Mercurial > hg > js-dsp-test
comparison fft/fftw/fftw-3.3.4/rdft/scalar/r2cb/hc2cb_32.c @ 19:26056e866c29
Add FFTW to comparison table
author | Chris Cannam |
---|---|
date | Tue, 06 Oct 2015 13:08:39 +0100 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
18:8db794ca3e0b | 19:26056e866c29 |
---|---|
1 /* | |
2 * Copyright (c) 2003, 2007-14 Matteo Frigo | |
3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology | |
4 * | |
5 * This program is free software; you can redistribute it and/or modify | |
6 * it under the terms of the GNU General Public License as published by | |
7 * the Free Software Foundation; either version 2 of the License, or | |
8 * (at your option) any later version. | |
9 * | |
10 * This program is distributed in the hope that it will be useful, | |
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
13 * GNU General Public License for more details. | |
14 * | |
15 * You should have received a copy of the GNU General Public License | |
16 * along with this program; if not, write to the Free Software | |
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA | |
18 * | |
19 */ | |
20 | |
21 /* This file was automatically generated --- DO NOT EDIT */ | |
22 /* Generated on Tue Mar 4 13:50:38 EST 2014 */ | |
23 | |
24 #include "codelet-rdft.h" | |
25 | |
26 #ifdef HAVE_FMA | |
27 | |
28 /* Generated by: ../../../genfft/gen_hc2c.native -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -sign 1 -n 32 -dif -name hc2cb_32 -include hc2cb.h */ | |
29 | |
30 /* | |
31 * This function contains 434 FP additions, 260 FP multiplications, | |
32 * (or, 236 additions, 62 multiplications, 198 fused multiply/add), | |
33 * 137 stack variables, 7 constants, and 128 memory accesses | |
34 */ | |
35 #include "hc2cb.h" | |
36 | |
37 static void hc2cb_32(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) | |
38 { | |
39 DK(KP980785280, +0.980785280403230449126182236134239036973933731); | |
40 DK(KP198912367, +0.198912367379658006911597622644676228597850501); | |
41 DK(KP831469612, +0.831469612302545237078788377617905756738560812); | |
42 DK(KP668178637, +0.668178637919298919997757686523080761552472251); | |
43 DK(KP923879532, +0.923879532511286756128183189396788286822416626); | |
44 DK(KP414213562, +0.414213562373095048801688724209698078569671875); | |
45 DK(KP707106781, +0.707106781186547524400844362104849039284835938); | |
46 { | |
47 INT m; | |
48 for (m = mb, W = W + ((mb - 1) * 62); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 62, MAKE_VOLATILE_STRIDE(128, rs)) { | |
49 E T5o, T5r, T5q, T5n, T5s, T5p; | |
50 { | |
51 E T5K, Tf, T8k, T7k, T8x, T7N, T3i, T1i, T3v, T2L, T5f, T4v, T6T, T6m, T52; | |
52 E T42, TZ, T6X, T3p, T1X, T8B, T8p, T3o, T26, T58, T4n, T7T, T7z, T59, T4k; | |
53 E T6p, T6a, TK, T6W, T8s, T8A, T2o, T3m, T3l, T2x, T55, T4g, T7S, T7G, T56; | |
54 E T4d, T6o, T61, T5Q, T5N, T6f, Tu, T8y, T7r, T8l, T7Q, T3w, T1F, T45, T48; | |
55 E T3j, T2O, T53, T4y, T62, T69; | |
56 { | |
57 E T6l, T6i, T40, T41; | |
58 { | |
59 E T12, T3, T6g, T2G, T2D, T6, T6h, T15, Td, T6k, T1g, T2J, Ta, T17, T1a; | |
60 E T6j; | |
61 { | |
62 E T4, T5, T13, T14; | |
63 { | |
64 E T1, T2, T2E, T2F; | |
65 T1 = Rp[0]; | |
66 T2 = Rm[WS(rs, 15)]; | |
67 T2E = Ip[0]; | |
68 T2F = Im[WS(rs, 15)]; | |
69 T4 = Rp[WS(rs, 8)]; | |
70 T12 = T1 - T2; | |
71 T3 = T1 + T2; | |
72 T6g = T2E - T2F; | |
73 T2G = T2E + T2F; | |
74 T5 = Rm[WS(rs, 7)]; | |
75 } | |
76 T13 = Ip[WS(rs, 8)]; | |
77 T14 = Im[WS(rs, 7)]; | |
78 { | |
79 E Tb, Tc, T1d, T1e; | |
80 Tb = Rm[WS(rs, 3)]; | |
81 T2D = T4 - T5; | |
82 T6 = T4 + T5; | |
83 T6h = T13 - T14; | |
84 T15 = T13 + T14; | |
85 Tc = Rp[WS(rs, 12)]; | |
86 T1d = Ip[WS(rs, 12)]; | |
87 T1e = Im[WS(rs, 3)]; | |
88 { | |
89 E T8, T1c, T1f, T9, T18, T19; | |
90 T8 = Rp[WS(rs, 4)]; | |
91 Td = Tb + Tc; | |
92 T1c = Tb - Tc; | |
93 T6k = T1d - T1e; | |
94 T1f = T1d + T1e; | |
95 T9 = Rm[WS(rs, 11)]; | |
96 T18 = Ip[WS(rs, 4)]; | |
97 T19 = Im[WS(rs, 11)]; | |
98 T1g = T1c - T1f; | |
99 T2J = T1c + T1f; | |
100 Ta = T8 + T9; | |
101 T17 = T8 - T9; | |
102 T1a = T18 + T19; | |
103 T6j = T18 - T19; | |
104 } | |
105 } | |
106 } | |
107 { | |
108 E T2I, T7M, T7L, T16, T1h, T4u, T4t, T2H, T2K; | |
109 { | |
110 E T7i, T7, T1b, Te, T7j; | |
111 T7i = T3 - T6; | |
112 T7 = T3 + T6; | |
113 T2I = T17 + T1a; | |
114 T1b = T17 - T1a; | |
115 Te = Ta + Td; | |
116 T7M = Ta - Td; | |
117 T7j = T6k - T6j; | |
118 T6l = T6j + T6k; | |
119 T6i = T6g + T6h; | |
120 T7L = T6g - T6h; | |
121 T5K = T7 - Te; | |
122 Tf = T7 + Te; | |
123 T8k = T7i + T7j; | |
124 T7k = T7i - T7j; | |
125 T40 = T12 + T15; | |
126 T16 = T12 - T15; | |
127 T1h = T1b + T1g; | |
128 T4u = T1b - T1g; | |
129 } | |
130 T4t = T2G - T2D; | |
131 T2H = T2D + T2G; | |
132 T8x = T7M + T7L; | |
133 T7N = T7L - T7M; | |
134 T3i = FMA(KP707106781, T1h, T16); | |
135 T1i = FNMS(KP707106781, T1h, T16); | |
136 T2K = T2I - T2J; | |
137 T41 = T2I + T2J; | |
138 T3v = FMA(KP707106781, T2K, T2H); | |
139 T2L = FNMS(KP707106781, T2K, T2H); | |
140 T5f = FNMS(KP707106781, T4u, T4t); | |
141 T4v = FMA(KP707106781, T4u, T4t); | |
142 } | |
143 } | |
144 { | |
145 E T1Y, T1H, TR, T7w, T1K, T21, T65, T7t, TU, T66, T23, T1Q, T1R, TX, T67; | |
146 E T1U, TY, T7u; | |
147 { | |
148 E TL, TM, TO, TP, T63, T64; | |
149 TL = Rm[0]; | |
150 T6T = T6i + T6l; | |
151 T6m = T6i - T6l; | |
152 T52 = FMA(KP707106781, T41, T40); | |
153 T42 = FNMS(KP707106781, T41, T40); | |
154 TM = Rp[WS(rs, 15)]; | |
155 TO = Rp[WS(rs, 7)]; | |
156 TP = Rm[WS(rs, 8)]; | |
157 { | |
158 E T1I, TN, TQ, T1J, T1Z, T20; | |
159 T1I = Ip[WS(rs, 15)]; | |
160 T1Y = TL - TM; | |
161 TN = TL + TM; | |
162 T1H = TO - TP; | |
163 TQ = TO + TP; | |
164 T1J = Im[0]; | |
165 T1Z = Ip[WS(rs, 7)]; | |
166 T20 = Im[WS(rs, 8)]; | |
167 TR = TN + TQ; | |
168 T7w = TN - TQ; | |
169 T1K = T1I + T1J; | |
170 T63 = T1I - T1J; | |
171 T64 = T1Z - T20; | |
172 T21 = T1Z + T20; | |
173 } | |
174 { | |
175 E TV, T1M, T1P, TW, T1S, T1T; | |
176 { | |
177 E TS, TT, T1N, T1O; | |
178 TS = Rp[WS(rs, 3)]; | |
179 T65 = T63 + T64; | |
180 T7t = T63 - T64; | |
181 TT = Rm[WS(rs, 12)]; | |
182 T1N = Ip[WS(rs, 3)]; | |
183 T1O = Im[WS(rs, 12)]; | |
184 TV = Rm[WS(rs, 4)]; | |
185 T1M = TS - TT; | |
186 TU = TS + TT; | |
187 T66 = T1N - T1O; | |
188 T1P = T1N + T1O; | |
189 TW = Rp[WS(rs, 11)]; | |
190 T1S = Ip[WS(rs, 11)]; | |
191 T1T = Im[WS(rs, 4)]; | |
