comparison fft/fftw/fftw-3.3.4/rdft/scalar/r2cb/hc2cb_20.c @ 19:26056e866c29

Add FFTW to comparison table
author Chris Cannam
date Tue, 06 Oct 2015 13:08:39 +0100
parents
children
comparison
equal deleted inserted replaced
18:8db794ca3e0b 19:26056e866c29
1 /*
2 * Copyright (c) 2003, 2007-14 Matteo Frigo
3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
18 *
19 */
20
21 /* This file was automatically generated --- DO NOT EDIT */
22 /* Generated on Tue Mar 4 13:50:39 EST 2014 */
23
24 #include "codelet-rdft.h"
25
26 #ifdef HAVE_FMA
27
28 /* Generated by: ../../../genfft/gen_hc2c.native -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -sign 1 -n 20 -dif -name hc2cb_20 -include hc2cb.h */
29
30 /*
31 * This function contains 246 FP additions, 148 FP multiplications,
32 * (or, 136 additions, 38 multiplications, 110 fused multiply/add),
33 * 112 stack variables, 4 constants, and 80 memory accesses
34 */
35 #include "hc2cb.h"
36
37 static void hc2cb_20(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
38 {
39 DK(KP951056516, +0.951056516295153572116439333379382143405698634);
40 DK(KP559016994, +0.559016994374947424102293417182819058860154590);
41 DK(KP618033988, +0.618033988749894848204586834365638117720309180);
42 DK(KP250000000, +0.250000000000000000000000000000000000000000000);
43 {
44 INT m;
45 for (m = mb, W = W + ((mb - 1) * 38); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 38, MAKE_VOLATILE_STRIDE(80, rs)) {
46 E T1T, T1Q, T1P;
47 {
48 E T3z, T4z, TE, T7, T2W, T4e, T2l, T1t, T33, T3H, T3G, T3a, T1i, T2g, T13;
49 E T4H, T4G, T2d, T1B, T4u, T4B, T4A, T4r, T1A, T2s, T3l, T2t, T3s, T2o, T2q;
50 E T1w, T1y, TC, T29, T3E, T3C, T4n, T4l, TN, TL;
51 {
52 E T4, T2U, T3, T3x, T1p, T5, T1q, T1r;
53 {
54 E T1, T2, T1n, T1o;
55 T1 = Rp[0];
56 T2 = Rm[WS(rs, 9)];
57 T1n = Ip[0];
58 T1o = Im[WS(rs, 9)];
59 T4 = Rp[WS(rs, 5)];
60 T2U = T1 - T2;
61 T3 = T1 + T2;
62 T3x = T1n + T1o;
63 T1p = T1n - T1o;
64 T5 = Rm[WS(rs, 4)];
65 T1q = Ip[WS(rs, 5)];
66 T1r = Im[WS(rs, 4)];
67 }
68 {
69 E T3o, T4p, TF, Te, T2Z, T4f, T2b, T1a, T3k, T4t, TJ, TA, T39, T4j, T2f;
70 E T12, T3r, T4q, TG, Tl, T32, T4g, T2c, T1h, Tq, T34, Tp, T3f, TR, Tr;
71 E TS, TT;
72 {
73 E Tx, T37, Tw, T3j, TY, Ty, TZ, T10;
74 {
75 E Tb, T2X, Ta, T3m, T16, Tc, T17, T18;
76 {
77 E T8, T9, T14, T15;
78 T8 = Rp[WS(rs, 4)];
79 {
80 E T3y, T6, T2V, T1s;
81 T3y = T4 - T5;
82 T6 = T4 + T5;
83 T2V = T1q + T1r;
84 T1s = T1q - T1r;
85 T3z = T3x - T3y;
86 T4z = T3y + T3x;
87 TE = T3 - T6;
88 T7 = T3 + T6;
89 T2W = T2U + T2V;
90 T4e = T2U - T2V;
91 T2l = T1p + T1s;
92 T1t = T1p - T1s;
93 T9 = Rm[WS(rs, 5)];
94 }
95 T14 = Ip[WS(rs, 4)];
96 T15 = Im[WS(rs, 5)];
97 Tb = Rp[WS(rs, 9)];
98 T2X = T8 - T9;
99 Ta = T8 + T9;
100 T3m = T14 + T15;
101 T16 = T14 - T15;
102 Tc = Rm[0];
103 T17 = Ip[WS(rs, 9)];
104 T18 = Im[0];
105 }
106 {
107 E Tu, Tv, TW, TX;
108 Tu = Rm[WS(rs, 7)];
109 {
110 E T3n, Td, T2Y, T19;
111 T3n = Tb - Tc;
112 Td = Tb + Tc;
113 T2Y = T17 + T18;
114 T19 = T17 - T18;
115 T3o = T3m - T3n;
116 T4p = T3n + T3m;
117 TF = Ta - Td;
118 Te = Ta + Td;
119 T2Z = T2X + T2Y;
120 T4f = T2X - T2Y;
121 T2b = T16 + T19;
122 T1a = T16 - T19;
