Mercurial > hg > js-dsp-test
comparison fft/fftw/fftw-3.3.4/rdft/scalar/r2cb/hc2cb_6.c @ 19:26056e866c29
Add FFTW to comparison table
author | Chris Cannam |
---|---|
date | Tue, 06 Oct 2015 13:08:39 +0100 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
18:8db794ca3e0b | 19:26056e866c29 |
---|---|
1 /* | |
2 * Copyright (c) 2003, 2007-14 Matteo Frigo | |
3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology | |
4 * | |
5 * This program is free software; you can redistribute it and/or modify | |
6 * it under the terms of the GNU General Public License as published by | |
7 * the Free Software Foundation; either version 2 of the License, or | |
8 * (at your option) any later version. | |
9 * | |
10 * This program is distributed in the hope that it will be useful, | |
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
13 * GNU General Public License for more details. | |
14 * | |
15 * You should have received a copy of the GNU General Public License | |
16 * along with this program; if not, write to the Free Software | |
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA | |
18 * | |
19 */ | |
20 | |
21 /* This file was automatically generated --- DO NOT EDIT */ | |
22 /* Generated on Tue Mar 4 13:50:37 EST 2014 */ | |
23 | |
24 #include "codelet-rdft.h" | |
25 | |
26 #ifdef HAVE_FMA | |
27 | |
28 /* Generated by: ../../../genfft/gen_hc2c.native -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -sign 1 -n 6 -dif -name hc2cb_6 -include hc2cb.h */ | |
29 | |
30 /* | |
31 * This function contains 46 FP additions, 32 FP multiplications, | |
32 * (or, 24 additions, 10 multiplications, 22 fused multiply/add), | |
33 * 45 stack variables, 2 constants, and 24 memory accesses | |
34 */ | |
35 #include "hc2cb.h" | |
36 | |
37 static void hc2cb_6(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) | |
38 { | |
39 DK(KP866025403, +0.866025403784438646763723170752936183471402627); | |
40 DK(KP500000000, +0.500000000000000000000000000000000000000000000); | |
41 { | |
42 INT m; | |
43 for (m = mb, W = W + ((mb - 1) * 10); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 10, MAKE_VOLATILE_STRIDE(24, rs)) { | |
44 E TK, TR, TB, TM, TL, TS; | |
45 { | |
46 E Td, TN, TO, TJ, Tn, Tk, TC, T3, Tr, T7, T8, T4, T5; | |
47 { | |
48 E TI, Tj, Tg, TH, Te, Tf, T1, T2; | |
49 { | |
50 E Tb, Tc, Th, Ti; | |
51 Tb = Ip[0]; | |
52 Tc = Im[WS(rs, 2)]; | |
53 Th = Ip[WS(rs, 1)]; | |
54 Ti = Im[WS(rs, 1)]; | |
55 Te = Ip[WS(rs, 2)]; | |
56 Td = Tb - Tc; | |
57 TN = Tb + Tc; | |
58 Tf = Im[0]; | |
59 TI = Th + Ti; | |
60 Tj = Th - Ti; | |
61 } | |
62 Tg = Te - Tf; | |
63 TH = Te + Tf; | |
64 T1 = Rp[0]; | |
65 T2 = Rm[WS(rs, 2)]; | |
66 TO = TH - TI; | |
67 TJ = TH + TI; | |
68 Tn = Tj - Tg; | |
69 Tk = Tg + Tj; | |
70 TC = T1 - T2; | |
71 T3 = T1 + T2; | |
72 Tr = FNMS(KP500000000, Tk, Td); | |
73 T7 = Rm[WS(rs, 1)]; | |
74 T8 = Rp[WS(rs, 1)]; | |
75 T4 = Rp[WS(rs, 2)]; | |
76 T5 = Rm[0]; | |