192 } | |
193 T23 = T1M - T1P; | |
194 T1Q = T1M + T1P; | |
195 T1R = TV - TW; | |
196 TX = TV + TW; | |
197 T67 = T1S - T1T; | |
198 T1U = T1S + T1T; | |
199 } | |
200 } | |
201 TY = TU + TX; | |
202 T7u = TU - TX; | |
203 { | |
204 E T7x, T68, T1V, T24; | |
205 T7x = T67 - T66; | |
206 T68 = T66 + T67; | |
207 T1V = T1R + T1U; | |
208 T24 = T1R - T1U; | |
209 { | |
210 E T4l, T1L, T1W, T4j, T7v, T8n, T8o, T7y; | |
211 T62 = TR - TY; | |
212 TZ = TR + TY; | |
213 T6X = T65 + T68; | |
214 T69 = T65 - T68; | |
215 T4l = T1H + T1K; | |
216 T1L = T1H - T1K; | |
217 T1W = T1Q - T1V; | |
218 T4j = T1Q + T1V; | |
219 T7v = T7t - T7u; | |
220 T8n = T7u + T7t; | |
221 T8o = T7w + T7x; | |
222 T7y = T7w - T7x; | |
223 { | |
224 E T4i, T22, T25, T4m; | |
225 T4i = T1Y + T21; | |
226 T22 = T1Y - T21; | |
227 T3p = FMA(KP707106781, T1W, T1L); | |
228 T1X = FNMS(KP707106781, T1W, T1L); | |
229 T8B = FMA(KP414213562, T8n, T8o); | |
230 T8p = FNMS(KP414213562, T8o, T8n); | |
231 T25 = T23 + T24; | |
232 T4m = T23 - T24; | |
233 T3o = FMA(KP707106781, T25, T22); | |
234 T26 = FNMS(KP707106781, T25, T22); | |
235 T58 = FMA(KP707106781, T4m, T4l); | |
236 T4n = FNMS(KP707106781, T4m, T4l); | |
237 T7T = FNMS(KP414213562, T7v, T7y); | |
238 T7z = FMA(KP414213562, T7y, T7v); | |
239 T59 = FMA(KP707106781, T4j, T4i); | |
240 T4k = FNMS(KP707106781, T4j, T4i); | |
241 } | |
242 } | |
243 } | |
244 } | |
245 } | |
246 { | |
247 E T5T, T60, T4c, T4b; | |
248 { | |
249 E T2p, T28, T2b, T7D, TC, T2s, T7A, T5W, TF, T2j, T5X, T2i, TI, T2k, T2u; | |
250 E T2h; | |
251 { | |
252 E Tz, Ty, TA, Tw, Tx; | |
253 Tw = Rp[WS(rs, 1)]; | |
254 Tx = Rm[WS(rs, 14)]; | |
255 Tz = Rp[WS(rs, 9)]; | |
256 T6p = T69 - T62; | |
257 T6a = T62 + T69; | |
258 Ty = Tw + Tx; | |
259 T2p = Tw - Tx; | |
260 TA = Rm[WS(rs, 6)]; | |
261 { | |
262 E T5U, T5V, T2d, T2g; | |
263 { | |
264 E T2q, T2r, T29, T2a, TB; | |
265 T29 = Ip[WS(rs, 1)]; | |
266 T2a = Im[WS(rs, 14)]; | |
267 TB = Tz + TA; | |
268 T28 = Tz - TA; | |
269 T2q = Ip[WS(rs, 9)]; | |
270 T5U = T29 - T2a; | |
271 T2b = T29 + T2a; | |
272 T2r = Im[WS(rs, 6)]; | |
273 T7D = Ty - TB; | |
274 TC = Ty + TB; | |
275 T2s = T2q + T2r; | |
276 T5V = T2q - T2r; | |
277 } | |
278 { | |
279 E T2e, T2f, TD, TE, TG, TH; | |
280 TD = Rp[WS(rs, 5)]; | |
281 TE = Rm[WS(rs, 10)]; | |
282 T7A = T5U - T5V; | |
283 T5W = T5U + T5V; | |
284 T2e = Ip[WS(rs, 5)]; | |
285 T2d = TD - TE; | |
286 TF = TD + TE; | |
287 T2f = Im[WS(rs, 10)]; | |
288 TG = Rm[WS(rs, 2)]; | |
289 TH = Rp[WS(rs, 13)]; | |
290 T2j = Ip[WS(rs, 13)]; | |
291 T5X = T2e - T2f; | |
292 T2g = T2e + T2f; | |
293 T2i = TG - TH; | |
294 TI = TG + TH; | |
295 T2k = Im[WS(rs, 2)]; | |
296 } | |
297 T2u = T2d - T2g; | |
298 T2h = T2d + T2g; | |
299 } | |
300 } | |
301 { | |
302 E TJ, T7B, T2l, T5Y; | |
303 TJ = TF + TI; | |
304 T7B = TF - TI; | |
305 T2l = T2j + T2k; | |
306 T5Y = T2j - T2k; | |
307 { | |
308 E T4e, T2c, T2v, T8q, T7C, T7F, T8r, T2n, T7E, T2m, T5Z, T4f, T2t, T2w; | |
309 T4e = T2b - T28; | |
310 T2c = T28 + T2b; | |
311 TK = TC + TJ; | |
312 T5T = TC - TJ; | |
313 T7E = T5Y - T5X; | |
314 T5Z = T5X + T5Y; | |
315 T2m = T2i + T2l; | |
316 T2v = T2i - T2l; | |
317 T60 = T5W - T5Z; | |
318 T6W = T5W + T5Z; | |
319 T8q = T7B + T7A; | |
320 T7C = T7A - T7B; | |
321 T7F = T7D - T7E; | |
322 T8r = T7D + T7E; | |
323 T2n = T2h - T2m; | |
324 T4c = T2h + T2m; | |
325 T4b = T2p + T2s; | |
326 T2t = T2p - T2s; | |
327 T2w = T2u + T2v; | |
328 T4f = T2v - T2u; | |
329 T8s = FMA(KP414213562, T8r, T8q); | |
330 T8A = FNMS(KP414213562, T8q, T8r); | |
331 T2o = FNMS(KP707106781, T2n, T2c); | |
332 T3m = FMA(KP707106781, T2n, T2c); | |
333 T3l = FMA(KP707106781, T2w, T2t); | |
334 T2x = FNMS(KP707106781, T2w, T2t); | |
335 T55 = FMA(KP707106781, T4f, T4e); | |
336 T4g = FNMS(KP707106781, T4f, T4e); | |
337 T7S = FMA(KP414213562, T7C, T7F); | |
338 T7G = FNMS(KP414213562, T7F, T7C); | |
339 } | |
340 } | |
341 } | |
342 { | |
343 E T43, T1y, T7o, Tm, T7p, T44, T1D, Tq, T1o, Tp, T5L, T1m, Tr, T1p, T1q; | |
344 { | |
345 E Tj, T1z, Ti, T5O, T1x, Tk, T1A, T1B; | |
346 { | |
347 E Tg, Th, T1v, T1w; | |
348 Tg = Rp[WS(rs, 2)]; | |
349 T56 = FMA(KP707106781, T4c, T4b); | |
350 T4d = FNMS(KP707106781, T4c, T4b); | |
351 T6o = T5T + T60; | |
352 T61 = T5T - T60; | |
353 Th = Rm[WS(rs, 13)]; | |
354 T1v = Ip[WS(rs, 2)]; | |
355 T1w = Im[WS(rs, 13)]; | |
356 Tj = Rp[WS(rs, 10)]; | |
357 T1z = Tg - Th; | |
358 Ti = Tg + Th; | |
359 T5O = T1v - T1w; | |
360 T1x = T1v + T1w; | |
361 Tk = Rm[WS(rs, 5)]; | |
362 T1A = Ip[WS(rs, 10)]; | |
363 T1B = Im[WS(rs, 5)]; | |
364 } | |
365 { | |
366 E Tn, To, T1k, T1l; | |
367 Tn = Rm[WS(rs, 1)]; | |
368 { | |
369 E T1u, Tl, T5P, T1C; | |
370 T1u = Tj - Tk; | |
371 Tl = Tj + Tk; | |
372 T5P = T1A - T1B; | |
373 T1C = T1A + T1B; | |
374 T43 = T1x - T1u; | |
375 T1y = T1u + T1x; | |
376 T7o = Ti - Tl; | |
377 Tm = Ti + Tl; | |
378 T5Q = T5O + T5P; | |
379 T7p = T5O - T5P; | |
380 T44 = T1z + T1C; | |
381 T1D = T1z - T1C; | |
382 To = Rp[WS(rs, 14)]; | |
383 } | |
384 T1k = Ip[WS(rs, 14)]; | |
385 T1l = Im[WS(rs, 1)]; | |
386 Tq = Rp[WS(rs, 6)]; | |
387 T1o = Tn - To; | |
388 Tp = Tn + To; | |
389 T5L = T1k - T1l; | |
390 T1m = T1k + T1l; | |
391 Tr = Rm[WS(rs, 9)]; | |
392 T1p = Ip[WS(rs, 6)]; | |
393 T1q = Im[WS(rs, 9)]; | |
394 } | |
395 } | |
396 { | |
397 E T46, T47, T7P, T7O, T2N, T1t, T1E, T2M, T4w, T4x; | |
398 { | |
399 E T1n, Tt, T1s, T7n, T7q, T7m, T7l; | |
400 { | |
401 E T1j, Ts, T5M, T1r; | |
402 T1j = Tq - Tr; | |
403 Ts = Tq + Tr; | |
404 T5M = T1p - T1q; | |
405 T1r = T1p + T1q; | |
406 T46 = T1j + T1m; | |
407 T1n = T1j - T1m; | |
408 T7m = Tp - Ts; | |
409 Tt = Tp + Ts; | |
410 T5N = T5L + T5M; | |
411 T7l = T5L - T5M; | |
412 T47 = T1o + T1r; | |
413 T1s = T1o - T1r; | |
414 } | |
415 T7P = T7m + T7l; | |
416 T7n = T7l - T7m; | |
417 T7q = T7o + T7p; | |
418 T7O = T7o - T7p; | |
419 T6f = Tm - Tt; | |
420 Tu = Tm + Tt; | |
421 T8y = T7q + T7n; | |
422 T7r = T7n - T7q; | |
423 T2N = FMA(KP414213562, T1n, T1s); | |
424 T1t = FNMS(KP414213562, T1s, T1n); | |
425 T1E = FMA(KP414213562, T1D, T1y); | |
426 T2M = FNMS(KP414213562, T1y, T1D); | |
427 } | |
428 T8l = T7O + T7P; | |
429 T7Q = T7O - T7P; | |
430 T3w = T1E + T1t; | |
431 T1F = T1t - T1E; | |
432 T45 = FNMS(KP414213562, T44, T43); | |
433 T4w = FMA(KP414213562, T43, T44); | |
434 T4x = FMA(KP414213562, T46, T47); | |
