comparison fft/fftw/fftw-3.3.4/rdft/scalar/r2cb/hc2cb_6.c @ 19:26056e866c29

Add FFTW to comparison table
author Chris Cannam
date Tue, 06 Oct 2015 13:08:39 +0100
parents
children
comparison
equal deleted inserted replaced
18:8db794ca3e0b 19:26056e866c29
1 /*
2 * Copyright (c) 2003, 2007-14 Matteo Frigo
3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
18 *
19 */
20
21 /* This file was automatically generated --- DO NOT EDIT */
22 /* Generated on Tue Mar 4 13:50:37 EST 2014 */
23
24 #include "codelet-rdft.h"
25
26 #ifdef HAVE_FMA
27
28 /* Generated by: ../../../genfft/gen_hc2c.native -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -sign 1 -n 6 -dif -name hc2cb_6 -include hc2cb.h */
29
30 /*
31 * This function contains 46 FP additions, 32 FP multiplications,
32 * (or, 24 additions, 10 multiplications, 22 fused multiply/add),
33 * 45 stack variables, 2 constants, and 24 memory accesses
34 */
35 #include "hc2cb.h"
36
37 static void hc2cb_6(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
38 {
39 DK(KP866025403, +0.866025403784438646763723170752936183471402627);
40 DK(KP500000000, +0.500000000000000000000000000000000000000000000);
41 {
42 INT m;
43 for (m = mb, W = W + ((mb - 1) * 10); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 10, MAKE_VOLATILE_STRIDE(24, rs)) {
44 E TK, TR, TB, TM, TL, TS;
45 {
46 E Td, TN, TO, TJ, Tn, Tk, TC, T3, Tr, T7, T8, T4, T5;
47 {
48 E TI, Tj, Tg, TH, Te, Tf, T1, T2;
49 {
50 E Tb, Tc, Th, Ti;
51 Tb = Ip[0];
52 Tc = Im[WS(rs, 2)];
53 Th = Ip[WS(rs, 1)];
54 Ti = Im[WS(rs, 1)];
55 Te = Ip[WS(rs, 2)];
56 Td = Tb - Tc;
57 TN = Tb + Tc;
58 Tf = Im[0];
59 TI = Th + Ti;
60 Tj = Th - Ti;
61 }
62 Tg = Te - Tf;
63 TH = Te + Tf;
64 T1 = Rp[0];
65 T2 = Rm[WS(rs, 2)];
66 TO = TH - TI;
67 TJ = TH + TI;
68 Tn = Tj - Tg;
69 Tk = Tg + Tj;
70 TC = T1 - T2;
71 T3 = T1 + T2;
72 Tr = FNMS(KP500000000, Tk, Td);
73 T7 = Rm[WS(rs, 1)];
74 T8 = Rp[WS(rs, 1)];
75 T4 = Rp[WS(rs, 2)];
76 T5 = Rm[0];
77 }
78 {
79 E Tl, Tq, TQ, Ts, Ta, T10, TG;
80 Rm[0] = Td + Tk;
81 {
82 E T9, TE, T6, TD, TF;
83 T9 = T7 + T8;
84 TE = T7 - T8;
85 T6 = T4 + T5;
86 TD = T4 - T5;
87 Tl = W[2];
88 Tq = W[3];
89 TQ = TD - TE;
90 TF = TD + TE;
91 Ts = T6 - T9;
92 Ta = T6 + T9;
93 T10 = TC + TF;
94 TG = FNMS(KP500000000, TF, TC);
95 }
96 {
97 E T13, TP, Tz, TZ, Tw, T14, Tv, Ty;
98 {
99 E Tt, T12, T11, Tp, Tm, To, Tu;
100 T13 = TN + TO;
101 TP = FNMS(KP500000000, TO, TN);
102 Rp[0] = T3 + Ta;
103 Tm = FNMS(KP500000000, Ta, T3);
104 Tz = FMA(KP866025403, Ts, Tr);
105 Tt = FNMS(KP866025403, Ts, Tr);
106 TZ = W[4];
107 To = FNMS(KP866025403, Tn, Tm);
108 Tw = FMA(KP866025403, Tn, Tm);
109 Tu = Tl * Tt;
110 T12 = W[5];
111 T11 = TZ * T10;
112 Tp = Tl * To;
113 Rm[WS(rs, 1)] = FMA(Tq, To, Tu);
114 T14 = T12 * T10;
115 Ip[WS(rs, 1)] = FNMS(T12, T13, T11);
116 Rp[WS(rs, 1)] = FNMS(Tq, Tt, Tp);
117 }
118 Im[WS(rs, 1)] = FMA(TZ, T13, T14);
119 Tv = W[6];
120 Ty = W[7];
121 {
122 E TX, TT, TW, TV, TY, TU, TA, Tx;
123 TK = FNMS(KP866025403, TJ, TG);
124 TU = FMA(KP866025403, TJ, TG);
125 TA = Tv * Tz;
126 Tx = Tv * Tw;
127 TX = FNMS(KP866025403, TQ, TP);
128 TR = FMA(KP866025403, TQ, TP);
129 Rm[WS(rs, 2)] = FMA(Ty, Tw, TA);
130 Rp[WS(rs, 2)] = FNMS(Ty, Tz, Tx);
131 TT = W[8];
132 TW = W[9];
133 TB = W[0];
134 TV = TT * TU;
135 TY = TW * TU;
136 TM = W[1];
137 TL = TB * TK;
138 Ip[WS(rs, 2)] = FNMS(TW, TX, TV);
139 Im[WS(rs, 2)] = FMA(TT, TX, TY);
140 }
141 }
142 }
143 }
144 Ip[0] = FNMS(TM, TR, TL);
145 TS = TM * TK;