123 Tv = Rp[WS(rs, 2)];
124 }
125 TW = Ip[WS(rs, 2)];
126 TX = Im[WS(rs, 7)];
127 Tx = Rm[WS(rs, 2)];
128 T37 = Tu - Tv;
129 Tw = Tu + Tv;
130 T3j = TW + TX;
131 TY = TW - TX;
132 Ty = Rp[WS(rs, 7)];
133 TZ = Ip[WS(rs, 7)];
134 T10 = Im[WS(rs, 2)];
135 }
136 }
137 {
138 E Ti, T30, Th, T3q, T1d, Tj, T1e, T1f;
139 {
140 E Tf, Tg, T1b, T1c;
141 Tf = Rm[WS(rs, 3)];
142 {
143 E T3i, Tz, T38, T11;
144 T3i = Tx - Ty;
145 Tz = Tx + Ty;
146 T38 = TZ + T10;
147 T11 = TZ - T10;
148 T3k = T3i + T3j;
149 T4t = T3i - T3j;
150 TJ = Tw - Tz;
151 TA = Tw + Tz;
152 T39 = T37 - T38;
153 T4j = T37 + T38;
154 T2f = TY + T11;
155 T12 = TY - T11;
156 Tg = Rp[WS(rs, 6)];
157 }
158 T1b = Ip[WS(rs, 6)];
159 T1c = Im[WS(rs, 3)];
160 Ti = Rp[WS(rs, 1)];
161 T30 = Tf - Tg;
162 Th = Tf + Tg;
163 T3q = T1b + T1c;
164 T1d = T1b - T1c;
165 Tj = Rm[WS(rs, 8)];
166 T1e = Ip[WS(rs, 1)];
167 T1f = Im[WS(rs, 8)];
168 }
169 {
170 E Tn, To, TP, TQ;
171 Tn = Rp[WS(rs, 8)];
172 {
173 E T3p, Tk, T31, T1g;
174 T3p = Ti - Tj;
175 Tk = Ti + Tj;
176 T31 = T1e + T1f;
177 T1g = T1e - T1f;
178 T3r = T3p + T3q;
179 T4q = T3p - T3q;
180 TG = Th - Tk;
181 Tl = Th + Tk;
182 T32 = T30 + T31;
183 T4g = T30 - T31;
184 T2c = T1d + T1g;
185 T1h = T1d - T1g;
186 To = Rm[WS(rs, 1)];
187 }
188 TP = Ip[WS(rs, 8)];
189 TQ = Im[WS(rs, 1)];
190 Tq = Rm[WS(rs, 6)];
191 T34 = Tn - To;
192 Tp = Tn + To;
193 T3f = TP + TQ;
194 TR = TP - TQ;
195 Tr = Rp[WS(rs, 3)];
196 TS = Ip[WS(rs, 3)];
197 TT = Im[WS(rs, 6)];
198 }
199 }
200 }
201 {
202 E T3h, Tt, T1u, T2n, T1v, T4k, T4h, T2m, TH, TK, T4s, TI;
203 T33 = T2Z + T32;
204 T3H = T2Z - T32;
205 {
206 E T3g, Ts, T35, TU;
207 T3g = Tq - Tr;
208 Ts = Tq + Tr;
209 T35 = TS + TT;
210 TU = TS - TT;
211 T3h = T3f - T3g;
212 T4s = T3g + T3f;
213 TI = Tp - Ts;
214 Tt = Tp + Ts;
215 {
216 E T36, T4i, T2e, TV;
217 T36 = T34 - T35;
218 T4i = T34 + T35;
219 T2e = TR + TU;
220 TV = TR - TU;
221 T3G = T36 - T39;
222 T3a = T36 + T39;
223 T1u = T1a + T1h;
224 T1i = T1a - T1h;
225 T2g = T2e - T2f;
226 T2n = T2e + T2f;
227 T1v = TV + T12;
228 T13 = TV - T12;
229 T4H = T4i - T4j;
230 T4k = T4i + T4j;
231 }
232 }
233 T4h = T4f + T4g;
234 T4G = T4f - T4g;
235 T2d = T2b - T2c;
236 T2m = T2b + T2c;
237 TH = TF + TG;
238 T1B = TF - TG;
239 T4u = T4s - T4t;
240 T4B = T4s + T4t;
241 T4A = T4p + T4q;
242 T4r = T4p - T4q;
243 T1A = TI - TJ;
244 TK = TI + TJ;
245 {
246 E Tm, T3B, TB, T3A;
247 Tm = Te + Tl;
248 T2s = Te - Tl;
249 T3l = T3h + T3k;
250 T3B = T3h - T3k;
251 TB = Tt + TA;
252 T2t = Tt - TA;
253 T3s = T3o + T3r;
254 T3A = T3o - T3r;
255 T2o = T2m + T2n;
256 T2q = T2m - T2n;
257 T1w = T1u + T1v;
258 T1y = T1u - T1v;
259 TC = Tm + TB;
260 T29 = Tm - TB;
261 T3E = T3A - T3B;
262 T3C = T3A + T3B;
263 T4n = T4h - T4k;
264 T4l = T4h + T4k;
265 TN = TH - TK;
266 TL = TH + TK;
267 }
268 }
269 }
270 }
271 {
272 E T3d, T3b, T4E, T1x, TM, T4m, T58, T5b, T4D, T5a, T5c, T59, T4C;
273 Rp[0] = T7 + TC;
274 T3d = T33 - T3a;
275 T3b = T33 + T3a;
276 T4E = T4A - T4B;
277 T4C = T4A + T4B;
278 Rm[0] = T2l + T2o;
279 {
280 E T25, T22, T21, T24, T23, T26, T57;
281 T1x = FNMS(KP250000000, T1w, T1t);
282 T25 = T1t + T1w;
283 T22 = TE + TL;
284 TM = FNMS(KP250000000, TL, TE);
