comparison fft/fftw/fftw-3.3.4/rdft/scalar/r2cb/hc2cb_16.c @ 19:26056e866c29

Add FFTW to comparison table
author Chris Cannam
date Tue, 06 Oct 2015 13:08:39 +0100
parents
children
comparison
equal deleted inserted replaced
18:8db794ca3e0b 19:26056e866c29
1 /*
2 * Copyright (c) 2003, 2007-14 Matteo Frigo
3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
18 *
19 */
20
21 /* This file was automatically generated --- DO NOT EDIT */
22 /* Generated on Tue Mar 4 13:50:38 EST 2014 */
23
24 #include "codelet-rdft.h"
25
26 #ifdef HAVE_FMA
27
28 /* Generated by: ../../../genfft/gen_hc2c.native -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -sign 1 -n 16 -dif -name hc2cb_16 -include hc2cb.h */
29
30 /*
31 * This function contains 174 FP additions, 100 FP multiplications,
32 * (or, 104 additions, 30 multiplications, 70 fused multiply/add),
33 * 78 stack variables, 3 constants, and 64 memory accesses
34 */
35 #include "hc2cb.h"
36
37 static void hc2cb_16(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
38 {
39 DK(KP923879532, +0.923879532511286756128183189396788286822416626);
40 DK(KP707106781, +0.707106781186547524400844362104849039284835938);
41 DK(KP414213562, +0.414213562373095048801688724209698078569671875);
42 {
43 INT m;
44 for (m = mb, W = W + ((mb - 1) * 30); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 30, MAKE_VOLATILE_STRIDE(64, rs)) {
45 E T1I, T1L, T1K, T1M, T1J;
46 {
47 E T1O, TA, T1h, T21, T3b, T2T, T3D, T3r, T1k, T1P, T3y, Tf, T36, T2A, T22;
48 E TL, T2F, T2U, T3u, T3z, T2K, T2V, T12, Tu, T3E, TX, T1n, T17, T1T, T24;
49 E T1W, T25;
50 {
51 E T2z, TF, TK, T2w;
52 {
53 E Tw, T3, T2Q, T1g, T1d, T6, T2R, Tz, Tb, TB, Ta, T2y, TE, Tc, TH;
54 E TI;
55 {
56 E T4, T5, Tx, Ty;
57 {
58 E T1, T2, T1e, T1f;
59 T1 = Rp[0];
60 T2 = Rm[WS(rs, 7)];
61 T1e = Ip[0];
62 T1f = Im[WS(rs, 7)];
63 T4 = Rp[WS(rs, 4)];
64 Tw = T1 - T2;
65 T3 = T1 + T2;
66 T2Q = T1e - T1f;
67 T1g = T1e + T1f;
68 T5 = Rm[WS(rs, 3)];
69 Tx = Ip[WS(rs, 4)];
70 Ty = Im[WS(rs, 3)];
71 }
72 {
73 E T8, T9, TC, TD;
74 T8 = Rp[WS(rs, 2)];
75 T1d = T4 - T5;
76 T6 = T4 + T5;
77 T2R = Tx - Ty;
78 Tz = Tx + Ty;
79 T9 = Rm[WS(rs, 5)];
80 TC = Ip[WS(rs, 2)];
81 TD = Im[WS(rs, 5)];
82 Tb = Rm[WS(rs, 1)];
83 TB = T8 - T9;
84 Ta = T8 + T9;
85 T2y = TC - TD;
86 TE = TC + TD;
87 Tc = Rp[WS(rs, 6)];
88 TH = Ip[WS(rs, 6)];
89 TI = Im[WS(rs, 1)];
90 }
91 }
92 {