146 Im[0] = FMA(TB, TR, TS);
147 }
148 }
149 }
150
151 static const tw_instr twinstr[] = {
152 {TW_FULL, 1, 6},
153 {TW_NEXT, 1, 0}
154 };
155
156 static const hc2c_desc desc = { 6, "hc2cb_6", twinstr, &GENUS, {24, 10, 22, 0} };
157
158 void X(codelet_hc2cb_6) (planner *p) {
159 X(khc2c_register) (p, hc2cb_6, &desc, HC2C_VIA_RDFT);
160 }
161 #else /* HAVE_FMA */
162
163 /* Generated by: ../../../genfft/gen_hc2c.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 6 -dif -name hc2cb_6 -include hc2cb.h */
164
165 /*
166 * This function contains 46 FP additions, 28 FP multiplications,
167 * (or, 32 additions, 14 multiplications, 14 fused multiply/add),
168 * 25 stack variables, 2 constants, and 24 memory accesses
169 */
170 #include "hc2cb.h"
171
172 static void hc2cb_6(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
173 {
174 DK(KP500000000, +0.500000000000000000000000000000000000000000000);
175 DK(KP866025403, +0.866025403784438646763723170752936183471402627);
176 {
177 INT m;
178 for (m = mb, W = W + ((mb - 1) * 10); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 10, MAKE_VOLATILE_STRIDE(24, rs)) {
179 E T3, Ty, Td, TE, Ta, TO, Tr, TB, Tk, TL, Tn, TH;
180 {
181 E T1, T2, Tb, Tc;
182 T1 = Rp[0];
183 T2 = Rm[WS(rs, 2)];
184 T3 = T1 + T2;
185 Ty = T1 - T2;
186 Tb = Ip[0];
187 Tc = Im[WS(rs, 2)];
188 Td = Tb - Tc;
189 TE = Tb + Tc;
190 }
191 {
192 E T6, Tz, T9, TA;
193 {
194 E T4, T5, T7, T8;
195 T4 = Rp[WS(rs, 2)];
196 T5 = Rm[0];
197 T6 = T4 + T5;
198 Tz = T4 - T5;
199 T7 = Rm[WS(rs, 1)];
200 T8 = Rp[WS(rs, 1)];
201 T9 = T7 + T8;
202 TA = T7 - T8;
203 }
204 Ta = T6 + T9;
205 TO = KP866025403 * (Tz - TA);
206 Tr = KP866025403 * (T6 - T9);
207 TB = Tz + TA;
208 }
209 {
210 E Tg, TG, Tj, TF;
211 {
212 E Te, Tf, Th, Ti;
213 Te = Ip[WS(rs, 2)];
214 Tf = Im[0];
215 Tg = Te - Tf;
216 TG = Te + Tf;
217 Th = Ip[WS(rs, 1)];
218 Ti = Im[WS(rs, 1)];
219 Tj = Th - Ti;
220 TF = Th + Ti;
221 }
222 Tk = Tg + Tj;
223 TL = KP866025403 * (TG + TF);
224 Tn = KP866025403 * (Tj - Tg);
225 TH = TF - TG;
226 }
227 Rp[0] = T3 + Ta;
228 Rm[0] = Td + Tk;
229 {
230 E TC, TI, Tx, TD;
231 TC = Ty + TB;
232 TI = TE - TH;
233 Tx = W[4];
234 TD = W[5];
235 Ip[WS(rs, 1)] = FNMS(TD, TI, Tx * TC);
236 Im[WS(rs, 1)] = FMA(TD, TC, Tx * TI);
237 }
238 {
239 E To, Tu, Ts, Tw, Tm, Tq;
240 Tm = FNMS(KP500000000, Ta, T3);
241 To = Tm - Tn;
242 Tu = Tm + Tn;
243 Tq = FNMS(KP500000000, Tk, Td);
244 Ts = Tq - Tr;
245 Tw = Tr + Tq;
246 {
247 E Tl, Tp, Tt, Tv;
248 Tl = W[2];
249 Tp = W[3];
250 Rp[WS(rs, 1)] = FNMS(Tp, Ts, Tl * To);
251 Rm[WS(rs, 1)] = FMA(Tl, Ts, Tp * To);
252 Tt = W[6];
253 Tv = W[7];
254 Rp[WS(rs, 2)] = FNMS(Tv, Tw, Tt * Tu);
255 Rm[WS(rs, 2)] = FMA(Tt, Tw, Tv * Tu);
256 }
257 }
258 {
259 E TM, TS, TQ, TU, TK, TP;
260 TK = FNMS(KP500000000, TB, Ty);
261 TM = TK - TL;
262 TS = TK + TL;
263 TP = FMA(KP500000000, TH, TE);
264 TQ = TO + TP;
265 TU = TP - TO;
266 {
267 E TJ, TN, TR, TT;
268 TJ = W[0];
269 TN = W[1];
270 Ip[0] = FNMS(TN, TQ, TJ * TM);
271 Im[0] = FMA(TN, TM, TJ * TQ);
272 TR = W[8];
273 TT = W[9];
274 Ip[WS(rs, 2)] = FNMS(TT, TU, TR * TS);
275 Im[WS(rs, 2)] = FMA(TT, TS, TR * TU);
276 }
277 }
278 }
279 }
280 }
281
282 static const tw_instr twinstr[] = {
283 {TW_FULL, 1, 6},
284 {TW_NEXT, 1, 0}
285 };
286
287 static const hc2c_desc desc = { 6, "hc2cb_6", twinstr, &GENUS, {32, 14, 14, 0} };
288
289 void X(codelet_hc2cb_6) (planner *p) {
290 X(khc2c_register) (p, hc2cb_6, &desc, HC2C_VIA_RDFT);
291 }
292 #endif /* HAVE_FMA */