285 T21 = W[18];
286 T24 = W[19];
287 T4m = FNMS(KP250000000, T4l, T4e);
288 T58 = T4e + T4l;
289 T5b = T4z + T4C;
290 T4D = FNMS(KP250000000, T4C, T4z);
291 T23 = T21 * T22;
292 T26 = T24 * T22;
293 T57 = W[8];
294 T5a = W[9];
295 Rp[WS(rs, 5)] = FNMS(T24, T25, T23);
296 Rm[WS(rs, 5)] = FMA(T21, T25, T26);
297 T5c = T57 * T5b;
298 T59 = T57 * T58;
299 }
300 {
301 E T3U, T3Z, T3W, T40, T3V;
302 {
303 E T3c, T48, T4b, T3D, T47, T4a;
304 T3c = FNMS(KP250000000, T3b, T2W);
305 T48 = T2W + T3b;
306 T4b = T3z + T3C;
307 T3D = FNMS(KP250000000, T3C, T3z);
308 Im[WS(rs, 2)] = FMA(T5a, T58, T5c);
309 Ip[WS(rs, 2)] = FNMS(T5a, T5b, T59);
310 T47 = W[28];
311 T4a = W[29];
312 {
313 E T3I, T3Y, T42, T3u, T3M, T3X, T3F;
314 {
315 E T3T, T3t, T4c, T49, T3e, T3S;
316 T3T = FMA(KP618033988, T3l, T3s);
317 T3t = FNMS(KP618033988, T3s, T3l);
318 T4c = T47 * T4b;
319 T49 = T47 * T48;
320 T3I = FNMS(KP618033988, T3H, T3G);
321 T3Y = FMA(KP618033988, T3G, T3H);
322 Im[WS(rs, 7)] = FMA(T4a, T48, T4c);
323 Ip[WS(rs, 7)] = FNMS(T4a, T4b, T49);
324 T3e = FNMS(KP559016994, T3d, T3c);
325 T3S = FMA(KP559016994, T3d, T3c);
326 T42 = FMA(KP951056516, T3T, T3S);
327 T3U = FNMS(KP951056516, T3T, T3S);
328 T3u = FNMS(KP951056516, T3t, T3e);
329 T3M = FMA(KP951056516, T3t, T3e);
330 T3X = FMA(KP559016994, T3E, T3D);
331 T3F = FNMS(KP559016994, T3E, T3D);
332 }
333 {
334 E T3P, T45, T44, T46, T43;
335 {
336 E T3w, T3J, T3v, T3K, T2T, T41;
337 T2T = W[4];
338 T3w = W[5];
339 T3J = FMA(KP951056516, T3I, T3F);
340 T3P = FNMS(KP951056516, T3I, T3F);
341 T45 = FNMS(KP951056516, T3Y, T3X);
342 T3Z = FMA(KP951056516, T3Y, T3X);
343 T3v = T2T * T3u;
344 T3K = T2T * T3J;
345 T41 = W[36];
346 T44 = W[37];
347 Ip[WS(rs, 1)] = FNMS(T3w, T3J, T3v);
348 Im[WS(rs, 1)] = FMA(T3w, T3u, T3K);
349 T46 = T41 * T45;
350 T43 = T41 * T42;
351 }
352 {
353 E T3O, T3Q, T3N, T3L, T3R;
354 T3L = W[12];
355 T3O = W[13];
356 Im[WS(rs, 9)] = FMA(T44, T42, T46);
357 Ip[WS(rs, 9)] = FNMS(T44, T45, T43);
358 T3Q = T3L * T3P;
359 T3N = T3L * T3M;
360 T3R = W[20];
361 T3W = W[21];
362 Im[WS(rs, 3)] = FMA(T3O, T3M, T3Q);
363 Ip[WS(rs, 3)] = FNMS(T3O, T3P, T3N);
364 T40 = T3R * T3Z;
365 T3V = T3R * T3U;
366 }
367 }
368 }
369 }
370 {
371 E T4U, T4Z, T4W, T50, T4V, T2L, T2I, T2H;
372 {
373 E T4T, T4v, T4I, T4Y, T4o, T4S;
374 T4T = FNMS(KP618033988, T4r, T4u);
375 T4v = FMA(KP618033988, T4u, T4r);
376 Im[WS(rs, 5)] = FMA(T3W, T3U, T40);
377 Ip[WS(rs, 5)] = FNMS(T3W, T3Z, T3V);
378 T4I = FMA(KP618033988, T4H, T4G);
379 T4Y = FNMS(KP618033988, T4G, T4H);
380 T4o = FMA(KP559016994, T4n, T4m);
381 T4S = FNMS(KP559016994, T4n, T4m);
382 {
383 E T52, T4M, T55, T4P, T54, T56, T53;
384 {
385 E T4d, T4w, T4J, T4x, T4y, T4X, T4F, T51, T4K;
386 T4d = W[0];
387 T4X = FNMS(KP559016994, T4E, T4D);
388 T4F = FMA(KP559016994, T4E, T4D);
389 T4U = FNMS(KP951056516, T4T, T4S);
390 T52 = FMA(KP951056516, T4T, T4S);
391 T4M = FMA(KP951056516, T4v, T4o);
392 T4w = FNMS(KP951056516, T4v, T4o);
393 T4Z = FMA(KP951056516, T4Y, T4X);
394 T55 = FNMS(KP951056516, T4Y, T4X);
395 T4P = FNMS(KP951056516, T4I, T4F);
396 T4J = FMA(KP951056516, T4I, T4F);
397 T4x = T4d * T4w;
398 T4y = W[1];
399 T51 = W[32];