93 E TG, T2x, TJ, Te, T2P, T2S, T3p, Td;
94 T1O = Tw + Tz;
95 TA = Tw - Tz;
96 TG = Tb - Tc;
97 Td = Tb + Tc;
98 T2x = TH - TI;
99 TJ = TH + TI;
100 T1h = T1d + T1g;
101 T21 = T1g - T1d;
102 Te = Ta + Td;
103 T2P = Ta - Td;
104 T2S = T2Q - T2R;
105 T3p = T2Q + T2R;
106 {
107 E T1i, T1j, T3q, T7;
108 T3q = T2y + T2x;
109 T2z = T2x - T2y;
110 TF = TB - TE;
111 T1i = TB + TE;
112 T3b = T2S - T2P;
113 T2T = T2P + T2S;
114 TK = TG - TJ;
115 T1j = TG + TJ;
116 T3D = T3p - T3q;
117 T3r = T3p + T3q;
118 T2w = T3 - T6;
119 T7 = T3 + T6;
120 T1k = T1i - T1j;
121 T1P = T1i + T1j;
122 T3y = T7 - Te;
123 Tf = T7 + Te;
124 }
125 }
126 }
127 {
128 E T13, Ti, T2C, T11, TY, Tl, T2D, T16, Tq, TS, Tp, T2H, TQ, Tr, TT;
129 E TU;
130 {
131 E Tj, Tk, T14, T15;
132 {
133 E Tg, Th, TZ, T10;
134 Tg = Rp[WS(rs, 1)];
135 T36 = T2w - T2z;
136 T2A = T2w + T2z;
137 T22 = TF - TK;
138 TL = TF + TK;
139 Th = Rm[WS(rs, 6)];
140 TZ = Ip[WS(rs, 1)];
141 T10 = Im[WS(rs, 6)];
142 Tj = Rp[WS(rs, 5)];
143 T13 = Tg - Th;
144 Ti = Tg + Th;
145 T2C = TZ - T10;
146 T11 = TZ + T10;
147 Tk = Rm[WS(rs, 2)];
148 T14 = Ip[WS(rs, 5)];
149 T15 = Im[WS(rs, 2)];
150 }
151 {
152 E Tn, To, TO, TP;
153 Tn = Rm[0];
154 TY = Tj - Tk;
155 Tl = Tj + Tk;
156 T2D = T14 - T15;
157 T16 = T14 + T15;
158 To = Rp[WS(rs, 7)];
159 TO = Ip[WS(rs, 7)];
160 TP = Im[0];
161 Tq = Rp[WS(rs, 3)];
162 TS = Tn - To;
163 Tp = Tn + To;
164 T2H = TO - TP;
165 TQ = TO + TP;
166 Tr = Rm[WS(rs, 4)];
167 TT = Ip[WS(rs, 3)];
168 TU = Im[WS(rs, 4)];
169 }
170 }
171 {
172 E TN, TV, Tm, Tt;
173 {
174 E T2E, T3s, Ts, T2B, T3t, T2J, T2I, T2G;
175 T2E = T2C - T2D;
176 T3s = T2C + T2D;
177 TN = Tq - Tr;
178 Ts = Tq + Tr;
179 T2I = TT - TU;
180 TV = TT + TU;
181 T2B = Ti - Tl;
182 Tm = Ti + Tl;
183 T3t = T2H + T2I;
184 T2J = T2H - T2I;
185 Tt = Tp + Ts;
186 T2G = Tp - Ts;
187 T2F = T2B - T2E;
188 T2U = T2B + T2E;
189 T3u = T3s + T3t;
190 T3z = T3t - T3s;
191 T2K = T2G + T2J;
192 T2V = T2J - T2G;
193 }
194 {
195 E T1U, T1V, T1R, T1S, TR, TW;
196 TR = TN - TQ;
197 T1U = TN + TQ;
198 T1V = TS + TV;
199 TW = TS - TV;
200 T1R = T11 - TY;
201 T12 = TY + T11;
202 Tu = Tm + Tt;
203 T3E = Tm - Tt;
204 TX = FNMS(KP414213562, TW, TR);
205 T1n = FMA(KP414213562, TR, TW);
206 T17 = T13 - T16;
207 T1S = T13 + T16;
208 T1T = FNMS(KP414213562, T1S, T1R);
209 T24 = FMA(KP414213562, T1R, T1S);
210 T1W = FNMS(KP414213562, T1V, T1U);