435 T48 = FNMS(KP414213562, T47, T46); | |
436 T3j = T2M + T2N; | |
437 T2O = T2M - T2N; | |
438 T53 = T4w + T4x; | |
439 T4y = T4w - T4x; | |
440 } | |
441 } | |
442 } | |
443 { | |
444 E T72, T5g, T49, T78, T77, T73, T7s, T7U, T7R, T7H, T3f, T3e, T3d; | |
445 { | |
446 E T5R, T8m, T8C, T8z, T8t, T8e, T86, T88, T8h, T8f, T8i, T8c, T8g; | |
447 { | |
448 E T6P, T6Q, T6Z, T6S, T6R; | |
449 { | |
450 E Tv, T10, T6V, T6Y, T6U; | |
451 T72 = Tf - Tu; | |
452 Tv = Tf + Tu; | |
453 T6U = T5Q + T5N; | |
454 T5R = T5N - T5Q; | |
455 T5g = T48 - T45; | |
456 T49 = T45 + T48; | |
457 T10 = TK + TZ; | |
458 T78 = TK - TZ; | |
459 T77 = T6T - T6U; | |
460 T6V = T6T + T6U; | |
461 T6Y = T6W + T6X; | |
462 T73 = T6X - T6W; | |
463 T6P = W[30]; | |
464 Rp[0] = Tv + T10; | |
465 T6Q = Tv - T10; | |
466 Rm[0] = T6V + T6Y; | |
467 T6Z = T6V - T6Y; | |
468 T6S = W[31]; | |
469 T6R = T6P * T6Q; | |
470 } | |
471 { | |
472 E T8O, T8W, T8Q, T8Z, T8X, T90, T8U, T8Y; | |
473 { | |
474 E T8R, T8S, T8M, T8N, T70; | |
475 T8M = FMA(KP707106781, T8l, T8k); | |
476 T8m = FNMS(KP707106781, T8l, T8k); | |
477 T8C = T8A - T8B; | |
478 T8N = T8A + T8B; | |
479 T70 = T6S * T6Q; | |
480 Rp[WS(rs, 8)] = FNMS(T6S, T6Z, T6R); | |
481 T8R = FMA(KP707106781, T8y, T8x); | |
482 T8z = FNMS(KP707106781, T8y, T8x); | |
483 T8O = FNMS(KP923879532, T8N, T8M); | |
484 T8W = FMA(KP923879532, T8N, T8M); | |
485 Rm[WS(rs, 8)] = FMA(T6P, T6Z, T70); | |
486 T8S = T8s + T8p; | |
487 T8t = T8p - T8s; | |
488 { | |
489 E T8L, T8T, T8P, T8V; | |
490 T8L = W[34]; | |
491 T8Q = W[35]; | |
492 T8V = W[2]; | |
493 T8Z = FMA(KP923879532, T8S, T8R); | |
494 T8T = FNMS(KP923879532, T8S, T8R); | |
495 T8P = T8L * T8O; | |
496 T8X = T8V * T8W; | |
497 T90 = T8V * T8Z; | |
498 T8U = T8L * T8T; | |
499 Rp[WS(rs, 9)] = FNMS(T8Q, T8T, T8P); | |
500 T8Y = W[3]; | |
501 } | |
502 } | |
503 { | |
504 E T89, T8a, T84, T85; | |
505 T84 = FNMS(KP707106781, T7r, T7k); | |
506 T7s = FMA(KP707106781, T7r, T7k); | |
507 Rm[WS(rs, 9)] = FMA(T8Q, T8O, T8U); | |
508 T85 = T7S + T7T; | |
509 T7U = T7S - T7T; | |
510 Rm[WS(rs, 1)] = FMA(T8Y, T8W, T90); | |
511 Rp[WS(rs, 1)] = FNMS(T8Y, T8Z, T8X); | |
512 T7R = FMA(KP707106781, T7Q, T7N); | |
513 T89 = FNMS(KP707106781, T7Q, T7N); | |
514 T8e = FMA(KP923879532, T85, T84); | |
515 T86 = FNMS(KP923879532, T85, T84); | |
516 T8a = T7G + T7z; | |
517 T7H = T7z - T7G; | |
518 { | |
519 E T83, T8b, T87, T8d; | |
520 T83 = W[26]; | |
521 T88 = W[27]; | |
522 T8d = W[58]; | |
523 T8h = FMA(KP923879532, T8a, T89); | |
524 T8b = FNMS(KP923879532, T8a, T89); | |
525 T87 = T83 * T86; | |
526 T8f = T8d * T8e; | |
527 T8i = T8d * T8h; | |
528 T8c = T83 * T8b; | |
529 Rp[WS(rs, 7)] = FNMS(T88, T8b, T87); | |
530 T8g = W[59]; | |
531 } | |
532 } | |
533 } | |
534 } | |
535 { | |
536 E T5S, T6q, T6n, T6K, T6C, T6b, T6E, T6N, T6L, T6O, T6I, T6M; | |
537 { | |
538 E T6F, T6G, T6A, T6B; | |
539 T6A = T5K - T5R; | |
540 T5S = T5K + T5R; | |
541 Rm[WS(rs, 7)] = FMA(T88, T86, T8c); | |
542 T6B = T6p - T6o; | |
543 T6q = T6o + T6p; | |
544 Rm[WS(rs, 15)] = FMA(T8g, T8e, T8i); | |
545 Rp[WS(rs, 15)] = FNMS(T8g, T8h, T8f); | |
546 T6n = T6f + T6m; | |
547 T6F = T6m - T6f; | |
548 T6K = FMA(KP707106781, T6B, T6A); | |
549 T6C = FNMS(KP707106781, T6B, T6A); | |
550 T6G = T61 - T6a; | |
551 T6b = T61 + T6a; | |
552 { | |
553 E T6z, T6H, T6D, T6J; | |
554 T6z = W[54]; | |
555 T6E = W[55]; | |
556 T6J = W[22]; | |
557 T6N = FMA(KP707106781, T6G, T6F); | |
558 T6H = FNMS(KP707106781, T6G, T6F); | |
559 T6D = T6z * T6C; | |
560 T6L = T6J * T6K; | |
561 T6O = T6J * T6N; | |
562 T6I = T6z * T6H; | |
563 Rp[WS(rs, 14)] = FNMS(T6E, T6H, T6D); | |
564 T6M = W[23]; | |
565 } | |
566 } | |
567 { | |
568 E T8G, T8F, T8J, T8H, T8I, T8u; | |
569 Rm[WS(rs, 14)] = FMA(T6E, T6C, T6I); | |
570 Rm[WS(rs, 6)] = FMA(T6M, T6K, T6O); | |
571 Rp[WS(rs, 6)] = FNMS(T6M, T6N, T6L); | |
572 T8G = FMA(KP923879532, T8t, T8m); | |
573 T8u = FNMS(KP923879532, T8t, T8m); | |
574 { | |
575 E T8j, T8w, T8D, T8v, T8E; | |
576 T8j = W[50]; | |
577 T8w = W[51]; | |
578 T8F = W[18]; | |
579 T8J = FMA(KP923879532, T8C, T8z); | |
580 T8D = FNMS(KP923879532, T8C, T8z); | |
581 T8v = T8j * T8u; | |
582 T8E = T8w * T8u; | |
583 T8H = T8F * T8G; | |
584 T8I = W[19]; | |
585 Rp[WS(rs, 13)] = FNMS(T8w, T8D, T8v); | |
586 Rm[WS(rs, 13)] = FMA(T8j, T8D, T8E); | |
587 } | |
588 { | |
589 E T6c, T6u, T6x, T6r, T8K, T5J, T6e; | |
590 Rp[WS(rs, 5)] = FNMS(T8I, T8J, T8H); | |
591 T8K = T8I * T8G; | |
592 Rm[WS(rs, 5)] = FMA(T8F, T8J, T8K); | |
593 T6c = FNMS(KP707106781, T6b, T5S); | |
594 T6u = FMA(KP707106781, T6b, T5S); | |
595 T6x = FMA(KP707106781, T6q, T6n); | |
596 T6r = FNMS(KP707106781, T6q, T6n); | |
597 T5J = W[38]; | |
598 T6e = W[39]; | |
599 { | |
600 E T6t, T6w, T6d, T6s, T6v, T6y; | |
601 T6t = W[6]; | |
602 T6w = W[7]; | |
603 T6d = T5J * T6c; | |
604 T6s = T6e * T6c; | |
605 T6v = T6t * T6u; | |
606 T6y = T6w * T6u; | |
607 Rp[WS(rs, 10)] = FNMS(T6e, T6r, T6d); | |
608 Rm[WS(rs, 10)] = FMA(T5J, T6r, T6s); | |
609 Rp[WS(rs, 2)] = FNMS(T6w, T6x, T6v); | |
610 Rm[WS(rs, 2)] = FMA(T6t, T6x, T6y); | |
611 } | |
612 } | |
613 } | |
614 } | |
615 } | |
616 { | |
617 E T7c, T7f, T7e, T7g, T7d; | |
618 { | |
619 E T71, T74, T79, T76, T75, T7b, T7a; | |
620 T71 = W[46]; | |
621 T7c = T72 + T73; | |
622 T74 = T72 - T73; | |
623 T7f = T78 + T77; | |
624 T79 = T77 - T78; | |
625 T76 = W[47]; | |
626 T75 = T71 * T74; | |
627 T7b = W[14]; | |
628 T7a = T71 * T79; | |
629 T7e = W[15]; | |
630 Rp[WS(rs, 12)] = FNMS(T76, T79, T75); | |
631 T7g = T7b * T7f; | |
632 T7d = T7b * T7c; | |
633 Rm[WS(rs, 12)] = FMA(T76, T74, T7a); | |
634 } | |
635 { | |
636 E T81, T7X, T80, T7Z, T82; | |
637 Rm[WS(rs, 4)] = FMA(T7e, T7c, T7g); | |
638 Rp[WS(rs, 4)] = FNMS(T7e, T7f, T7d); | |
639 { | |
640 E T7h, T7Y, T7I, T7V, T7K, T7J, T7W; | |
641 T7h = W[42]; | |
642 T7Y = FMA(KP923879532, T7H, T7s); | |
643 T7I = FNMS(KP923879532, T7H, T7s); | |
644 T81 = FMA(KP923879532, T7U, T7R); | |
645 T7V = FNMS(KP923879532, T7U, T7R); | |
646 T7K = W[43]; | |
647 T7J = T7h * T7I; | |
648 T7X = W[10]; | |
649 T80 = W[11]; | |
650 T7W = T7K * T7I; | |
651 Rp[WS(rs, 11)] = FNMS(T7K, T7V, T7J); | |
652 T7Z = T7X * T7Y; | |
653 T82 = T80 * T7Y; | |
654 Rm[WS(rs, 11)] = FMA(T7h, T7V, T7W); | |
655 } | |
656 { | |
657 E T2P, T37, T1G, T32, T2R, T2Q, T38, T2z, T27, T2y; | |