77 } | |
78 { | |
79 E Tl, Tq, TQ, Ts, Ta, T10, TG; | |
80 Rm[0] = Td + Tk; | |
81 { | |
82 E T9, TE, T6, TD, TF; | |
83 T9 = T7 + T8; | |
84 TE = T7 - T8; | |
85 T6 = T4 + T5; | |
86 TD = T4 - T5; | |
87 Tl = W[2]; | |
88 Tq = W[3]; | |
89 TQ = TD - TE; | |
90 TF = TD + TE; | |
91 Ts = T6 - T9; | |
92 Ta = T6 + T9; | |
93 T10 = TC + TF; | |
94 TG = FNMS(KP500000000, TF, TC); | |
95 } | |
96 { | |
97 E T13, TP, Tz, TZ, Tw, T14, Tv, Ty; | |
98 { | |
99 E Tt, T12, T11, Tp, Tm, To, Tu; | |
100 T13 = TN + TO; | |
101 TP = FNMS(KP500000000, TO, TN); | |
102 Rp[0] = T3 + Ta; | |
103 Tm = FNMS(KP500000000, Ta, T3); | |
104 Tz = FMA(KP866025403, Ts, Tr); | |
105 Tt = FNMS(KP866025403, Ts, Tr); | |
106 TZ = W[4]; | |
107 To = FNMS(KP866025403, Tn, Tm); | |
108 Tw = FMA(KP866025403, Tn, Tm); | |
109 Tu = Tl * Tt; | |
110 T12 = W[5]; | |
111 T11 = TZ * T10; | |
112 Tp = Tl * To; | |
113 Rm[WS(rs, 1)] = FMA(Tq, To, Tu); | |
114 T14 = T12 * T10; | |
115 Ip[WS(rs, 1)] = FNMS(T12, T13, T11); | |
116 Rp[WS(rs, 1)] = FNMS(Tq, Tt, Tp); | |
117 } | |
118 Im[WS(rs, 1)] = FMA(TZ, T13, T14); | |
119 Tv = W[6]; | |
120 Ty = W[7]; | |
121 { | |
122 E TX, TT, TW, TV, TY, TU, TA, Tx; | |
123 TK = FNMS(KP866025403, TJ, TG); | |
124 TU = FMA(KP866025403, TJ, TG); | |
125 TA = Tv * Tz; | |
126 Tx = Tv * Tw; | |
127 TX = FNMS(KP866025403, TQ, TP); | |
128 TR = FMA(KP866025403, TQ, TP); | |
129 Rm[WS(rs, 2)] = FMA(Ty, Tw, TA); | |
130 Rp[WS(rs, 2)] = FNMS(Ty, Tz, Tx); | |
131 TT = W[8]; | |
132 TW = W[9]; | |
133 TB = W[0]; | |
134 TV = TT * TU; | |
135 TY = TW * TU; | |
136 TM = W[1]; | |
137 TL = TB * TK; | |
138 Ip[WS(rs, 2)] = FNMS(TW, TX, TV); | |
139 Im[WS(rs, 2)] = FMA(TT, TX, TY); | |
140 } | |
141 } | |
142 } | |
143 } | |
144 Ip[0] = FNMS(TM, TR, TL); | |
145 TS = TM * TK; | |
146 Im[0] = FMA(TB, TR, TS); | |
147 } | |
148 } | |
149 } | |
150 | |
151 static const tw_instr twinstr[] = { | |
152 {TW_FULL, 1, 6}, | |
153 {TW_NEXT, 1, 0} | |
154 }; | |
155 | |
156 static const hc2c_desc desc = { 6, "hc2cb_6", twinstr, &GENUS, {24, 10, 22, 0} }; | |
157 | |
158 void X(codelet_hc2cb_6) (planner *p) { | |
159 X(khc2c_register) (p, hc2cb_6, &desc, HC2C_VIA_RDFT); | |
160 } | |
161 #else /* HAVE_FMA */ | |
162 | |
163 /* Generated by: ../../../genfft/gen_hc2c.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 6 -dif -name hc2cb_6 -include hc2cb.h */ | |
164 | |
165 /* | |
166 * This function contains 46 FP additions, 28 FP multiplications, | |
167 * (or, 32 additions, 14 multiplications, 14 fused multiply/add), | |
168 * 25 stack variables, 2 constants, and 24 memory accesses | |
169 */ | |
170 #include "hc2cb.h" | |
171 | |
172 static void hc2cb_6(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) | |
173 { | |
174 DK(KP500000000, +0.500000000000000000000000000000000000000000000); | |
175 DK(KP866025403, +0.866025403784438646763723170752936183471402627); | |
176 { | |
177 INT m; | |