400 T4K = T4d * T4J;
401 T54 = W[33];
402 Ip[0] = FNMS(T4y, T4J, T4x);
403 T56 = T51 * T55;
404 T53 = T51 * T52;
405 Im[0] = FMA(T4y, T4w, T4K);
406 }
407 {
408 E T4O, T4Q, T4N, T4L, T4R;
409 T4L = W[16];
410 Im[WS(rs, 8)] = FMA(T54, T52, T56);
411 Ip[WS(rs, 8)] = FNMS(T54, T55, T53);
412 T4O = W[17];
413 T4Q = T4L * T4P;
414 T4N = T4L * T4M;
415 T4R = W[24];
416 T4W = W[25];
417 Im[WS(rs, 4)] = FMA(T4O, T4M, T4Q);
418 Ip[WS(rs, 4)] = FNMS(T4O, T4P, T4N);
419 T50 = T4R * T4Z;
420 T4V = T4R * T4U;
421 }
422 }
423 }
424 {
425 E T2K, T2u, T2F, T2h, T28, T2J, T2r, T2p;
426 T2K = FNMS(KP618033988, T2s, T2t);
427 T2u = FMA(KP618033988, T2t, T2s);
428 Im[WS(rs, 6)] = FMA(T4W, T4U, T50);
429 Ip[WS(rs, 6)] = FNMS(T4W, T4Z, T4V);
430 T2p = FNMS(KP250000000, T2o, T2l);
431 T2F = FNMS(KP618033988, T2d, T2g);
432 T2h = FMA(KP618033988, T2g, T2d);
433 T28 = FNMS(KP250000000, TC, T7);
434 T2J = FNMS(KP559016994, T2q, T2p);
435 T2r = FMA(KP559016994, T2q, T2p);
436 {
437 E T2B, T2G, T2y, T2R, T2Q, T2P, T2A, T2x;
438 {
439 E T2k, T2v, T27, T2O, T2i, T2a, T2E;
440 T2k = W[7];
441 T2a = FMA(KP559016994, T29, T28);
442 T2E = FNMS(KP559016994, T29, T28);
443 T2B = FMA(KP951056516, T2u, T2r);
444 T2v = FNMS(KP951056516, T2u, T2r);
445 T27 = W[6];
446 T2O = FMA(KP951056516, T2F, T2E);
447 T2G = FNMS(KP951056516, T2F, T2E);
448 T2i = FMA(KP951056516, T2h, T2a);
449 T2y = FNMS(KP951056516, T2h, T2a);
450 {
451 E T2N, T2j, T2w, T2S;
452 T2L = FMA(KP951056516, T2K, T2J);
453 T2R = FNMS(KP951056516, T2K, T2J);
454 T2Q = W[23];
455 T2N = W[22];
456 T2j = T27 * T2i;
457 T2w = T2k * T2i;
458 T2S = T2Q * T2O;
459 T2P = T2N * T2O;
460 Rp[WS(rs, 2)] = FNMS(T2k, T2v, T2j);
461 Rm[WS(rs, 2)] = FMA(T27, T2v, T2w);
462 Rm[WS(rs, 6)] = FMA(T2N, T2R, T2S);
463 }
464 }
465 Rp[WS(rs, 6)] = FNMS(T2Q, T2R, T2P);
466 T2A = W[31];
467 T2x = W[30];
468 {
469 E T2D, T2M, T2C, T2z;
470 T2I = W[15];
471 T2C = T2A * T2y;
472 T2z = T2x * T2y;
473 T2D = W[14];
474 T2M = T2I * T2G;
475 Rm[WS(rs, 8)] = FMA(T2x, T2B, T2C);
476 Rp[WS(rs, 8)] = FNMS(T2A, T2B, T2z);
477 T2H = T2D * T2G;
478 Rm[WS(rs, 4)] = FMA(T2D, T2L, T2M);
479 }
480 }
481 }
482 {
483 E T1S, T1C, T1j, T1N, T1z, T1R;
484 T1S = FMA(KP618033988, T1A, T1B);
485 T1C = FNMS(KP618033988, T1B, T1A);
486 Rp[WS(rs, 4)] = FNMS(T2I, T2L, T2H);
487 T1j = FNMS(KP618033988, T1i, T13);
488 T1N = FMA(KP618033988, T13, T1i);
489 T1z = FNMS(KP559016994, T1y, T1x);
490 T1R = FMA(KP559016994, T1y, T1x);
491 {
492 E T1J, T1O, T1G, T1Z, T1Y, T1X, T1I, T1F;
493 {
494 E T1m, T1D, TD, T1W, T1k, T1M, TO;
495 T1m = W[3];
496 T1M = FMA(KP559016994, TN, TM);
497 TO = FNMS(KP559016994, TN, TM);
498 T1D = FNMS(KP951056516, T1C, T1z);
499 T1J = FMA(KP951056516, T1C, T1z);
500 TD = W[2];
501 T1O = FNMS(KP951056516, T1N, T1M);
502 T1W = FMA(KP951056516, T1N, T1M);
503 T1G = FNMS(KP951056516, T1j, TO);
504 T1k = FMA(KP951056516, T1j, TO);
505 {
506 E T1V, T1l, T1E, T20;
507 T1Z = FNMS(KP951056516, T1S, T1R);
508 T1T = FMA(KP951056516, T1S, T1R);
509 T1Y = W[27];
510 T1V = W[26];
511 T1l = TD * T1k;
512 T1E = T1m * T1k;
513 T20 = T1Y * T1W;
514 T1X = T1V * T1W;
515 Rp[WS(rs, 1)] = FNMS(T1m, T1D, T1l);
516 Rm[WS(rs, 1)] = FMA(TD, T1D, T1E);