658 T2P = FMA(KP923879532, T2O, T2L); | |
659 T37 = FNMS(KP923879532, T2O, T2L); | |
660 Rp[WS(rs, 3)] = FNMS(T80, T81, T7Z); | |
661 Rm[WS(rs, 3)] = FMA(T7X, T81, T82); | |
662 T1G = FMA(KP923879532, T1F, T1i); | |
663 T32 = FNMS(KP923879532, T1F, T1i); | |
664 T2R = FNMS(KP668178637, T1X, T26); | |
665 T27 = FMA(KP668178637, T26, T1X); | |
666 T2y = FNMS(KP668178637, T2x, T2o); | |
667 T2Q = FMA(KP668178637, T2o, T2x); | |
668 T38 = T2y + T27; | |
669 T2z = T27 - T2y; | |
670 { | |
671 E T2C, T2A, T3c, T34, T2U, T39, T36, T31; | |
672 { | |
673 E T11, T2W, T2S, T33; | |
674 T11 = W[40]; | |
675 T2C = W[41]; | |
676 T2A = FNMS(KP831469612, T2z, T1G); | |
677 T2W = FMA(KP831469612, T2z, T1G); | |
678 T2S = T2Q - T2R; | |
679 T33 = T2Q + T2R; | |
680 { | |
681 E T2V, T2B, T2T, T2Z, T2X, T2Y, T30; | |
682 T2V = W[8]; | |
683 T2B = T11 * T2A; | |
684 T3c = FMA(KP831469612, T33, T32); | |
685 T34 = FNMS(KP831469612, T33, T32); | |
686 T2T = FNMS(KP831469612, T2S, T2P); | |
687 T2Z = FMA(KP831469612, T2S, T2P); | |
688 T2X = T2V * T2W; | |
689 T2Y = W[9]; | |
690 T30 = T2V * T2Z; | |
691 Ip[WS(rs, 10)] = FNMS(T2C, T2T, T2B); | |
692 T2U = T11 * T2T; | |
693 Ip[WS(rs, 2)] = FNMS(T2Y, T2Z, T2X); | |
694 Im[WS(rs, 2)] = FMA(T2Y, T2W, T30); | |
695 } | |
696 } | |
697 T39 = FNMS(KP831469612, T38, T37); | |
698 T3f = FMA(KP831469612, T38, T37); | |
699 Im[WS(rs, 10)] = FMA(T2C, T2A, T2U); | |
700 T36 = W[25]; | |
701 T31 = W[24]; | |
702 { | |
703 E T3b, T3g, T3a, T35; | |
704 T3e = W[57]; | |
705 T3a = T36 * T34; | |
706 T35 = T31 * T34; | |
707 T3b = W[56]; | |
708 T3g = T3e * T3c; | |
709 Im[WS(rs, 6)] = FMA(T31, T39, T3a); | |
710 Ip[WS(rs, 6)] = FNMS(T36, T39, T35); | |
711 T3d = T3b * T3c; | |
712 Im[WS(rs, 14)] = FMA(T3b, T3f, T3g); | |
713 } | |
714 } | |
715 } | |
716 } | |
717 } | |
718 { | |
719 E T4G, T4J, T4I, T4F, T4K; | |
720 { | |
721 E T4z, T4R, T4a, T4M, T4h, T4o, T4C, T4N, T4A, T4B; | |
722 T4z = FMA(KP923879532, T4y, T4v); | |
723 T4R = FNMS(KP923879532, T4y, T4v); | |
724 T4a = FNMS(KP923879532, T49, T42); | |
725 T4M = FMA(KP923879532, T49, T42); | |
726 Ip[WS(rs, 14)] = FNMS(T3e, T3f, T3d); | |
727 T4h = FNMS(KP668178637, T4g, T4d); | |
728 T4A = FMA(KP668178637, T4d, T4g); | |
729 T4B = FMA(KP668178637, T4k, T4n); | |
730 T4o = FNMS(KP668178637, T4n, T4k); | |
731 T4C = T4A - T4B; | |
732 T4N = T4A + T4B; | |
733 { | |
734 E T4W, T4Z, T4q, T4X, T50, T4Y; | |
735 { | |
736 E T4L, T4Q, T4O, T4p, T4S, T4P, T4U, T4V, T4T; | |
737 T4L = W[20]; | |
738 T4Q = W[21]; | |
739 T4W = FMA(KP831469612, T4N, T4M); | |
740 T4O = FNMS(KP831469612, T4N, T4M); | |
741 T4p = T4h + T4o; | |
742 T4S = T4h - T4o; | |
743 T4P = T4L * T4O; | |
744 T4V = W[52]; | |
745 T4Z = FNMS(KP831469612, T4S, T4R); | |
746 T4T = FMA(KP831469612, T4S, T4R); | |
747 T4q = FNMS(KP831469612, T4p, T4a); | |
748 T4G = FMA(KP831469612, T4p, T4a); | |
749 Ip[WS(rs, 5)] = FNMS(T4Q, T4T, T4P); | |
750 T4U = T4L * T4T; | |
751 T4X = T4V * T4W; | |
752 T50 = T4V * T4Z; | |
753 T4Y = W[53]; | |
754 Im[WS(rs, 5)] = FMA(T4Q, T4O, T4U); | |
755 } | |
756 { | |
757 E T4D, T4s, T3Z, T4E, T4r; | |
758 T4J = FMA(KP831469612, T4C, T4z); | |
759 T4D = FNMS(KP831469612, T4C, T4z); | |
760 T4s = W[37]; | |
761 Im[WS(rs, 13)] = FMA(T4Y, T4W, T50); | |
762 Ip[WS(rs, 13)] = FNMS(T4Y, T4Z, T4X); | |
763 T3Z = W[36]; | |
764 T4E = T4s * T4q; | |
765 T4I = W[5]; | |
766 T4r = T3Z * T4q; | |
767 Im[WS(rs, 9)] = FMA(T3Z, T4D, T4E); | |
768 T4F = W[4]; | |
769 T4K = T4I * T4G; | |
770 Ip[WS(rs, 9)] = FNMS(T4s, T4D, T4r); | |
771 } | |
772 } | |
773 } | |
774 { | |
775 E T3E, T3H, T3G, T3D, T3I; | |
776 { | |
777 E T3x, T3P, T3k, T3K, T3n, T3q, T3A, T3L, T4H, T3y, T3z; | |
778 T3x = FMA(KP923879532, T3w, T3v); | |
779 T3P = FNMS(KP923879532, T3w, T3v); | |
780 T4H = T4F * T4G; | |
781 Im[WS(rs, 1)] = FMA(T4F, T4J, T4K); | |
782 T3k = FMA(KP923879532, T3j, T3i); | |
783 T3K = FNMS(KP923879532, T3j, T3i); | |
784 T3y = FMA(KP198912367, T3l, T3m); | |
785 T3n = FNMS(KP198912367, T3m, T3l); | |
786 Ip[WS(rs, 1)] = FNMS(T4I, T4J, T4H); | |
787 T3z = FNMS(KP198912367, T3o, T3p); | |
788 T3q = FMA(KP198912367, T3p, T3o); | |
789 T3A = T3y + T3z; | |
790 T3L = T3z - T3y; | |
791 { | |
792 E T3U, T3X, T3s, T3V, T3Y, T3W; | |
793 { | |
794 E T3J, T3O, T3M, T3r, T3Q, T3N, T3S, T3T, T3R; | |
795 T3J = W[48]; | |
796 T3O = W[49]; | |
797 T3U = FMA(KP980785280, T3L, T3K); | |
798 T3M = FNMS(KP980785280, T3L, T3K); | |
799 T3r = T3n + T3q; | |
800 T3Q = T3n - T3q; | |
801 T3N = T3J * T3M; | |
802 T3T = W[16]; | |
803 T3X = FMA(KP980785280, T3Q, T3P); | |
804 T3R = FNMS(KP980785280, T3Q, T3P); | |
805 T3s = FNMS(KP980785280, T3r, T3k); | |
806 T3E = FMA(KP980785280, T3r, T3k); | |
807 Ip[WS(rs, 12)] = FNMS(T3O, T3R, T3N); | |
808 T3S = T3J * T3R; | |
809 T3V = T3T * T3U; | |
810 T3Y = T3T * T3X; | |
811 T3W = W[17]; | |
812 Im[WS(rs, 12)] = FMA(T3O, T3M, T3S); | |
813 } | |
814 { | |
815 E T3B, T3u, T3h, T3C, T3t; | |
816 T3H = FMA(KP980785280, T3A, T3x); | |
817 T3B = FNMS(KP980785280, T3A, T3x); | |
818 T3u = W[33]; | |
819 Im[WS(rs, 4)] = FMA(T3W, T3U, T3Y); | |
820 Ip[WS(rs, 4)] = FNMS(T3W, T3X, T3V); | |
821 T3h = W[32]; | |
822 T3C = T3u * T3s; | |
823 T3G = W[1]; | |
824 T3t = T3h * T3s; | |
825 Im[WS(rs, 8)] = FMA(T3h, T3B, T3C); | |
826 T3D = W[0]; | |
827 T3I = T3G * T3E; | |
828 Ip[WS(rs, 8)] = FNMS(T3u, T3B, T3t); | |
829 } | |
830 } | |
831 } | |
832 { | |
833 E T5h, T5z, T54, T5u, T57, T5a, T5k, T5v, T3F, T5i, T5j; | |
834 T5h = FMA(KP923879532, T5g, T5f); | |
835 T5z = FNMS(KP923879532, T5g, T5f); | |
836 T3F = T3D * T3E; | |
837 Im[0] = FMA(T3D, T3H, T3I); | |
838 T54 = FNMS(KP923879532, T53, T52); | |
839 T5u = FMA(KP923879532, T53, T52); | |
840 T5i = FMA(KP198912367, T55, T56); | |
841 T57 = FNMS(KP198912367, T56, T55); | |
842 Ip[0] = FNMS(T3G, T3H, T3F); | |
843 T5j = FMA(KP198912367, T58, T59); | |
844 T5a = FNMS(KP198912367, T59, T58); | |
845 T5k = T5i - T5j; | |
846 T5v = T5i + T5j; | |
847 { | |
848 E T5E, T5H, T5c, T5F, T5I, T5G; | |
849 { | |
850 E T5t, T5y, T5w, T5b, T5A, T5x, T5C, T5D, T5B; | |
851 T5t = W[28]; | |
852 T5y = W[29]; | |
853 T5E = FMA(KP980785280, T5v, T5u); | |
854 T5w = FNMS(KP980785280, T5v, T5u); | |
855 T5b = T57 + T5a; | |
856 T5A = T5a - T57; | |
857 T5x = T5t * T5w; | |
858 T5D = W[60]; | |
859 T5H = FNMS(KP980785280, T5A, T5z); | |
860 T5B = FMA(KP980785280, T5A, T5z); | |
