comparison fft/fftw/fftw-3.3.4/rdft/scalar/r2cb/hc2cb_8.c @ 19:26056e866c29

Add FFTW to comparison table
author Chris Cannam
date Tue, 06 Oct 2015 13:08:39 +0100
parents
children
comparison
equal deleted inserted replaced
18:8db794ca3e0b 19:26056e866c29
1 /*
2 * Copyright (c) 2003, 2007-14 Matteo Frigo
3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
18 *
19 */
20
21 /* This file was automatically generated --- DO NOT EDIT */
22 /* Generated on Tue Mar 4 13:50:37 EST 2014 */
23
24 #include "codelet-rdft.h"
25
26 #ifdef HAVE_FMA
27
28 /* Generated by: ../../../genfft/gen_hc2c.native -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -sign 1 -n 8 -dif -name hc2cb_8 -include hc2cb.h */
29
30 /*
31 * This function contains 66 FP additions, 36 FP multiplications,
32 * (or, 44 additions, 14 multiplications, 22 fused multiply/add),
33 * 52 stack variables, 1 constants, and 32 memory accesses
34 */
35 #include "hc2cb.h"
36
37 static void hc2cb_8(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
38 {
39 DK(KP707106781, +0.707106781186547524400844362104849039284835938);
40 {
41 INT m;
42 for (m = mb, W = W + ((mb - 1) * 14); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 14, MAKE_VOLATILE_STRIDE(32, rs)) {
43 E Tw, TH, Tf, Ty, Tx, TI;
44 {
45 E TV, TD, T1i, T7, T1b, T1n, TQ, Tk, Tp, TE, Te, T1o, T1e, T1j, Tu;
46 E TF;
47 {
48 E T4, Tg, T3, T19, TC, T5, Th, Ti;
49 {
50 E T1, T2, TA, TB;
51 T1 = Rp[0];
52 T2 = Rm[WS(rs, 3)];
53 TA = Ip[0];
54 TB = Im[WS(rs, 3)];
55 T4 = Rp[WS(rs, 2)];
56 Tg = T1 - T2;
57 T3 = T1 + T2;
58 T19 = TA - TB;
59 TC = TA + TB;
60 T5 = Rm[WS(rs, 1)];
61 Th = Ip[WS(rs, 2)];
62 Ti = Im[WS(rs, 1)];
63 }
64 {
65 E Tb, Tl, Ta, T1c, To, Tc, Tr, Ts;
66 {
67 E T8, T9, Tm, Tn;
68 T8 = Rp[WS(rs, 1)];
69 {
70 E Tz, T6, T1a, Tj;
71 Tz = T4 - T5;
72 T6 = T4 + T5;
73 T1a = Th - Ti;
74 Tj = Th + Ti;
75 TV = TC - Tz;
76 TD = Tz + TC;
77 T1i = T3 - T6;
78 T7 = T3 + T6;
79 T1b = T19 + T1a;
80 T1n = T19 - T1a;
81 TQ = Tg + Tj;
82 Tk = Tg - Tj;
83 T9 = Rm[WS(rs, 2)];
84 }
85 Tm = Ip[WS(rs, 1)];
86 Tn = Im[WS(rs, 2)];
87 Tb = Rm[0];
88 Tl = T8 - T9;
89 Ta = T8 + T9;
90 T1c = Tm - Tn;
91 To = Tm + Tn;
92 Tc = Rp[WS(rs, 3)];
93 Tr = Ip[WS(rs, 3)];
94 Ts = Im[0];
95 }
96 {
97 E Tq, Td, T1d, Tt;
98 Tp = Tl - To;
99 TE = Tl + To;
100 Tq = Tb - Tc;
101 Td = Tb + Tc;
102 T1d = Tr - Ts;
103 Tt = Tr + Ts;
104 Te = Ta + Td;
105 T1o = Ta - Td;
106 T1e = T1c + T1d;
107 T1j = T1d - T1c;
108 Tu = Tq - Tt;
109 TF = Tq + Tt;
110 }
111 }
112 }
113 {
114 E TG, Tv, T10, T13, T1s, T1k, T1p, T1v, T1u, T1w, T1t, TR, TW;
115 Rp[0] = T7 + Te;
116 Rm[0] = T1b + T1e;
117 TG = TE - TF;
118 TR = TE + TF;
119 TW = Tp - Tu;
120 Tv = Tp + Tu;
121 {
122 E TP, TS, TX, TU, T1r, TT, TY;
123 TP = W[4];
124 T10 = FMA(KP707106781, TR, TQ);
125 TS = FNMS(KP707106781, TR, TQ);
126 TX = FMA(KP707106781, TW, TV);