517 Rm[WS(rs, 7)] = FMA(T1V, T1Z, T20);
518 }
519 }
520 Rp[WS(rs, 7)] = FNMS(T1Y, T1Z, T1X);
521 T1I = W[35];
522 T1F = W[34];
523 {
524 E T1L, T1U, T1K, T1H;
525 T1Q = W[11];
526 T1K = T1I * T1G;
527 T1H = T1F * T1G;
528 T1L = W[10];
529 T1U = T1Q * T1O;
530 Rm[WS(rs, 9)] = FMA(T1F, T1J, T1K);
531 Rp[WS(rs, 9)] = FNMS(T1I, T1J, T1H);
532 T1P = T1L * T1O;
533 Rm[WS(rs, 3)] = FMA(T1L, T1T, T1U);
534 }
535 }
536 }
537 }
538 }
539 }
540 }
541 Rp[WS(rs, 3)] = FNMS(T1Q, T1T, T1P);
542 }
543 }
544 }
545
546 static const tw_instr twinstr[] = {
547 {TW_FULL, 1, 20},
548 {TW_NEXT, 1, 0}
549 };
550
551 static const hc2c_desc desc = { 20, "hc2cb_20", twinstr, &GENUS, {136, 38, 110, 0} };
552
553 void X(codelet_hc2cb_20) (planner *p) {
554 X(khc2c_register) (p, hc2cb_20, &desc, HC2C_VIA_RDFT);
555 }
556 #else /* HAVE_FMA */
557
558 /* Generated by: ../../../genfft/gen_hc2c.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 20 -dif -name hc2cb_20 -include hc2cb.h */
559
560 /*
561 * This function contains 246 FP additions, 124 FP multiplications,
562 * (or, 184 additions, 62 multiplications, 62 fused multiply/add),
563 * 97 stack variables, 4 constants, and 80 memory accesses
564 */
565 #include "hc2cb.h"
566
567 static void hc2cb_20(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
568 {
569 DK(KP250000000, +0.250000000000000000000000000000000000000000000);
570 DK(KP559016994, +0.559016994374947424102293417182819058860154590);
571 DK(KP587785252, +0.587785252292473129168705954639072768597652438);
572 DK(KP951056516, +0.951056516295153572116439333379382143405698634);
573 {
574 INT m;
575 for (m = mb, W = W + ((mb - 1) * 38); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 38, MAKE_VOLATILE_STRIDE(80, rs)) {
576 E T7, T3T, T49, TE, T1v, T2T, T3g, T2d, T13, T3n, T3o, T1i, T26, T4e, T4d;
577 E T23, T1n, T42, T3Z, T1m, T2h, T2I, T2i, T2P, T30, T37, T38, Tm, TB, TC;
578 E T46, T47, T4a, T2a, T2b, T2e, T1w, T1x, T1y, T3O, T3R, T3U, T3h, T3i, T3j;
579 E TH, TK, TL;
580 {
581 E T3, T2R, T1r, T3e, T6, T3f, T1u, T2S;
582 {
583 E T1, T2, T1p, T1q;
584 T1 = Rp[0];
585 T2 = Rm[WS(rs, 9)];
586 T3 = T1 + T2;
587 T2R = T1 - T2;
588 T1p = Ip[0];
589 T1q = Im[WS(rs, 9)];
590 T1r = T1p - T1q;
591 T3e = T1p + T1q;
592 }
593 {
594 E T4, T5, T1s, T1t;
595 T4 = Rp[WS(rs, 5)];
596 T5 = Rm[WS(rs, 4)];
597 T6 = T4 + T5;
598 T3f = T4 - T5;
599 T1s = Ip[WS(rs, 5)];
600 T1t = Im[WS(rs, 4)];
601 T1u = T1s - T1t;
602 T2S = T1s + T1t;
603 }
604 T7 = T3 + T6;
605 T3T = T2R - T2S;
606 T49 = T3f + T3e;
607 TE = T3 - T6;
608 T1v = T1r - T1u;
609 T2T = T2R + T2S;
610 T3g = T3e - T3f;
611 T2d = T1r + T1u;
612 }
613 {
614 E Te, T3M, T3X, TF, TV, T2E, T2W, T21, TA, T3Q, T41, TJ, T1h, T2O, T36;
615 E T25, Tl, T3N, T3Y, TG, T12, T2H, T2Z, T22, Tt, T3P, T40, TI, T1a, T2L;
616 E T33, T24;
617 {
618 E Ta, T2U, TR, T2C, Td, T2D, TU, T2V;
619 {
620 E T8, T9, TP, TQ;
621 T8 = Rp[WS(rs, 4)];
622 T9 = Rm[WS(rs, 5)];
623 Ta = T8 + T9;
624 T2U = T8 - T9;
625 TP = Ip[WS(rs, 4)];
626 TQ = Im[WS(rs, 5)];
627 TR = TP - TQ;
628 T2C = TP + TQ;
629 }
630 {
631 E Tb, Tc, TS, TT;
632 Tb = Rp[WS(rs, 9)];
633 Tc = Rm[0];
634 Td = Tb + Tc;