861 T5c = FMA(KP980785280, T5b, T54); | |
862 T5o = FNMS(KP980785280, T5b, T54); | |
863 Ip[WS(rs, 7)] = FNMS(T5y, T5B, T5x); | |
864 T5C = T5t * T5B; | |
865 T5F = T5D * T5E; | |
866 T5I = T5D * T5H; | |
867 T5G = W[61]; | |
868 Im[WS(rs, 7)] = FMA(T5y, T5w, T5C); | |
869 } | |
870 { | |
871 E T5l, T5e, T51, T5m, T5d; | |
872 T5r = FMA(KP980785280, T5k, T5h); | |
873 T5l = FNMS(KP980785280, T5k, T5h); | |
874 T5e = W[45]; | |
875 Im[WS(rs, 15)] = FMA(T5G, T5E, T5I); | |
876 Ip[WS(rs, 15)] = FNMS(T5G, T5H, T5F); | |
877 T51 = W[44]; | |
878 T5m = T5e * T5c; | |
879 T5q = W[13]; | |
880 T5d = T51 * T5c; | |
881 Im[WS(rs, 11)] = FMA(T51, T5l, T5m); | |
882 T5n = W[12]; | |
883 T5s = T5q * T5o; | |
884 Ip[WS(rs, 11)] = FNMS(T5e, T5l, T5d); | |
885 } | |
886 } | |
887 } | |
888 } | |
889 } | |
890 } | |
891 } | |
892 T5p = T5n * T5o; | |
893 Im[WS(rs, 3)] = FMA(T5n, T5r, T5s); | |
894 Ip[WS(rs, 3)] = FNMS(T5q, T5r, T5p); | |
895 } | |
896 } | |
897 } | |
898 | |
899 static const tw_instr twinstr[] = { | |
900 {TW_FULL, 1, 32}, | |
901 {TW_NEXT, 1, 0} | |
902 }; | |
903 | |
904 static const hc2c_desc desc = { 32, "hc2cb_32", twinstr, &GENUS, {236, 62, 198, 0} }; | |
905 | |
906 void X(codelet_hc2cb_32) (planner *p) { | |
907 X(khc2c_register) (p, hc2cb_32, &desc, HC2C_VIA_RDFT); | |
908 } | |
909 #else /* HAVE_FMA */ | |
910 | |
911 /* Generated by: ../../../genfft/gen_hc2c.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 32 -dif -name hc2cb_32 -include hc2cb.h */ | |
912 | |
913 /* | |
914 * This function contains 434 FP additions, 208 FP multiplications, | |
915 * (or, 340 additions, 114 multiplications, 94 fused multiply/add), | |
916 * 98 stack variables, 7 constants, and 128 memory accesses | |
917 */ | |
918 #include "hc2cb.h" | |
919 | |
920 static void hc2cb_32(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) | |
921 { | |
922 DK(KP555570233, +0.555570233019602224742830813948532874374937191); | |
923 DK(KP831469612, +0.831469612302545237078788377617905756738560812); | |
924 DK(KP980785280, +0.980785280403230449126182236134239036973933731); | |
925 DK(KP195090322, +0.195090322016128267848284868477022240927691618); | |
926 DK(KP923879532, +0.923879532511286756128183189396788286822416626); | |
927 DK(KP382683432, +0.382683432365089771728459984030398866761344562); | |
928 DK(KP707106781, +0.707106781186547524400844362104849039284835938); | |
929 { | |
930 INT m; | |
931 for (m = mb, W = W + ((mb - 1) * 62); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 62, MAKE_VOLATILE_STRIDE(128, rs)) { | |
932 E T4o, T6y, T70, T5u, Tf, T12, T5x, T6z, T3m, T3Y, T29, T2y, T4v, T71, T2U; | |
933 E T3M, Tu, T1U, T6D, T73, T6G, T74, T1h, T2z, T2X, T3o, T4D, T5A, T4K, T5z; | |
934 E T30, T3n, TK, T1j, T6S, T7w, T6V, T7v, T1y, T2B, T3c, T3S, T4X, T61, T54; | |
935 E T62, T3f, T3T, TZ, T1A, T6L, T7z, T6O, T7y, T1P, T2C, T35, T3P, T5g, T64; | |
936 E T5n, T65, T38, T3Q; | |
937 { | |
938 E T3, T4m, T1X, T5t, T6, T5s, T20, T4n, Ta, T4p, T24, T4q, Td, T4s, T27; | |
939 E T4t; | |
940 { | |
941 E T1, T2, T1V, T1W; | |
942 T1 = Rp[0]; | |
943 T2 = Rm[WS(rs, 15)]; | |
944 T3 = T1 + T2; | |
945 T4m = T1 - T2; | |
946 T1V = Ip[0]; | |
947 T1W = Im[WS(rs, 15)]; | |
948 T1X = T1V - T1W; | |
949 T5t = T1V + T1W; | |
950 } | |
951 { | |
952 E T4, T5, T1Y, T1Z; | |
953 T4 = Rp[WS(rs, 8)]; | |
954 T5 = Rm[WS(rs, 7)]; | |
955 T6 = T4 + T5; | |
956 T5s = T4 - T5; | |
957 T1Y = Ip[WS(rs, 8)]; | |
958 T1Z = Im[WS(rs, 7)]; | |
959 T20 = T1Y - T1Z; | |
960 T4n = T1Y + T1Z; | |
961 } | |
962 { | |
963 E T8, T9, T22, T23; | |
964 T8 = Rp[WS(rs, 4)]; | |
965 T9 = Rm[WS(rs, 11)]; | |
966 Ta = T8 + T9; | |
967 T4p = T8 - T9; | |
968 T22 = Ip[WS(rs, 4)]; | |
969 T23 = Im[WS(rs, 11)]; | |
970 T24 = T22 - T23; | |
971 T4q = T22 + T23; | |
972 } | |
973 { | |
974 E Tb, Tc, T25, T26; | |
975 Tb = Rm[WS(rs, 3)]; | |
976 Tc = Rp[WS(rs, 12)]; | |
977 Td = Tb + Tc; | |
978 T4s = Tb - Tc; | |
979 T25 = Ip[WS(rs, 12)]; | |
980 T26 = Im[WS(rs, 3)]; | |
981 T27 = T25 - T26; | |
982 T4t = T25 + T26; | |
983 } | |
984 { | |
985 E T7, Te, T21, T28; | |
986 T4o = T4m - T4n; | |
987 T6y = T4m + T4n; | |
988 T70 = T5t - T5s; | |
989 T5u = T5s + T5t; | |
990 T7 = T3 + T6; | |
991 Te = Ta + Td; | |
992 Tf = T7 + Te; | |
993 T12 = T7 - Te; | |
994 { | |
995 E T5v, T5w, T3k, T3l; | |
996 T5v = T4p + T4q; | |
997 T5w = T4s + T4t; | |
998 T5x = KP707106781 * (T5v - T5w); | |
999 T6z = KP707106781 * (T5v + T5w); | |
1000 T3k = T1X - T20; | |
1001 T3l = Ta - Td; | |
1002 T3m = T3k - T3l; | |
1003 T3Y = T3l + T3k; | |
1004 } | |
1005 T21 = T1X + T20; | |
1006 T28 = T24 + T27; | |
1007 T29 = T21 - T28; | |
1008 T2y = T21 + T28; | |
1009 { | |
1010 E T4r, T4u, T2S, T2T; | |
1011 T4r = T4p - T4q; | |
1012 T4u = T4s - T4t; | |
1013 T4v = KP707106781 * (T4r + T4u); | |
1014 T71 = KP707106781 * (T4r - T4u); | |
1015 T2S = T3 - T6; | |
1016 T2T = T27 - T24; | |
1017 T2U = T2S - T2T; | |
1018 T3M = T2S + T2T; | |
1019 } | |
1020 } | |
1021 } | |
1022 { | |
1023 E Ti, T4H, T1c, T4F, Tl, T4E, T1f, T4I, Tp, T4A, T15, T4y, Ts, T4x, T18; | |
1024 E T4B; | |
1025 { | |
1026 E Tg, Th, T1a, T1b; | |
1027 Tg = Rp[WS(rs, 2)]; | |
1028 Th = Rm[WS(rs, 13)]; | |
1029 Ti = Tg + Th; | |
1030 T4H = Tg - Th; | |
1031 T1a = Ip[WS(rs, 2)]; | |
1032 T1b = Im[WS(rs, 13)]; | |
1033 T1c = T1a - T1b; | |
1034 T4F = T1a + T1b; | |
1035 } | |
1036 { | |
1037 E Tj, Tk, T1d, T1e; | |
1038 Tj = Rp[WS(rs, 10)]; | |
1039 Tk = Rm[WS(rs, 5)]; | |
1040 Tl = Tj + Tk; | |
1041 T4E = Tj - Tk; | |
1042 T1d = Ip[WS(rs, 10)]; | |
1043 T1e = Im[WS(rs, 5)]; | |
1044 T1f = T1d - T1e; | |
1045 T4I = T1d + T1e; | |
1046 } | |
1047 { | |
1048 E Tn, To, T13, T14; | |
1049 Tn = Rm[WS(rs, 1)]; | |
1050 To = Rp[WS(rs, 14)]; | |
1051 Tp = Tn + To; | |
1052 T4A = Tn - To; | |
1053 T13 = Ip[WS(rs, 14)]; | |
1054 T14 = Im[WS(rs, 1)]; | |
1055 T15 = T13 - T14; | |
1056 T4y = T13 + T14; | |
1057 } | |
1058 { | |
1059 E Tq, Tr, T16, T17; | |
1060 Tq = Rp[WS(rs, 6)]; | |
1061 Tr = Rm[WS(rs, 9)]; | |
1062 Ts = Tq + Tr; | |
1063 T4x = Tq - Tr; | |
1064 T16 = Ip[WS(rs, 6)]; | |
1065 T17 = Im[WS(rs, 9)]; | |
1066 T18 = T16 - T17; | |
1067 T4B = T16 + T17; | |
1068 } | |
1069 { | |
1070 E Tm, Tt, T6B, T6C; | |
1071 Tm = Ti + Tl; | |
1072 Tt = Tp + Ts; | |
1073 Tu = Tm + Tt; | |
1074 T1U = Tm - Tt; | |
1075 T6B = T4H + T4I; | |
1076 T6C = T4F - T4E; | |
1077 T6D = FNMS(KP923879532, T6C, KP382683432 * T6B); | |