211 T25 = FMA(KP414213562, T1U, T1V);
212 }
213 }
214 }
215 }
216 {
217 E T18, T1m, T2W, T2L, T3j, T3i, T3h;
218 {
219 E T3m, T3v, T3l, T3o;
220 Rp[0] = Tf + Tu;
221 T18 = FMA(KP414213562, T17, T12);
222 T1m = FNMS(KP414213562, T12, T17);
223 T3m = Tf - Tu;
224 T3v = T3r - T3u;
225 T3l = W[14];
226 T3o = W[15];
227 Rm[0] = T3r + T3u;
228 {
229 E T3A, T3I, T3L, T3F, T3C, T3G, T3B, T3x, T3n, T3w, T3H, T3K;
230 T3A = T3y - T3z;
231 T3I = T3y + T3z;
232 T3n = T3l * T3m;
233 T3w = T3o * T3m;
234 T3L = T3E + T3D;
235 T3F = T3D - T3E;
236 T3x = W[22];
237 Rp[WS(rs, 4)] = FNMS(T3o, T3v, T3n);
238 Rm[WS(rs, 4)] = FMA(T3l, T3v, T3w);
239 T3C = W[23];
240 T3G = T3x * T3F;
241 T3B = T3x * T3A;
242 Rm[WS(rs, 6)] = FMA(T3C, T3A, T3G);
243 Rp[WS(rs, 6)] = FNMS(T3C, T3F, T3B);
244 T3H = W[6];
245 T3K = W[7];
246 {
247 E T3g, T38, T3d, T35, T3a;
248 {
249 E T37, T3c, T3M, T3J;
250 T37 = T2V - T2U;
251 T2W = T2U + T2V;
252 T2L = T2F + T2K;
253 T3c = T2F - T2K;
254 T3M = T3H * T3L;
255 T3J = T3H * T3I;
256 T3g = FMA(KP707106781, T37, T36);
257 T38 = FNMS(KP707106781, T37, T36);
258 Rm[WS(rs, 2)] = FMA(T3K, T3I, T3M);
259 Rp[WS(rs, 2)] = FNMS(T3K, T3L, T3J);
260 T3d = FNMS(KP707106781, T3c, T3b);
261 T3j = FMA(KP707106781, T3c, T3b);
262 }
263 T35 = W[26];
264 T3a = W[27];
265 {
266 E T3f, T3e, T39, T3k;
267 T3f = W[10];
268 T3i = W[11];
269 T3e = T35 * T3d;
270 T39 = T35 * T38;
271 T3k = T3f * T3j;
272 T3h = T3f * T3g;
273 Rm[WS(rs, 7)] = FMA(T3a, T38, T3e);
274 Rp[WS(rs, 7)] = FNMS(T3a, T3d, T39);
275 Rm[WS(rs, 3)] = FMA(T3i, T3g, T3k);
276 }
277 }
278 }
279 }
280 Rp[WS(rs, 3)] = FNMS(T3i, T3j, T3h);
281 {
282 E T2g, T2m, T2l, T2h, T2d, T29, T2c, T2b, T2e;
283 {
284 E T33, T2Z, T32, T31, T34;
285 {
286 E T2v, T30, T2M, T2X, T2O, T2N, T2Y;
287 T2v = W[18];
288 T30 = FMA(KP707106781, T2L, T2A);
289 T2M = FNMS(KP707106781, T2L, T2A);
290 T33 = FMA(KP707106781, T2W, T2T);
291 T2X = FNMS(KP707106781, T2W, T2T);
292 T2O = W[19];
293 T2N = T2v * T2M;
294 T2Z = W[2];
295 T32 = W[3];
296 T2Y = T2O * T2M;
297 Rp[WS(rs, 5)] = FNMS(T2O, T2X, T2N);
298 T31 = T2Z * T30;
299 T34 = T32 * T30;
300 Rm[WS(rs, 5)] = FMA(T2v, T2X, T2Y);
301 }
302 {
303 E T1Q, T1X, T23, T26;
304 T2g = FMA(KP707106781, T1P, T1O);
305 T1Q = FNMS(KP707106781, T1P, T1O);
306 Rp[WS(rs, 1)] = FNMS(T32, T33, T31);
307 Rm[WS(rs, 1)] = FMA(T2Z, T33, T34);
308 T1X = T1T + T1W;