635 T2D = Tb - Tc;
636 TS = Ip[WS(rs, 9)];
637 TT = Im[0];
638 TU = TS - TT;
639 T2V = TS + TT;
640 }
641 Te = Ta + Td;
642 T3M = T2U - T2V;
643 T3X = T2D + T2C;
644 TF = Ta - Td;
645 TV = TR - TU;
646 T2E = T2C - T2D;
647 T2W = T2U + T2V;
648 T21 = TR + TU;
649 }
650 {
651 E Tw, T34, T1d, T2N, Tz, T2M, T1g, T35;
652 {
653 E Tu, Tv, T1b, T1c;
654 Tu = Rm[WS(rs, 7)];
655 Tv = Rp[WS(rs, 2)];
656 Tw = Tu + Tv;
657 T34 = Tu - Tv;
658 T1b = Ip[WS(rs, 2)];
659 T1c = Im[WS(rs, 7)];
660 T1d = T1b - T1c;
661 T2N = T1b + T1c;
662 }
663 {
664 E Tx, Ty, T1e, T1f;
665 Tx = Rm[WS(rs, 2)];
666 Ty = Rp[WS(rs, 7)];
667 Tz = Tx + Ty;
668 T2M = Tx - Ty;
669 T1e = Ip[WS(rs, 7)];
670 T1f = Im[WS(rs, 2)];
671 T1g = T1e - T1f;
672 T35 = T1e + T1f;
673 }
674 TA = Tw + Tz;
675 T3Q = T34 + T35;
676 T41 = T2M - T2N;
677 TJ = Tw - Tz;
678 T1h = T1d - T1g;
679 T2O = T2M + T2N;
680 T36 = T34 - T35;
681 T25 = T1d + T1g;
682 }
683 {
684 E Th, T2X, TY, T2G, Tk, T2F, T11, T2Y;
685 {
686 E Tf, Tg, TW, TX;
687 Tf = Rm[WS(rs, 3)];
688 Tg = Rp[WS(rs, 6)];
689 Th = Tf + Tg;
690 T2X = Tf - Tg;
691 TW = Ip[WS(rs, 6)];
692 TX = Im[WS(rs, 3)];
693 TY = TW - TX;
694 T2G = TW + TX;
695 }
696 {
697 E Ti, Tj, TZ, T10;
698 Ti = Rp[WS(rs, 1)];
699 Tj = Rm[WS(rs, 8)];
700 Tk = Ti + Tj;
701 T2F = Ti - Tj;
702 TZ = Ip[WS(rs, 1)];
703 T10 = Im[WS(rs, 8)];
704 T11 = TZ - T10;
705 T2Y = TZ + T10;
706 }
707 Tl = Th + Tk;
708 T3N = T2X - T2Y;
709 T3Y = T2F - T2G;
710 TG = Th - Tk;
711 T12 = TY - T11;
712 T2H = T2F + T2G;
713 T2Z = T2X + T2Y;
714 T22 = TY + T11;
715 }
716 {
717 E Tp, T31, T16, T2J, Ts, T2K, T19, T32;
718 {
719 E Tn, To, T14, T15;
720 Tn = Rp[WS(rs, 8)];
721 To = Rm[WS(rs, 1)];
722 Tp = Tn + To;
723 T31 = Tn - To;
724 T14 = Ip[WS(rs, 8)];
725 T15 = Im[WS(rs, 1)];
726 T16 = T14 - T15;
727 T2J = T14 + T15;
728 }
729 {
730 E Tq, Tr, T17, T18;
731 Tq = Rm[WS(rs, 6)];
732 Tr = Rp[WS(rs, 3)];
733 Ts = Tq + Tr;
734 T2K = Tq - Tr;
735 T17 = Ip[WS(rs, 3)];
736 T18 = Im[WS(rs, 6)];
737 T19 = T17 - T18;
738 T32 = T17 + T18;
739 }
740 Tt = Tp + Ts;
741 T3P = T31 + T32;
742 T40 = T2K + T2J;
743 TI = Tp - Ts;
744 T1a = T16 - T19;
745 T2L = T2J - T2K;
746 T33 = T31 - T32;
747 T24 = T16 + T19;
748 }
749 T13 = TV - T12;
750 T3n = T2W - T2Z;
751 T3o = T33 - T36;
752 T1i = T1a - T1h;
753 T26 = T24 - T25;
754 T4e = T3P - T3Q;
755 T4d = T3M - T3N;
756 T23 = T21 - T22;
757 T1n = TI - TJ;
758 T42 = T40 - T41;
759 T3Z = T3X - T3Y;
760 T1m = TF - TG;
761 T2h = Te - Tl;
762 T2I = T2E + T2H;
763 T2i = Tt - TA;
764 T2P = T2L + T2O;
765 T30 = T2W + T2Z;
766 T37 = T33 + T36;
767 T38 = T30 + T37;
768 Tm = Te + Tl;
769 TB = Tt + TA;
770 TC = Tm + TB;
771 T46 = T3X + T3Y;
772 T47 = T40 + T41;
773 T4a = T46 + T47;
774 T2a = T21 + T22;
775 T2b = T24 + T25;
776 T2e = T2a + T2b;
777 T1w = TV + T12;
778 T1x = T1a + T1h;
779 T1y = T1w + T1x;
780 T3O = T3M + T3N;
781 T3R = T3P + T3Q;
782 T3U = T3O + T3R;
783 T3h = T2E - T2H;
784 T3i = T2L - T2O;
785 T3j = T3h + T3i;
786 TH = TF + TG;
787 TK = TI + TJ;
788 TL = TH + TK;
789 }
790 Rp[0] = T7 + TC;
791 Rm[0] = T2d + T2e;
792 {
793 E T1U, T1W, T1T, T1V;
794 T1U = TE + TL;
795 T1W = T1v + T1y;
796 T1T = W[18];
797 T1V = W[19];