1078 T73 = FMA(KP382683432, T6C, KP923879532 * T6B); | |
1079 } | |
1080 { | |
1081 E T6E, T6F, T19, T1g; | |
1082 T6E = T4A + T4B; | |
1083 T6F = T4x + T4y; | |
1084 T6G = FNMS(KP923879532, T6F, KP382683432 * T6E); | |
1085 T74 = FMA(KP382683432, T6F, KP923879532 * T6E); | |
1086 T19 = T15 + T18; | |
1087 T1g = T1c + T1f; | |
1088 T1h = T19 - T1g; | |
1089 T2z = T1g + T19; | |
1090 } | |
1091 { | |
1092 E T2V, T2W, T4z, T4C; | |
1093 T2V = T15 - T18; | |
1094 T2W = Tp - Ts; | |
1095 T2X = T2V - T2W; | |
1096 T3o = T2W + T2V; | |
1097 T4z = T4x - T4y; | |
1098 T4C = T4A - T4B; | |
1099 T4D = FNMS(KP382683432, T4C, KP923879532 * T4z); | |
1100 T5A = FMA(KP382683432, T4z, KP923879532 * T4C); | |
1101 } | |
1102 { | |
1103 E T4G, T4J, T2Y, T2Z; | |
1104 T4G = T4E + T4F; | |
1105 T4J = T4H - T4I; | |
1106 T4K = FMA(KP923879532, T4G, KP382683432 * T4J); | |
1107 T5z = FNMS(KP382683432, T4G, KP923879532 * T4J); | |
1108 T2Y = Ti - Tl; | |
1109 T2Z = T1c - T1f; | |
1110 T30 = T2Y + T2Z; | |
1111 T3n = T2Y - T2Z; | |
1112 } | |
1113 } | |
1114 { | |
1115 E Ty, T4N, T1m, T4Z, TB, T4Y, T1p, T4O, TI, T52, T1w, T4V, TF, T51, T1t; | |
1116 E T4S; | |
1117 { | |
1118 E Tw, Tx, T1n, T1o; | |
1119 Tw = Rp[WS(rs, 1)]; | |
1120 Tx = Rm[WS(rs, 14)]; | |
1121 Ty = Tw + Tx; | |
1122 T4N = Tw - Tx; | |
1123 { | |
1124 E T1k, T1l, Tz, TA; | |
1125 T1k = Ip[WS(rs, 1)]; | |
1126 T1l = Im[WS(rs, 14)]; | |
1127 T1m = T1k - T1l; | |
1128 T4Z = T1k + T1l; | |
1129 Tz = Rp[WS(rs, 9)]; | |
1130 TA = Rm[WS(rs, 6)]; | |
1131 TB = Tz + TA; | |
1132 T4Y = Tz - TA; | |
1133 } | |
1134 T1n = Ip[WS(rs, 9)]; | |
1135 T1o = Im[WS(rs, 6)]; | |
1136 T1p = T1n - T1o; | |
1137 T4O = T1n + T1o; | |
1138 { | |
1139 E TG, TH, T4T, T1u, T1v, T4U; | |
1140 TG = Rm[WS(rs, 2)]; | |
1141 TH = Rp[WS(rs, 13)]; | |
1142 T4T = TG - TH; | |
1143 T1u = Ip[WS(rs, 13)]; | |
1144 T1v = Im[WS(rs, 2)]; | |
1145 T4U = T1u + T1v; | |
1146 TI = TG + TH; | |
1147 T52 = T4T + T4U; | |
1148 T1w = T1u - T1v; | |
1149 T4V = T4T - T4U; | |
1150 } | |
1151 { | |
1152 E TD, TE, T4Q, T1r, T1s, T4R; | |
1153 TD = Rp[WS(rs, 5)]; | |
1154 TE = Rm[WS(rs, 10)]; | |
1155 T4Q = TD - TE; | |
1156 T1r = Ip[WS(rs, 5)]; | |
1157 T1s = Im[WS(rs, 10)]; | |
1158 T4R = T1r + T1s; | |
1159 TF = TD + TE; | |
1160 T51 = T4Q + T4R; | |
1161 T1t = T1r - T1s; | |
1162 T4S = T4Q - T4R; | |
1163 } | |
1164 } | |
1165 { | |
1166 E TC, TJ, T6Q, T6R; | |
1167 TC = Ty + TB; | |
1168 TJ = TF + TI; | |
1169 TK = TC + TJ; | |
1170 T1j = TC - TJ; | |
1171 T6Q = T4Z - T4Y; | |
1172 T6R = KP707106781 * (T4S - T4V); | |
1173 T6S = T6Q + T6R; | |
1174 T7w = T6Q - T6R; | |
1175 } | |
1176 { | |
1177 E T6T, T6U, T1q, T1x; | |
1178 T6T = T4N + T4O; | |
1179 T6U = KP707106781 * (T51 + T52); | |
1180 T6V = T6T - T6U; | |
1181 T7v = T6T + T6U; | |
1182 T1q = T1m + T1p; | |
1183 T1x = T1t + T1w; | |
1184 T1y = T1q - T1x; | |
1185 T2B = T1q + T1x; | |
1186 } | |
1187 { | |
1188 E T3a, T3b, T4P, T4W; | |
1189 T3a = T1m - T1p; | |
1190 T3b = TF - TI; | |
1191 T3c = T3a - T3b; | |
1192 T3S = T3b + T3a; | |
1193 T4P = T4N - T4O; | |
1194 T4W = KP707106781 * (T4S + T4V); | |
1195 T4X = T4P - T4W; | |
1196 T61 = T4P + T4W; | |
1197 } | |
1198 { | |
1199 E T50, T53, T3d, T3e; | |
1200 T50 = T4Y + T4Z; | |
1201 T53 = KP707106781 * (T51 - T52); | |
1202 T54 = T50 - T53; | |
1203 T62 = T50 + T53; | |
1204 T3d = Ty - TB; | |
1205 T3e = T1w - T1t; | |
1206 T3f = T3d - T3e; | |
1207 T3T = T3d + T3e; | |
1208 } | |
1209 } | |
1210 { | |
1211 E TN, T56, T1D, T5i, TQ, T5h, T1G, T57, TX, T5l, T1N, T5e, TU, T5k, T1K; | |
1212 E T5b; | |
1213 { | |
1214 E TL, TM, T1E, T1F; | |
1215 TL = Rm[0]; | |
1216 TM = Rp[WS(rs, 15)]; | |
1217 TN = TL + TM; | |
1218 T56 = TL - TM; | |
1219 { | |
1220 E T1B, T1C, TO, TP; | |
1221 T1B = Ip[WS(rs, 15)]; | |
1222 T1C = Im[0]; | |
1223 T1D = T1B - T1C; | |
1224 T5i = T1B + T1C; | |
1225 TO = Rp[WS(rs, 7)]; | |
1226 TP = Rm[WS(rs, 8)]; | |
1227 TQ = TO + TP; | |
1228 T5h = TO - TP; | |
1229 } | |
1230 T1E = Ip[WS(rs, 7)]; | |
1231 T1F = Im[WS(rs, 8)]; | |
1232 T1G = T1E - T1F; | |
1233 T57 = T1E + T1F; | |
1234 { | |
1235 E TV, TW, T5c, T1L, T1M, T5d; | |
1236 TV = Rm[WS(rs, 4)]; | |
1237 TW = Rp[WS(rs, 11)]; | |
1238 T5c = TV - TW; | |
1239 T1L = Ip[WS(rs, 11)]; | |
1240 T1M = Im[WS(rs, 4)]; | |
1241 T5d = T1L + T1M; | |
1242 TX = TV + TW; | |
1243 T5l = T5c + T5d; | |
1244 T1N = T1L - T1M; | |
1245 T5e = T5c - T5d; | |
1246 } | |
1247 { | |
1248 E TS, TT, T59, T1I, T1J, T5a; | |
1249 TS = Rp[WS(rs, 3)]; | |
1250 TT = Rm[WS(rs, 12)]; | |
1251 T59 = TS - TT; | |
1252 T1I = Ip[WS(rs, 3)]; | |
1253 T1J = Im[WS(rs, 12)]; | |
1254 T5a = T1I + T1J; | |
1255 TU = TS + TT; | |
1256 T5k = T59 + T5a; | |
1257 T1K = T1I - T1J; | |
1258 T5b = T59 - T5a; | |
1259 } | |
1260 } | |
1261 { | |
1262 E TR, TY, T6J, T6K; | |
1263 TR = TN + TQ; | |
1264 TY = TU + TX; | |
1265 TZ = TR + TY; | |
1266 T1A = TR - TY; | |
1267 T6J = KP707106781 * (T5b - T5e); | |
1268 T6K = T5h + T5i; | |
1269 T6L = T6J - T6K; | |
1270 T7z = T6K + T6J; | |
1271 } | |
1272 { | |
1273 E T6M, T6N, T1H, T1O; | |
1274 T6M = T56 + T57; | |
1275 T6N = KP707106781 * (T5k + T5l); | |
1276 T6O = T6M - T6N; | |
1277 T7y = T6M + T6N; | |
1278 T1H = T1D + T1G; | |
1279 T1O = T1K + T1N; | |
1280 T1P = T1H - T1O; | |
1281 T2C = T1H + T1O; | |
1282 } | |
1283 { | |
1284 E T33, T34, T58, T5f; | |
1285 T33 = T1D - T1G; | |
1286 T34 = TU - TX; | |
1287 T35 = T33 - T34; | |
1288 T3P = T34 + T33; | |
1289 T58 = T56 - T57; | |
1290 T5f = KP707106781 * (T5b + T5e); | |
1291 T5g = T58 - T5f; | |
1292 T64 = T58 + T5f; | |
1293 } | |
1294 { | |
1295 E T5j, T5m, T36, T37; | |
1296 T5j = T5h - T5i; | |
1297 T5m = KP707106781 * (T5k - T5l); | |
1298 T5n = T5j - T5m; | |
1299 T65 = T5j + T5m; | |
1300 T36 = TN - TQ; | |
1301 T37 = T1N - T1K; | |
1302 T38 = T36 - T37; | |
1303 T3Q = T36 + T37; | |
1304 } | |
1305 } | |
1306 { | |
1307 E Tv, T10, T2w, T2A, T2D, T2E, T2v, T2x; | |
1308 Tv = Tf + Tu; | |
1309 T10 = TK + TZ; | |
1310 T2w = Tv - T10; | |
1311 T2A = T2y + T2z; | |
1312 T2D = T2B + T2C; | |
1313 T2E = T2A - T2D; | |
1314 Rp[0] = Tv + T10; | |
1315 Rm[0] = T2A + T2D; | |
1316 T2v = W[30]; | |
1317 T2x = W[31]; | |
1318 Rp[WS(rs, 8)] = FNMS(T2x, T2E, T2v * T2w); | |
1319 Rm[WS(rs, 8)] = FMA(T2x, T2w, T2v * T2E); | |
1320 } | |
1321 { | |
1322 E T2I, T2O, T2M, T2Q; | |
1323 { | |
1324 E T2G, T2H, T2K, T2L; | |