127 T13 = FNMS(KP707106781, TW, TV);
128 TU = W[5];
129 T1s = T1i + T1j;
130 T1k = T1i - T1j;
131 TT = TP * TS;
132 TY = TP * TX;
133 T1p = T1n - T1o;
134 T1v = T1o + T1n;
135 T1r = W[2];
136 Ip[WS(rs, 1)] = FNMS(TU, TX, TT);
137 Im[WS(rs, 1)] = FMA(TU, TS, TY);
138 T1u = W[3];
139 T1w = T1r * T1v;
140 T1t = T1r * T1s;
141 }
142 {
143 E T1f, T15, T18, T17, T1g, T1h, T1m;
144 {
145 E TZ, T12, T16, T14, T11;
146 Rm[WS(rs, 1)] = FMA(T1u, T1s, T1w);
147 Rp[WS(rs, 1)] = FNMS(T1u, T1v, T1t);
148 TZ = W[12];
149 T12 = W[13];
150 T1f = T1b - T1e;
151 T16 = T7 - Te;
152 T14 = TZ * T13;
153 T11 = TZ * T10;
154 T15 = W[6];
155 T18 = W[7];
156 Im[WS(rs, 3)] = FMA(T12, T10, T14);
157 Ip[WS(rs, 3)] = FNMS(T12, T13, T11);
158 T17 = T15 * T16;
159 T1g = T18 * T16;
160 }
161 Rp[WS(rs, 2)] = FNMS(T18, T1f, T17);
162 Rm[WS(rs, 2)] = FMA(T15, T1f, T1g);
163 T1h = W[10];
164 T1m = W[11];
165 {
166 E TN, TJ, TM, TL, TO, TK, T1q, T1l;
167 Tw = FNMS(KP707106781, Tv, Tk);
168 TK = FMA(KP707106781, Tv, Tk);
169 T1q = T1h * T1p;
170 T1l = T1h * T1k;
171 TN = FMA(KP707106781, TG, TD);
172 TH = FNMS(KP707106781, TG, TD);
173 Rm[WS(rs, 3)] = FMA(T1m, T1k, T1q);
174 Rp[WS(rs, 3)] = FNMS(T1m, T1p, T1l);
175 TJ = W[0];
176 TM = W[1];
177 Tf = W[8];
178 TL = TJ * TK;
179 TO = TM * TK;
180 Ty = W[9];
181 Tx = Tf * Tw;
182 Ip[0] = FNMS(TM, TN, TL);
183 Im[0] = FMA(TJ, TN, TO);
184 }
185 }
186 }
187 }
188 Ip[WS(rs, 2)] = FNMS(Ty, TH, Tx);
189 TI = Ty * Tw;
190 Im[WS(rs, 2)] = FMA(Tf, TH, TI);
191 }
192 }
193 }
194
195 static const tw_instr twinstr[] = {
196 {TW_FULL, 1, 8},
197 {TW_NEXT, 1, 0}
198 };
199
200 static const hc2c_desc desc = { 8, "hc2cb_8", twinstr, &GENUS, {44, 14, 22, 0} };
201
202 void X(codelet_hc2cb_8) (planner *p) {
203 X(khc2c_register) (p, hc2cb_8, &desc, HC2C_VIA_RDFT);
204 }
205 #else /* HAVE_FMA */
206
207 /* Generated by: ../../../genfft/gen_hc2c.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 8 -dif -name hc2cb_8 -include hc2cb.h */
208
209 /*
210 * This function contains 66 FP additions, 32 FP multiplications,
211 * (or, 52 additions, 18 multiplications, 14 fused multiply/add),
212 * 30 stack variables, 1 constants, and 32 memory accesses
213 */
214 #include "hc2cb.h"
215
216 static void hc2cb_8(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
217 {
218 DK(KP707106781, +0.707106781186547524400844362104849039284835938);
219 {
220 INT m;
221 for (m = mb, W = W + ((mb - 1) * 14); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 14, MAKE_VOLATILE_STRIDE(32, rs)) {
222 E T7, T18, T1c, To, Ty, TM, TY, TC, Te, TZ, T10, Tv, Tz, TP, TS;
223 E TD;
224 {
225 E T3, TK, Tk, TX, T6, TW, Tn, TL;
226 {
227 E T1, T2, Ti, Tj;
228 T1 = Rp[0];
229 T2 = Rm[WS(rs, 3)];
230 T3 = T1 + T2;
231 TK = T1 - T2;
232 Ti = Ip[0];
233 Tj = Im[WS(rs, 3)];
234 Tk = Ti - Tj;
235 TX = Ti + Tj;