798 Rp[WS(rs, 5)] = FNMS(T1V, T1W, T1T * T1U);
799 Rm[WS(rs, 5)] = FMA(T1V, T1U, T1T * T1W);
800 }
801 {
802 E T4y, T4A, T4x, T4z;
803 T4y = T3T + T3U;
804 T4A = T49 + T4a;
805 T4x = W[8];
806 T4z = W[9];
807 Ip[WS(rs, 2)] = FNMS(T4z, T4A, T4x * T4y);
808 Im[WS(rs, 2)] = FMA(T4x, T4A, T4z * T4y);
809 }
810 {
811 E T3I, T3K, T3H, T3J;
812 T3I = T2T + T38;
813 T3K = T3g + T3j;
814 T3H = W[28];
815 T3J = W[29];
816 Ip[WS(rs, 7)] = FNMS(T3J, T3K, T3H * T3I);
817 Im[WS(rs, 7)] = FMA(T3H, T3K, T3J * T3I);
818 }
819 {
820 E T27, T2j, T2v, T2r, T2g, T2u, T20, T2q;
821 T27 = FMA(KP951056516, T23, KP587785252 * T26);
822 T2j = FMA(KP951056516, T2h, KP587785252 * T2i);
823 T2v = FNMS(KP951056516, T2i, KP587785252 * T2h);
824 T2r = FNMS(KP951056516, T26, KP587785252 * T23);
825 {
826 E T2c, T2f, T1Y, T1Z;
827 T2c = KP559016994 * (T2a - T2b);
828 T2f = FNMS(KP250000000, T2e, T2d);
829 T2g = T2c + T2f;
830 T2u = T2f - T2c;
831 T1Y = KP559016994 * (Tm - TB);
832 T1Z = FNMS(KP250000000, TC, T7);
833 T20 = T1Y + T1Z;
834 T2q = T1Z - T1Y;
835 }
836 {
837 E T28, T2k, T1X, T29;
838 T28 = T20 + T27;
839 T2k = T2g - T2j;
840 T1X = W[6];
841 T29 = W[7];
842 Rp[WS(rs, 2)] = FNMS(T29, T2k, T1X * T28);
843 Rm[WS(rs, 2)] = FMA(T29, T28, T1X * T2k);
844 }
845 {
846 E T2y, T2A, T2x, T2z;
847 T2y = T2q - T2r;
848 T2A = T2v + T2u;
849 T2x = W[22];
850 T2z = W[23];
851 Rp[WS(rs, 6)] = FNMS(T2z, T2A, T2x * T2y);
852 Rm[WS(rs, 6)] = FMA(T2z, T2y, T2x * T2A);
853 }
854 {
855 E T2m, T2o, T2l, T2n;
856 T2m = T20 - T27;
857 T2o = T2j + T2g;
858 T2l = W[30];
859 T2n = W[31];
860 Rp[WS(rs, 8)] = FNMS(T2n, T2o, T2l * T2m);
861 Rm[WS(rs, 8)] = FMA(T2n, T2m, T2l * T2o);
862 }
863 {
864 E T2s, T2w, T2p, T2t;
865 T2s = T2q + T2r;
866 T2w = T2u - T2v;
867 T2p = W[14];
868 T2t = W[15];
869 Rp[WS(rs, 4)] = FNMS(T2t, T2w, T2p * T2s);
870 Rm[WS(rs, 4)] = FMA(T2t, T2s, T2p * T2w);
871 }
872 }
873 {
874 E T43, T4f, T4r, T4m, T4c, T4q, T3W, T4n;
875 T43 = FMA(KP951056516, T3Z, KP587785252 * T42);
876 T4f = FMA(KP951056516, T4d, KP587785252 * T4e);
877 T4r = FNMS(KP951056516, T4e, KP587785252 * T4d);
878 T4m = FNMS(KP951056516, T42, KP587785252 * T3Z);
879 {
880 E T48, T4b, T3S, T3V;
881 T48 = KP559016994 * (T46 - T47);
882 T4b = FNMS(KP250000000, T4a, T49);
883 T4c = T48 + T4b;
884 T4q = T4b - T48;
885 T3S = KP559016994 * (T3O - T3R);
886 T3V = FNMS(KP250000000, T3U, T3T);
887 T3W = T3S + T3V;
888 T4n = T3V - T3S;
889 }
890 {
891 E T44, T4g, T3L, T45;
892 T44 = T3W - T43;
893 T4g = T4c + T4f;
894 T3L = W[0];
895 T45 = W[1];
896 Ip[0] = FNMS(T45, T4g, T3L * T44);
897 Im[0] = FMA(T3L, T4g, T45 * T44);
898 }
899 {
900 E T4u, T4w, T4t, T4v;
901 T4u = T4n - T4m;
902 T4w = T4q + T4r;
903 T4t = W[32];
904 T4v = W[33];
905 Ip[WS(rs, 8)] = FNMS(T4v, T4w, T4t * T4u);
906 Im[WS(rs, 8)] = FMA(T4t, T4w, T4v * T4u);
907 }
908 {
909 E T4i, T4k, T4h, T4j;
910 T4i = T43 + T3W;
911 T4k = T4c - T4f;
912 T4h = W[16];
913 T4j = W[17];
914 Ip[WS(rs, 4)] = FNMS(T4j, T4k, T4h * T4i);
915 Im[WS(rs, 4)] = FMA(T4h, T4k, T4j * T4i);
916 }
917 {
918 E T4o, T4s, T4l, T4p;
919 T4o = T4m + T4n;
920 T4s = T4q - T4r;
921 T4l = W[24];
922 T4p = W[25];
923 Ip[WS(rs, 6)] = FNMS(T4p, T4s, T4l * T4o);