1325 T2G = Tf - Tu; | |
1326 T2H = T2C - T2B; | |
1327 T2I = T2G - T2H; | |
1328 T2O = T2G + T2H; | |
1329 T2K = T2y - T2z; | |
1330 T2L = TK - TZ; | |
1331 T2M = T2K - T2L; | |
1332 T2Q = T2L + T2K; | |
1333 } | |
1334 { | |
1335 E T2F, T2J, T2N, T2P; | |
1336 T2F = W[46]; | |
1337 T2J = W[47]; | |
1338 Rp[WS(rs, 12)] = FNMS(T2J, T2M, T2F * T2I); | |
1339 Rm[WS(rs, 12)] = FMA(T2F, T2M, T2J * T2I); | |
1340 T2N = W[14]; | |
1341 T2P = W[15]; | |
1342 Rp[WS(rs, 4)] = FNMS(T2P, T2Q, T2N * T2O); | |
1343 Rm[WS(rs, 4)] = FMA(T2N, T2Q, T2P * T2O); | |
1344 } | |
1345 } | |
1346 { | |
1347 E T1i, T2a, T2o, T2k, T2d, T2l, T1R, T2p; | |
1348 T1i = T12 + T1h; | |
1349 T2a = T1U + T29; | |
1350 T2o = T29 - T1U; | |
1351 T2k = T12 - T1h; | |
1352 { | |
1353 E T2b, T2c, T1z, T1Q; | |
1354 T2b = T1j + T1y; | |
1355 T2c = T1P - T1A; | |
1356 T2d = KP707106781 * (T2b + T2c); | |
1357 T2l = KP707106781 * (T2c - T2b); | |
1358 T1z = T1j - T1y; | |
1359 T1Q = T1A + T1P; | |
1360 T1R = KP707106781 * (T1z + T1Q); | |
1361 T2p = KP707106781 * (T1z - T1Q); | |
1362 } | |
1363 { | |
1364 E T1S, T2e, T11, T1T; | |
1365 T1S = T1i - T1R; | |
1366 T2e = T2a - T2d; | |
1367 T11 = W[38]; | |
1368 T1T = W[39]; | |
1369 Rp[WS(rs, 10)] = FNMS(T1T, T2e, T11 * T1S); | |
1370 Rm[WS(rs, 10)] = FMA(T1T, T1S, T11 * T2e); | |
1371 } | |
1372 { | |
1373 E T2s, T2u, T2r, T2t; | |
1374 T2s = T2k + T2l; | |
1375 T2u = T2o + T2p; | |
1376 T2r = W[22]; | |
1377 T2t = W[23]; | |
1378 Rp[WS(rs, 6)] = FNMS(T2t, T2u, T2r * T2s); | |
1379 Rm[WS(rs, 6)] = FMA(T2r, T2u, T2t * T2s); | |
1380 } | |
1381 { | |
1382 E T2g, T2i, T2f, T2h; | |
1383 T2g = T1i + T1R; | |
1384 T2i = T2a + T2d; | |
1385 T2f = W[6]; | |
1386 T2h = W[7]; | |
1387 Rp[WS(rs, 2)] = FNMS(T2h, T2i, T2f * T2g); | |
1388 Rm[WS(rs, 2)] = FMA(T2h, T2g, T2f * T2i); | |
1389 } | |
1390 { | |
1391 E T2m, T2q, T2j, T2n; | |
1392 T2m = T2k - T2l; | |
1393 T2q = T2o - T2p; | |
1394 T2j = W[54]; | |
1395 T2n = W[55]; | |
1396 Rp[WS(rs, 14)] = FNMS(T2n, T2q, T2j * T2m); | |
1397 Rm[WS(rs, 14)] = FMA(T2j, T2q, T2n * T2m); | |
1398 } | |
1399 } | |
1400 { | |
1401 E T3O, T4a, T40, T4e, T3V, T4f, T43, T4b, T3N, T3Z; | |
1402 T3N = KP707106781 * (T3n + T3o); | |
1403 T3O = T3M - T3N; | |
1404 T4a = T3M + T3N; | |
1405 T3Z = KP707106781 * (T30 + T2X); | |
1406 T40 = T3Y - T3Z; | |
1407 T4e = T3Y + T3Z; | |
1408 { | |
1409 E T3R, T3U, T41, T42; | |
1410 T3R = FNMS(KP382683432, T3Q, KP923879532 * T3P); | |
1411 T3U = FMA(KP923879532, T3S, KP382683432 * T3T); | |
1412 T3V = T3R - T3U; | |
1413 T4f = T3U + T3R; | |
1414 T41 = FNMS(KP382683432, T3S, KP923879532 * T3T); | |
1415 T42 = FMA(KP382683432, T3P, KP923879532 * T3Q); | |
1416 T43 = T41 - T42; | |
1417 T4b = T41 + T42; | |
1418 } | |
1419 { | |
1420 E T3W, T44, T3L, T3X; | |
1421 T3W = T3O - T3V; | |
1422 T44 = T40 - T43; | |
1423 T3L = W[50]; | |
1424 T3X = W[51]; | |
1425 Rp[WS(rs, 13)] = FNMS(T3X, T44, T3L * T3W); | |
1426 Rm[WS(rs, 13)] = FMA(T3X, T3W, T3L * T44); | |
1427 } | |
1428 { | |
1429 E T4i, T4k, T4h, T4j; | |
1430 T4i = T4a + T4b; | |
1431 T4k = T4e + T4f; | |
1432 T4h = W[2]; | |
1433 T4j = W[3]; | |
1434 Rp[WS(rs, 1)] = FNMS(T4j, T4k, T4h * T4i); | |
1435 Rm[WS(rs, 1)] = FMA(T4h, T4k, T4j * T4i); | |
1436 } | |
1437 { | |
1438 E T46, T48, T45, T47; | |
1439 T46 = T3O + T3V; | |
1440 T48 = T40 + T43; | |
1441 T45 = W[18]; | |
1442 T47 = W[19]; | |
1443 Rp[WS(rs, 5)] = FNMS(T47, T48, T45 * T46); | |
1444 Rm[WS(rs, 5)] = FMA(T47, T46, T45 * T48); | |
1445 } | |
1446 { | |
1447 E T4c, T4g, T49, T4d; | |
1448 T4c = T4a - T4b; | |
1449 T4g = T4e - T4f; | |
1450 T49 = W[34]; | |
1451 T4d = W[35]; | |
1452 Rp[WS(rs, 9)] = FNMS(T4d, T4g, T49 * T4c); | |
1453 Rm[WS(rs, 9)] = FMA(T49, T4g, T4d * T4c); | |
1454 } | |
1455 } | |
1456 { | |
1457 E T32, T3A, T3q, T3E, T3h, T3F, T3t, T3B, T31, T3p; | |
1458 T31 = KP707106781 * (T2X - T30); | |
1459 T32 = T2U - T31; | |
1460 T3A = T2U + T31; | |
1461 T3p = KP707106781 * (T3n - T3o); | |
1462 T3q = T3m - T3p; | |
1463 T3E = T3m + T3p; | |
1464 { | |
1465 E T39, T3g, T3r, T3s; | |
1466 T39 = FNMS(KP923879532, T38, KP382683432 * T35); | |
1467 T3g = FMA(KP382683432, T3c, KP923879532 * T3f); | |
1468 T3h = T39 - T3g; | |
1469 T3F = T3g + T39; | |
1470 T3r = FNMS(KP923879532, T3c, KP382683432 * T3f); | |
1471 T3s = FMA(KP923879532, T35, KP382683432 * T38); | |
1472 T3t = T3r - T3s; | |
1473 T3B = T3r + T3s; | |
1474 } | |
1475 { | |
1476 E T3i, T3u, T2R, T3j; | |
1477 T3i = T32 - T3h; | |
1478 T3u = T3q - T3t; | |
1479 T2R = W[58]; | |
1480 T3j = W[59]; | |
1481 Rp[WS(rs, 15)] = FNMS(T3j, T3u, T2R * T3i); | |
1482 Rm[WS(rs, 15)] = FMA(T3j, T3i, T2R * T3u); | |
1483 } | |
1484 { | |
1485 E T3I, T3K, T3H, T3J; | |
1486 T3I = T3A + T3B; | |
1487 T3K = T3E + T3F; | |
1488 T3H = W[10]; | |
1489 T3J = W[11]; | |
1490 Rp[WS(rs, 3)] = FNMS(T3J, T3K, T3H * T3I); | |
1491 Rm[WS(rs, 3)] = FMA(T3H, T3K, T3J * T3I); | |
1492 } | |
1493 { | |
1494 E T3w, T3y, T3v, T3x; | |
1495 T3w = T32 + T3h; | |
1496 T3y = T3q + T3t; | |
1497 T3v = W[26]; | |
1498 T3x = W[27]; | |
1499 Rp[WS(rs, 7)] = FNMS(T3x, T3y, T3v * T3w); | |
1500 Rm[WS(rs, 7)] = FMA(T3x, T3w, T3v * T3y); | |
1501 } | |
1502 { | |
1503 E T3C, T3G, T3z, T3D; | |
1504 T3C = T3A - T3B; | |
1505 T3G = T3E - T3F; | |
1506 T3z = W[42]; | |
1507 T3D = W[43]; | |
1508 Rp[WS(rs, 11)] = FNMS(T3D, T3G, T3z * T3C); | |
1509 Rm[WS(rs, 11)] = FMA(T3z, T3G, T3D * T3C); | |
1510 } | |
1511 } | |
1512 { | |
1513 E T60, T6m, T6f, T6n, T67, T6r, T6c, T6q; | |
1514 { | |
1515 E T5Y, T5Z, T6d, T6e; | |
1516 T5Y = T4o + T4v; | |
1517 T5Z = T5z + T5A; | |
1518 T60 = T5Y + T5Z; | |
1519 T6m = T5Y - T5Z; | |
1520 T6d = FMA(KP195090322, T61, KP980785280 * T62); | |
1521 T6e = FNMS(KP195090322, T64, KP980785280 * T65); | |
1522 T6f = T6d + T6e; | |
1523 T6n = T6e - T6d; | |
1524 } | |
1525 { | |
1526 E T63, T66, T6a, T6b; | |
1527 T63 = FNMS(KP195090322, T62, KP980785280 * T61); | |
1528 T66 = FMA(KP980785280, T64, KP195090322 * T65); | |
1529 T67 = T63 + T66; | |
1530 T6r = T63 - T66; | |
1531 T6a = T5u + T5x; | |
1532 T6b = T4K + T4D; | |
1533 T6c = T6a + T6b; | |
1534 T6q = T6a - T6b; | |
1535 } | |
1536 { | |
1537 E T68, T6g, T5X, T69; | |
1538 T68 = T60 - T67; | |
1539 T6g = T6c - T6f; | |
1540 T5X = W[32]; | |
1541 T69 = W[33]; | |
1542 Ip[WS(rs, 8)] = FNMS(T69, T6g, T5X * T68); | |
1543 Im[WS(rs, 8)] = FMA(T69, T68, T5X * T6g); | |