236 }
237 {
238 E T4, T5, Tl, Tm;
239 T4 = Rp[WS(rs, 2)];
240 T5 = Rm[WS(rs, 1)];
241 T6 = T4 + T5;
242 TW = T4 - T5;
243 Tl = Ip[WS(rs, 2)];
244 Tm = Im[WS(rs, 1)];
245 Tn = Tl - Tm;
246 TL = Tl + Tm;
247 }
248 T7 = T3 + T6;
249 T18 = TK + TL;
250 T1c = TX - TW;
251 To = Tk + Tn;
252 Ty = T3 - T6;
253 TM = TK - TL;
254 TY = TW + TX;
255 TC = Tk - Tn;
256 }
257 {
258 E Ta, TN, Tr, TO, Td, TQ, Tu, TR;
259 {
260 E T8, T9, Tp, Tq;
261 T8 = Rp[WS(rs, 1)];
262 T9 = Rm[WS(rs, 2)];
263 Ta = T8 + T9;
264 TN = T8 - T9;
265 Tp = Ip[WS(rs, 1)];
266 Tq = Im[WS(rs, 2)];
267 Tr = Tp - Tq;
268 TO = Tp + Tq;
269 }
270 {
271 E Tb, Tc, Ts, Tt;
272 Tb = Rm[0];
273 Tc = Rp[WS(rs, 3)];
274 Td = Tb + Tc;
275 TQ = Tb - Tc;
276 Ts = Ip[WS(rs, 3)];
277 Tt = Im[0];
278 Tu = Ts - Tt;
279 TR = Ts + Tt;
280 }
281 Te = Ta + Td;
282 TZ = TN + TO;
283 T10 = TQ + TR;
284 Tv = Tr + Tu;
285 Tz = Tu - Tr;
286 TP = TN - TO;
287 TS = TQ - TR;
288 TD = Ta - Td;
289 }
290 Rp[0] = T7 + Te;
291 Rm[0] = To + Tv;
292 {
293 E Tg, Tw, Tf, Th;
294 Tg = T7 - Te;
295 Tw = To - Tv;
296 Tf = W[6];
297 Th = W[7];
298 Rp[WS(rs, 2)] = FNMS(Th, Tw, Tf * Tg);
299 Rm[WS(rs, 2)] = FMA(Th, Tg, Tf * Tw);
300 }
301 {
302 E TG, TI, TF, TH;
303 TG = Ty + Tz;
304 TI = TD + TC;
305 TF = W[2];
306 TH = W[3];
307 Rp[WS(rs, 1)] = FNMS(TH, TI, TF * TG);
308 Rm[WS(rs, 1)] = FMA(TF, TI, TH * TG);
309 }
310 {
311 E TA, TE, Tx, TB;
312 TA = Ty - Tz;
313 TE = TC - TD;
314 Tx = W[10];
315 TB = W[11];
316 Rp[WS(rs, 3)] = FNMS(TB, TE, Tx * TA);
317 Rm[WS(rs, 3)] = FMA(Tx, TE, TB * TA);
318 }
319 {
320 E T1a, T1g, T1e, T1i, T19, T1d;
321 T19 = KP707106781 * (TZ + T10);
322 T1a = T18 - T19;
323 T1g = T18 + T19;
324 T1d = KP707106781 * (TP - TS);
325 T1e = T1c + T1d;
326 T1i = T1c - T1d;
327 {
328 E T17, T1b, T1f, T1h;
329 T17 = W[4];
330 T1b = W[5];
331 Ip[WS(rs, 1)] = FNMS(T1b, T1e, T17 * T1a);
332 Im[WS(rs, 1)] = FMA(T17, T1e, T1b * T1a);
333 T1f = W[12];
334 T1h = W[13];
335 Ip[WS(rs, 3)] = FNMS(T1h, T1i, T1f * T1g);
336 Im[WS(rs, 3)] = FMA(T1f, T1i, T1h * T1g);
337 }
338 }
339 {
340 E TU, T14, T12, T16, TT, T11;
341 TT = KP707106781 * (TP + TS);
342 TU = TM - TT;
343 T14 = TM + TT;
344 T11 = KP707106781 * (TZ - T10);
345 T12 = TY - T11;
346 T16 = TY + T11;
347 {
348 E TJ, TV, T13, T15;
349 TJ = W[8];
350 TV = W[9];
351 Ip[WS(rs, 2)] = FNMS(TV, T12, TJ * TU);
352 Im[WS(rs, 2)] = FMA(TV, TU, TJ * T12);
353 T13 = W[0];
354 T15 = W[1];
355 Ip[0] = FNMS(T15, T16, T13 * T14);
356 Im[0] = FMA(T15, T14, T13 * T16);
357 }
358 }
359 }
360 }
361 }
362
363 static const tw_instr twinstr[] = {
364 {TW_FULL, 1, 8},
365 {TW_NEXT, 1, 0}
366 };
367
368 static const hc2c_desc desc = { 8, "hc2cb_8", twinstr, &GENUS, {52, 18, 14, 0} };
369
370 void X(codelet_hc2cb_8) (planner *p) {
371 X(khc2c_register) (p, hc2cb_8, &desc, HC2C_VIA_RDFT);
372 }
373 #endif /* HAVE_FMA */