309 T2m = T1W - T1T;
310 T2l = FNMS(KP707106781, T22, T21);
311 T23 = FMA(KP707106781, T22, T21);
312 T26 = T24 - T25;
313 T2h = T24 + T25;
314 {
315 E T1N, T2a, T1Y, T27, T20, T1Z, T28;
316 T1N = W[20];
317 T2a = FNMS(KP923879532, T1X, T1Q);
318 T1Y = FMA(KP923879532, T1X, T1Q);
319 T2d = FMA(KP923879532, T26, T23);
320 T27 = FNMS(KP923879532, T26, T23);
321 T20 = W[21];
322 T1Z = T1N * T1Y;
323 T29 = W[4];
324 T2c = W[5];
325 T28 = T20 * T1Y;
326 Ip[WS(rs, 5)] = FNMS(T20, T27, T1Z);
327 T2b = T29 * T2a;
328 T2e = T2c * T2a;
329 Im[WS(rs, 5)] = FMA(T1N, T27, T28);
330 }
331 }
332 }
333 {
334 E T1y, T1E, T1D, T1z, T1v, T1r, T1u, T1t, T1w;
335 {
336 E TM, T19, T1l, T1o;
337 T1y = FMA(KP707106781, TL, TA);
338 TM = FNMS(KP707106781, TL, TA);
339 Ip[WS(rs, 1)] = FNMS(T2c, T2d, T2b);
340 Im[WS(rs, 1)] = FMA(T29, T2d, T2e);
341 T19 = TX - T18;
342 T1E = T18 + TX;
343 T1D = FMA(KP707106781, T1k, T1h);
344 T1l = FNMS(KP707106781, T1k, T1h);
345 T1o = T1m - T1n;
346 T1z = T1m + T1n;
347 {
348 E Tv, T1s, T1a, T1p, T1c, T1b, T1q;
349 Tv = W[24];
350 T1s = FMA(KP923879532, T19, TM);
351 T1a = FNMS(KP923879532, T19, TM);
352 T1v = FMA(KP923879532, T1o, T1l);
353 T1p = FNMS(KP923879532, T1o, T1l);
354 T1c = W[25];
355 T1b = Tv * T1a;
356 T1r = W[8];
357 T1u = W[9];
358 T1q = T1c * T1a;
359 Ip[WS(rs, 6)] = FNMS(T1c, T1p, T1b);
360 T1t = T1r * T1s;
361 T1w = T1u * T1s;
362 Im[WS(rs, 6)] = FMA(Tv, T1p, T1q);
363 }
364 }
365 {
366 E T2q, T2t, T2s, T2u, T2r;
367 Ip[WS(rs, 2)] = FNMS(T1u, T1v, T1t);
368 Im[WS(rs, 2)] = FMA(T1r, T1v, T1w);
369 {
370 E T2f, T2i, T2n, T2k, T2j, T2p, T2o;
371 T2f = W[12];
372 T2q = FMA(KP923879532, T2h, T2g);
373 T2i = FNMS(KP923879532, T2h, T2g);
374 T2t = FNMS(KP923879532, T2m, T2l);
375 T2n = FMA(KP923879532, T2m, T2l);
376 T2k = W[13];
377 T2j = T2f * T2i;
378 T2p = W[28];
379 T2o = T2f * T2n;
380 T2s = W[29];
381 Ip[WS(rs, 3)] = FNMS(T2k, T2n, T2j);
382 T2u = T2p * T2t;
383 T2r = T2p * T2q;
384 Im[WS(rs, 3)] = FMA(T2k, T2i, T2o);
385 }
386 Im[WS(rs, 7)] = FMA(T2s, T2q, T2u);
387 Ip[WS(rs, 7)] = FNMS(T2s, T2t, T2r);
388 {
389 E T1x, T1A, T1F, T1C, T1B, T1H, T1G;
390 T1x = W[16];
391 T1I = FMA(KP923879532, T1z, T1y);
392 T1A = FNMS(KP923879532, T1z, T1y);
393 T1L = FMA(KP923879532, T1E, T1D);
394 T1F = FNMS(KP923879532, T1E, T1D);
395 T1C = W[17];
396 T1B = T1x * T1A;
397 T1H = W[0];
398 T1G = T1x * T1F;
399 T1K = W[1];