924 Im[WS(rs, 6)] = FMA(T4l, T4s, T4p * T4o);
925 }
926 }
927 {
928 E T1j, T1o, T1M, T1J, T1B, T1N, TO, T1I;
929 T1j = FNMS(KP951056516, T1i, KP587785252 * T13);
930 T1o = FNMS(KP951056516, T1n, KP587785252 * T1m);
931 T1M = FMA(KP951056516, T1m, KP587785252 * T1n);
932 T1J = FMA(KP951056516, T13, KP587785252 * T1i);
933 {
934 E T1z, T1A, TM, TN;
935 T1z = FNMS(KP250000000, T1y, T1v);
936 T1A = KP559016994 * (T1w - T1x);
937 T1B = T1z - T1A;
938 T1N = T1A + T1z;
939 TM = FNMS(KP250000000, TL, TE);
940 TN = KP559016994 * (TH - TK);
941 TO = TM - TN;
942 T1I = TN + TM;
943 }
944 {
945 E T1k, T1C, TD, T1l;
946 T1k = TO - T1j;
947 T1C = T1o + T1B;
948 TD = W[2];
949 T1l = W[3];
950 Rp[WS(rs, 1)] = FNMS(T1l, T1C, TD * T1k);
951 Rm[WS(rs, 1)] = FMA(T1l, T1k, TD * T1C);
952 }
953 {
954 E T1Q, T1S, T1P, T1R;
955 T1Q = T1I + T1J;
956 T1S = T1N - T1M;
957 T1P = W[26];
958 T1R = W[27];
959 Rp[WS(rs, 7)] = FNMS(T1R, T1S, T1P * T1Q);
960 Rm[WS(rs, 7)] = FMA(T1R, T1Q, T1P * T1S);
961 }
962 {
963 E T1E, T1G, T1D, T1F;
964 T1E = TO + T1j;
965 T1G = T1B - T1o;
966 T1D = W[34];
967 T1F = W[35];
968 Rp[WS(rs, 9)] = FNMS(T1F, T1G, T1D * T1E);
969 Rm[WS(rs, 9)] = FMA(T1F, T1E, T1D * T1G);
970 }
971 {
972 E T1K, T1O, T1H, T1L;
973 T1K = T1I - T1J;
974 T1O = T1M + T1N;
975 T1H = W[10];
976 T1L = W[11];
977 Rp[WS(rs, 3)] = FNMS(T1L, T1O, T1H * T1K);
978 Rm[WS(rs, 3)] = FMA(T1L, T1K, T1H * T1O);
979 }
980 }
981 {
982 E T2Q, T3p, T3B, T3x, T3m, T3A, T3b, T3w;
983 T2Q = FNMS(KP951056516, T2P, KP587785252 * T2I);
984 T3p = FNMS(KP951056516, T3o, KP587785252 * T3n);
985 T3B = FMA(KP951056516, T3n, KP587785252 * T3o);
986 T3x = FMA(KP951056516, T2I, KP587785252 * T2P);
987 {
988 E T3k, T3l, T39, T3a;
989 T3k = FNMS(KP250000000, T3j, T3g);
990 T3l = KP559016994 * (T3h - T3i);
991 T3m = T3k - T3l;
992 T3A = T3l + T3k;
993 T39 = FNMS(KP250000000, T38, T2T);
994 T3a = KP559016994 * (T30 - T37);
995 T3b = T39 - T3a;
996 T3w = T3a + T39;
997 }
998 {
999 E T3c, T3q, T2B, T3d;
1000 T3c = T2Q + T3b;
1001 T3q = T3m - T3p;
1002 T2B = W[4];
1003 T3d = W[5];
1004 Ip[WS(rs, 1)] = FNMS(T3d, T3q, T2B * T3c);
1005 Im[WS(rs, 1)] = FMA(T2B, T3q, T3d * T3c);
1006 }
1007 {
1008 E T3E, T3G, T3D, T3F;
1009 T3E = T3x + T3w;
1010 T3G = T3A - T3B;
1011 T3D = W[36];
1012 T3F = W[37];
1013 Ip[WS(rs, 9)] = FNMS(T3F, T3G, T3D * T3E);
1014 Im[WS(rs, 9)] = FMA(T3D, T3G, T3F * T3E);
1015 }
1016 {
1017 E T3s, T3u, T3r, T3t;
1018 T3s = T3b - T2Q;
1019 T3u = T3m + T3p;
1020 T3r = W[12];
1021 T3t = W[13];
1022 Ip[WS(rs, 3)] = FNMS(T3t, T3u, T3r * T3s);
1023 Im[WS(rs, 3)] = FMA(T3r, T3u, T3t * T3s);
1024 }
1025 {
1026 E T3y, T3C, T3v, T3z;
1027 T3y = T3w - T3x;
1028 T3C = T3A + T3B;
1029 T3v = W[20];
1030 T3z = W[21];
1031 Ip[WS(rs, 5)] = FNMS(T3z, T3C, T3v * T3y);
1032 Im[WS(rs, 5)] = FMA(T3v, T3C, T3z * T3y);
1033 }
1034 }
1035 }
1036 }
1037 }
1038
1039 static const tw_instr twinstr[] = {
1040 {TW_FULL, 1, 20},
1041 {TW_NEXT, 1, 0}
1042 };
1043
1044 static const hc2c_desc desc = { 20, "hc2cb_20", twinstr, &GENUS, {184, 62, 62, 0} };
1045
1046 void X(codelet_hc2cb_20) (planner *p) {
1047 X(khc2c_register) (p, hc2cb_20, &desc, HC2C_VIA_RDFT);
1048 }
1049 #endif /* HAVE_FMA */