1544 } | |
1545 { | |
1546 E T6u, T6w, T6t, T6v; | |
1547 T6u = T6m + T6n; | |
1548 T6w = T6q + T6r; | |
1549 T6t = W[16]; | |
1550 T6v = W[17]; | |
1551 Ip[WS(rs, 4)] = FNMS(T6v, T6w, T6t * T6u); | |
1552 Im[WS(rs, 4)] = FMA(T6t, T6w, T6v * T6u); | |
1553 } | |
1554 { | |
1555 E T6i, T6k, T6h, T6j; | |
1556 T6i = T60 + T67; | |
1557 T6k = T6c + T6f; | |
1558 T6h = W[0]; | |
1559 T6j = W[1]; | |
1560 Ip[0] = FNMS(T6j, T6k, T6h * T6i); | |
1561 Im[0] = FMA(T6j, T6i, T6h * T6k); | |
1562 } | |
1563 { | |
1564 E T6o, T6s, T6l, T6p; | |
1565 T6o = T6m - T6n; | |
1566 T6s = T6q - T6r; | |
1567 T6l = W[48]; | |
1568 T6p = W[49]; | |
1569 Ip[WS(rs, 12)] = FNMS(T6p, T6s, T6l * T6o); | |
1570 Im[WS(rs, 12)] = FMA(T6l, T6s, T6p * T6o); | |
1571 } | |
1572 } | |
1573 { | |
1574 E T7u, T7Q, T7J, T7R, T7B, T7V, T7G, T7U; | |
1575 { | |
1576 E T7s, T7t, T7H, T7I; | |
1577 T7s = T6y + T6z; | |
1578 T7t = T73 + T74; | |
1579 T7u = T7s - T7t; | |
1580 T7Q = T7s + T7t; | |
1581 T7H = FMA(KP195090322, T7w, KP980785280 * T7v); | |
1582 T7I = FMA(KP195090322, T7z, KP980785280 * T7y); | |
1583 T7J = T7H - T7I; | |
1584 T7R = T7H + T7I; | |
1585 } | |
1586 { | |
1587 E T7x, T7A, T7E, T7F; | |
1588 T7x = FNMS(KP980785280, T7w, KP195090322 * T7v); | |
1589 T7A = FNMS(KP980785280, T7z, KP195090322 * T7y); | |
1590 T7B = T7x + T7A; | |
1591 T7V = T7x - T7A; | |
1592 T7E = T70 - T71; | |
1593 T7F = T6D - T6G; | |
1594 T7G = T7E + T7F; | |
1595 T7U = T7E - T7F; | |
1596 } | |
1597 { | |
1598 E T7C, T7K, T7r, T7D; | |
1599 T7C = T7u - T7B; | |
1600 T7K = T7G - T7J; | |
1601 T7r = W[44]; | |
1602 T7D = W[45]; | |
1603 Ip[WS(rs, 11)] = FNMS(T7D, T7K, T7r * T7C); | |
1604 Im[WS(rs, 11)] = FMA(T7D, T7C, T7r * T7K); | |
1605 } | |
1606 { | |
1607 E T7Y, T80, T7X, T7Z; | |
1608 T7Y = T7Q + T7R; | |
1609 T80 = T7U - T7V; | |
1610 T7X = W[60]; | |
1611 T7Z = W[61]; | |
1612 Ip[WS(rs, 15)] = FNMS(T7Z, T80, T7X * T7Y); | |
1613 Im[WS(rs, 15)] = FMA(T7X, T80, T7Z * T7Y); | |
1614 } | |
1615 { | |
1616 E T7M, T7O, T7L, T7N; | |
1617 T7M = T7u + T7B; | |
1618 T7O = T7G + T7J; | |
1619 T7L = W[12]; | |
1620 T7N = W[13]; | |
1621 Ip[WS(rs, 3)] = FNMS(T7N, T7O, T7L * T7M); | |
1622 Im[WS(rs, 3)] = FMA(T7N, T7M, T7L * T7O); | |
1623 } | |
1624 { | |
1625 E T7S, T7W, T7P, T7T; | |
1626 T7S = T7Q - T7R; | |
1627 T7W = T7U + T7V; | |
1628 T7P = W[28]; | |
1629 T7T = W[29]; | |
1630 Ip[WS(rs, 7)] = FNMS(T7T, T7W, T7P * T7S); | |
1631 Im[WS(rs, 7)] = FMA(T7P, T7W, T7T * T7S); | |
1632 } | |
1633 } | |
1634 { | |
1635 E T4M, T5M, T5F, T5N, T5p, T5R, T5C, T5Q; | |
1636 { | |
1637 E T4w, T4L, T5D, T5E; | |
1638 T4w = T4o - T4v; | |
1639 T4L = T4D - T4K; | |
1640 T4M = T4w + T4L; | |
1641 T5M = T4w - T4L; | |
1642 T5D = FMA(KP831469612, T4X, KP555570233 * T54); | |
1643 T5E = FNMS(KP831469612, T5g, KP555570233 * T5n); | |
1644 T5F = T5D + T5E; | |
1645 T5N = T5E - T5D; | |
1646 } | |
1647 { | |
1648 E T55, T5o, T5y, T5B; | |
1649 T55 = FNMS(KP831469612, T54, KP555570233 * T4X); | |
1650 T5o = FMA(KP555570233, T5g, KP831469612 * T5n); | |
1651 T5p = T55 + T5o; | |
1652 T5R = T55 - T5o; | |
1653 T5y = T5u - T5x; | |
1654 T5B = T5z - T5A; | |
1655 T5C = T5y + T5B; | |
1656 T5Q = T5y - T5B; | |
1657 } | |
1658 { | |
1659 E T5q, T5G, T4l, T5r; | |
1660 T5q = T4M - T5p; | |
1661 T5G = T5C - T5F; | |
1662 T4l = W[40]; | |
1663 T5r = W[41]; | |
1664 Ip[WS(rs, 10)] = FNMS(T5r, T5G, T4l * T5q); | |
1665 Im[WS(rs, 10)] = FMA(T5r, T5q, T4l * T5G); | |
1666 } | |
1667 { | |
1668 E T5U, T5W, T5T, T5V; | |
1669 T5U = T5M + T5N; | |
1670 T5W = T5Q + T5R; | |
1671 T5T = W[24]; | |
1672 T5V = W[25]; | |
1673 Ip[WS(rs, 6)] = FNMS(T5V, T5W, T5T * T5U); | |
1674 Im[WS(rs, 6)] = FMA(T5T, T5W, T5V * T5U); | |
1675 } | |
1676 { | |
1677 E T5I, T5K, T5H, T5J; | |
1678 T5I = T4M + T5p; | |
1679 T5K = T5C + T5F; | |
1680 T5H = W[8]; | |
1681 T5J = W[9]; | |
1682 Ip[WS(rs, 2)] = FNMS(T5J, T5K, T5H * T5I); | |
1683 Im[WS(rs, 2)] = FMA(T5J, T5I, T5H * T5K); | |
1684 } | |
1685 { | |
1686 E T5O, T5S, T5L, T5P; | |
1687 T5O = T5M - T5N; | |
1688 T5S = T5Q - T5R; | |
1689 T5L = W[56]; | |
1690 T5P = W[57]; | |
1691 Ip[WS(rs, 14)] = FNMS(T5P, T5S, T5L * T5O); | |
1692 Im[WS(rs, 14)] = FMA(T5L, T5S, T5P * T5O); | |
1693 } | |
1694 } | |
1695 { | |
1696 E T6I, T7g, T79, T7h, T6X, T7l, T76, T7k; | |
1697 { | |
1698 E T6A, T6H, T77, T78; | |
1699 T6A = T6y - T6z; | |
1700 T6H = T6D + T6G; | |
1701 T6I = T6A - T6H; | |
1702 T7g = T6A + T6H; | |
1703 T77 = FNMS(KP555570233, T6S, KP831469612 * T6V); | |
1704 T78 = FMA(KP555570233, T6L, KP831469612 * T6O); | |
1705 T79 = T77 - T78; | |
1706 T7h = T77 + T78; | |
1707 } | |
1708 { | |
1709 E T6P, T6W, T72, T75; | |
1710 T6P = FNMS(KP555570233, T6O, KP831469612 * T6L); | |
1711 T6W = FMA(KP831469612, T6S, KP555570233 * T6V); | |
1712 T6X = T6P - T6W; | |
1713 T7l = T6W + T6P; | |
1714 T72 = T70 + T71; | |
1715 T75 = T73 - T74; | |
1716 T76 = T72 - T75; | |
1717 T7k = T72 + T75; | |
1718 } | |
1719 { | |
1720 E T6Y, T7a, T6x, T6Z; | |
1721 T6Y = T6I - T6X; | |
1722 T7a = T76 - T79; | |
1723 T6x = W[52]; | |
1724 T6Z = W[53]; | |
1725 Ip[WS(rs, 13)] = FNMS(T6Z, T7a, T6x * T6Y); | |
1726 Im[WS(rs, 13)] = FMA(T6Z, T6Y, T6x * T7a); | |
1727 } | |
1728 { | |
1729 E T7o, T7q, T7n, T7p; | |
1730 T7o = T7g + T7h; | |
1731 T7q = T7k + T7l; | |
1732 T7n = W[4]; | |
1733 T7p = W[5]; | |
1734 Ip[WS(rs, 1)] = FNMS(T7p, T7q, T7n * T7o); | |
1735 Im[WS(rs, 1)] = FMA(T7n, T7q, T7p * T7o); | |
1736 } | |
1737 { | |
1738 E T7c, T7e, T7b, T7d; | |
1739 T7c = T6I + T6X; | |
1740 T7e = T76 + T79; | |
1741 T7b = W[20]; | |
1742 T7d = W[21]; | |
1743 Ip[WS(rs, 5)] = FNMS(T7d, T7e, T7b * T7c); | |
1744 Im[WS(rs, 5)] = FMA(T7d, T7c, T7b * T7e); | |
1745 } | |
1746 { | |
1747 E T7i, T7m, T7f, T7j; | |
1748 T7i = T7g - T7h; | |
1749 T7m = T7k - T7l; | |
1750 T7f = W[36]; | |
1751 T7j = W[37]; | |
1752 Ip[WS(rs, 9)] = FNMS(T7j, T7m, T7f * T7i); | |
1753 Im[WS(rs, 9)] = FMA(T7f, T7m, T7j * T7i); | |
1754 } | |
1755 } | |
1756 } | |
1757 } | |
1758 } | |
1759 | |
1760 static const tw_instr twinstr[] = { | |
1761 {TW_FULL, 1, 32}, | |
1762 {TW_NEXT, 1, 0} | |
1763 }; | |
1764 | |
1765 static const hc2c_desc desc = { 32, "hc2cb_32", twinstr, &GENUS, {340, 114, 94, 0} }; | |
1766 | |
1767 void X(codelet_hc2cb_32) (planner *p) { | |
1768 X(khc2c_register) (p, hc2cb_32, &desc, HC2C_VIA_RDFT); | |
1769 } | |
1770 #endif /* HAVE_FMA */ |