400 Ip[WS(rs, 4)] = FNMS(T1C, T1F, T1B);
401 T1M = T1H * T1L;
402 T1J = T1H * T1I;
403 Im[WS(rs, 4)] = FMA(T1C, T1A, T1G);
404 }
405 }
406 }
407 }
408 }
409 }
410 Im[0] = FMA(T1K, T1I, T1M);
411 Ip[0] = FNMS(T1K, T1L, T1J);
412 }
413 }
414 }
415
416 static const tw_instr twinstr[] = {
417 {TW_FULL, 1, 16},
418 {TW_NEXT, 1, 0}
419 };
420
421 static const hc2c_desc desc = { 16, "hc2cb_16", twinstr, &GENUS, {104, 30, 70, 0} };
422
423 void X(codelet_hc2cb_16) (planner *p) {
424 X(khc2c_register) (p, hc2cb_16, &desc, HC2C_VIA_RDFT);
425 }
426 #else /* HAVE_FMA */
427
428 /* Generated by: ../../../genfft/gen_hc2c.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 16 -dif -name hc2cb_16 -include hc2cb.h */
429
430 /*
431 * This function contains 174 FP additions, 84 FP multiplications,
432 * (or, 136 additions, 46 multiplications, 38 fused multiply/add),
433 * 50 stack variables, 3 constants, and 64 memory accesses
434 */
435 #include "hc2cb.h"
436
437 static void hc2cb_16(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
438 {
439 DK(KP382683432, +0.382683432365089771728459984030398866761344562);
440 DK(KP923879532, +0.923879532511286756128183189396788286822416626);
441 DK(KP707106781, +0.707106781186547524400844362104849039284835938);
442 {
443 INT m;
444 for (m = mb, W = W + ((mb - 1) * 30); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 30, MAKE_VOLATILE_STRIDE(64, rs)) {
445 E T7, T2K, T2W, Tw, T17, T1S, T2k, T1w, Te, TD, T1x, T10, T2n, T2L, T1Z;
446 E T2X, Tm, T1z, TN, T19, T2e, T2p, T2P, T2Z, Tt, T1A, TW, T1a, T27, T2q;
447 E T2S, T30;
448 {
449 E T3, T1Q, T13, T2j, T6, T2i, T16, T1R;
450 {
451 E T1, T2, T11, T12;
452 T1 = Rp[0];
453 T2 = Rm[WS(rs, 7)];
454 T3 = T1 + T2;
455 T1Q = T1 - T2;
456 T11 = Ip[0];
457 T12 = Im[WS(rs, 7)];
458 T13 = T11 - T12;
459 T2j = T11 + T12;
460 }
461 {
462 E T4, T5, T14, T15;
463 T4 = Rp[WS(rs, 4)];
464 T5 = Rm[WS(rs, 3)];
465 T6 = T4 + T5;
466 T2i = T4 - T5;
467 T14 = Ip[WS(rs, 4)];
468 T15 = Im[WS(rs, 3)];
469 T16 = T14 - T15;
470 T1R = T14 + T15;
471 }
472 T7 = T3 + T6;
473 T2K = T1Q + T1R;
474 T2W = T2j - T2i;
475 Tw = T3 - T6;
476 T17 = T13 - T16;
477 T1S = T1Q - T1R;
478 T2k = T2i + T2j;
479 T1w = T13 + T16;
480 }
481 {
482 E Ta, T1T, TC, T1U, Td, T1W, Tz, T1X;
483 {
484 E T8, T9, TA, TB;
485 T8 = Rp[WS(rs, 2)];
486 T9 = Rm[WS(rs, 5)];
487 Ta = T8 + T9;
488 T1T = T8 - T9;
