28; | |
558 } | |
559 } | |
560 { | |
561 E T2c, T2u, T2p, T2B, T2g, T2w, T2l, T2z; | |
562 { | |
563 E T2a, T2b, T2n, T2o; | |
564 T2a = TT + TW; | |
565 T2b = TI + TN; | |
566 T2c = T2a + T2b; | |
567 T2u = T2a - T2b; | |
568 T2n = T1w - T1x; | |
569 T2o = T1H + T1I; | |
570 T2p = T2n - T2o; | |
571 T2B = T2n + T2o; | |
572 } | |
573 { | |
574 E T2e, T2f, T2j, T2k; | |
575 T2e = Tv + TC; | |
576 T2f = T12 + T17; | |
577 T2g = T2e + T2f; | |
578 T2w = T2e - T2f; | |
579 T2j = T1E - T1F; | |
580 T2k = T1z - T1A; | |
581 T2l = T2j + T2k; | |
582 T2z = T2j - T2k; | |
583 } | |
584 { | |
585 E T2h, T2r, T2q, T2s; | |
586 { | |
587 E T29, T2d, T2i, T2m; | |
588 T29 = W[6]; | |
589 T2d = W[7]; | |
590 T2h = FNMS(T2d, T2g, T29 * T2c); | |
591 T2r = FMA(T2d, T2c, T29 * T2g); | |
592 T2i = W[8]; | |
593 T2m = W[9]; | |
594 T2q = FMA(T2i, T2l, T2m * T2p); | |
595 T2s = FNMS(T2m, T2l, T2i * T2p); | |
596 } | |
597 Rp[WS(rs, 2)] = T2h - T2q; | |
598 Ip[WS(rs, 2)] = T2r + T2s; | |
599 Rm[WS(rs, 2)] = T2h + T2q; | |
600 Im[WS(rs, 2)] = T2s - T2r; | |
601 } | |
602 { | |
603 E T2x, T2D, T2C, T2E; | |
604 { | |
605 E T2t, T2v, T2y, T2A; | |
606 T2t = W[18]; | |
607 T2v = W[19]; | |
608 T2x = FNMS(T2v, T2w, T2t * T2u); | |
609 T2D = FMA(T2v, T2u, T2t * T2w); | |
610 T2y = W[20]; | |
611 T2A = W[21]; | |
612 T2C = FMA(T2y, T2z, T2A * T2B); | |
613 T2E = FNMS(T2A, T2z, T2y * T2B); | |
614 } | |
615 Rp[WS(rs, 5)] = T2x - T2C; | |
616 Ip[WS(rs, 5)] = T2D + T2E; | |
617 Rm[WS(rs, 5)] = T2x + T2C; | |
618 Im[WS(rs, 5)] = T2E - T2D; | |
619 } | |
620 } | |
621 } | |
622 } | |
623 } | |
624 | |
625 static const tw_instr twinstr[] = { | |
626 {TW_FULL, 1, 12}, | |
627 {TW_NEXT, 1, 0} | |
628 }; | |
629 | |
630 static const hc2c_desc desc = { 12, "hc2cbdft_12", twinstr, &GENUS, {112, 30, 30, 0} }; | |
631 | |
632 void X(codelet_hc2cbdft_12) (planner *p) { | |
633 X(khc2c_register) (p, hc2cbdft_12, &desc, HC2C_VIA_DFT); | |
634 } | |
635 #endif /* HAVE_FMA */ |