178 for (m = mb, W = W + ((mb - 1) * 10); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 10, MAKE_VOLATILE_STRIDE(24, rs)) { | |
179 E T3, Ty, Td, TE, Ta, TO, Tr, TB, Tk, TL, Tn, TH; | |
180 { | |
181 E T1, T2, Tb, Tc; | |
182 T1 = Rp[0]; | |
183 T2 = Rm[WS(rs, 2)]; | |
184 T3 = T1 + T2; | |
185 Ty = T1 - T2; | |
186 Tb = Ip[0]; | |
187 Tc = Im[WS(rs, 2)]; | |
188 Td = Tb - Tc; | |
189 TE = Tb + Tc; | |
190 } | |
191 { | |
192 E T6, Tz, T9, TA; | |
193 { | |
194 E T4, T5, T7, T8; | |
195 T4 = Rp[WS(rs, 2)]; | |
196 T5 = Rm[0]; | |
197 T6 = T4 + T5; | |
198 Tz = T4 - T5; | |
199 T7 = Rm[WS(rs, 1)]; | |
200 T8 = Rp[WS(rs, 1)]; | |
201 T9 = T7 + T8; | |
202 TA = T7 - T8; | |
203 } | |
204 Ta = T6 + T9; | |
205 TO = KP866025403 * (Tz - TA); | |
206 Tr = KP866025403 * (T6 - T9); | |
207 TB = Tz + TA; | |
208 } | |
209 { | |
210 E Tg, TG, Tj, TF; | |
211 { | |
212 E Te, Tf, Th, Ti; | |
213 Te = Ip[WS(rs, 2)]; | |
214 Tf = Im[0]; | |
215 Tg = Te - Tf; | |
216 TG = Te + Tf; | |
217 Th = Ip[WS(rs, 1)]; | |
218 Ti = Im[WS(rs, 1)]; | |
219 Tj = Th - Ti; | |
220 TF = Th + Ti; | |
221 } | |
222 Tk = Tg + Tj; | |
223 TL = KP866025403 * (TG + TF); | |
224 Tn = KP866025403 * (Tj - Tg); | |
225 TH = TF - TG; | |
226 } | |
227 Rp[0] = T3 + Ta; | |
228 Rm[0] = Td + Tk; | |
229 { | |
230 E TC, TI, Tx, TD; | |
231 TC = Ty + TB; | |
232 TI = TE - TH; | |
233 Tx = W[4]; | |
234 TD = W[5]; | |
235 Ip[WS(rs, 1)] = FNMS(TD, TI, Tx * TC); | |
236 Im[WS(rs, 1)] = FMA(TD, TC, Tx * TI); | |
237 } | |
238 { | |
239 E To, Tu, Ts, Tw, Tm, Tq; | |
240 Tm = FNMS(KP500000000, Ta, T3); | |
241 To = Tm - Tn; | |
242 Tu = Tm + Tn; | |
243 Tq = FNMS(KP500000000, Tk, Td); | |
244 Ts = Tq - Tr; | |
245 Tw = Tr + Tq; | |
246 { | |
247 E Tl, Tp, Tt, Tv; | |
248 Tl = W[2]; | |
249 Tp = W[3]; | |
250 Rp[WS(rs, 1)] = FNMS(Tp, Ts, Tl * To); | |
251 Rm[WS(rs, 1)] = FMA(Tl, Ts, Tp * To); | |
252 Tt = W[6]; | |
253 Tv = W[7]; | |
254 Rp[WS(rs, 2)] = FNMS(Tv, Tw, Tt * Tu); | |
255 Rm[WS(rs, 2)] = FMA(Tt, Tw, Tv * Tu); | |
256 } | |
257 } | |
258 { | |
259 E TM, TS, TQ, TU, TK, TP; | |
260 TK = FNMS(KP500000000, TB, Ty); | |
261 TM = TK - TL; | |
262 TS = TK + TL; | |
263 TP = FMA(KP500000000, TH, TE); | |
264 TQ = TO + TP; | |
265 TU = TP - TO; | |
266 { | |
267 E TJ, TN, TR, TT; | |
268 TJ = W[0]; | |
269 TN = W[1]; | |
270 Ip[0] = FNMS(TN, TQ, TJ * TM); | |
271 Im[0] = FMA(TN, TM, TJ * TQ); | |
272 TR = W[8]; | |
273 TT = W[9]; | |
274 Ip[WS(rs, 2)] = FNMS(TT, TU, TR * TS); | |
275 Im[WS(rs, 2)] = FMA(TT, TS, TR * TU); | |
276 } | |
277 } | |
278 } | |
279 } | |
280 } | |
281 | |
282 static const tw_instr twinstr[] = { | |
283 {TW_FULL, 1, 6}, | |
284 {TW_NEXT, 1, 0} | |
285 }; | |
286 | |
287 static const hc2c_desc desc = { 6, "hc2cb_6", twinstr, &GENUS, {32, 14, 14, 0} }; | |
288 | |
289 void X(codelet_hc2cb_6) (planner *p) { | |
290 X(khc2c_register) (p, hc2cb_6, &desc, HC2C_VIA_RDFT); | |
291 } | |
292 #endif /* HAVE_FMA */ |