489 TA = Ip[WS(rs, 2)];
490 TB = Im[WS(rs, 5)];
491 TC = TA - TB;
492 T1U = TA + TB;
493 }
494 {
495 E Tb, Tc, Tx, Ty;
496 Tb = Rm[WS(rs, 1)];
497 Tc = Rp[WS(rs, 6)];
498 Td = Tb + Tc;
499 T1W = Tb - Tc;
500 Tx = Ip[WS(rs, 6)];
501 Ty = Im[WS(rs, 1)];
502 Tz = Tx - Ty;
503 T1X = Tx + Ty;
504 }
505 Te = Ta + Td;
506 TD = Tz - TC;
507 T1x = TC + Tz;
508 T10 = Ta - Td;
509 {
510 E T2l, T2m, T1V, T1Y;
511 T2l = T1T + T1U;
512 T2m = T1W + T1X;
513 T2n = KP707106781 * (T2l - T2m);
514 T2L = KP707106781 * (T2l + T2m);
515 T1V = T1T - T1U;
516 T1Y = T1W - T1X;
517 T1Z = KP707106781 * (T1V + T1Y);
518 T2X = KP707106781 * (T1V - T1Y);
519 }
520 }
521 {
522 E Ti, T2b, TI, T29, Tl, T28, TL, T2c, TF, TM;
523 {
524 E Tg, Th, TG, TH;
525 Tg = Rp[WS(rs, 1)];
526 Th = Rm[WS(rs, 6)];
527 Ti = Tg + Th;
528 T2b = Tg - Th;
529 TG = Ip[WS(rs, 1)];
530 TH = Im[WS(rs, 6)];
531 TI = TG - TH;
532 T29 = TG + TH;
533 }
534 {
535 E Tj, Tk, TJ, TK;
536 Tj = Rp[WS(rs, 5)];
537 Tk = Rm[WS(rs, 2)];
538 Tl = Tj + Tk;
539 T28 = Tj - Tk;
540 TJ = Ip[WS(rs, 5)];
541 TK = Im[WS(rs, 2)];
542 TL = TJ - TK;
543 T2c = TJ + TK;
544 }
545 Tm = Ti + Tl;
546 T1z = TI + TL;
547 TF = Ti - Tl;
548 TM = TI - TL;
549 TN = TF - TM;
550 T19 = TF + TM;
551 {
552 E T2a, T2d, T2N, T2O;
553 T2a = T28 + T29;
554 T2d = T2b - T2c;
555 T2e = FMA(KP923879532, T2a, KP382683432 * T2d);
556 T2p = FNMS(KP382683432, T2a, KP923879532 * T2d);
557 T2N = T2b + T2c;
558 T2O = T29 - T28;
559 T2P = FNMS(KP923879532, T2O, KP382683432 * T2N);
560 T2Z = FMA(KP382683432, T2O, KP923879532 * T2N);
561 }
562 }
563 {
564 E Tp, T24, TR, T22, Ts, T21, TU, T25, TO, TV;
565 {
566 E Tn, To, TP, TQ;
567 Tn = Rm[0];
568 To = Rp[WS(rs, 7)];
569 Tp = Tn + To;
570 T24 = Tn - To;
571 TP = Ip[WS(rs, 7)];
572 TQ = Im[0];
573 TR = TP - TQ;
574 T22 = TP + TQ;
575 }
576 {
577 E Tq, Tr, TS, TT;
578 Tq = Rp[WS(rs, 3)];
579 Tr = Rm[WS(rs, 4)];
580 Ts = Tq + Tr;
581 T21 = Tq - Tr;
582 TS = Ip[WS(rs, 3)];
583 TT = Im[WS(rs, 4)];
584 TU = TS - TT;
585 T25 = TS + TT;
586 }
587 Tt = Tp + Ts;
588 T1A = TR + TU;
589 TO = Tp - Ts;
590 TV = TR - TU;
591 TW = TO + TV;
592 T1a = TV - TO;
593 {
594 E T23, T26, T2Q, T2R;
595 T23 = T21 - T22;
596 T26 = T24 - T25;
597 T27 = FNMS(KP382683432, T26, KP923879532 * T23);
598 T2q = FMA(KP382683432, T23, KP923879532 * T26);
599 T2Q = T24 + T25;
600 T2R = T21 + T22;
601 T2S = FNMS(KP923879532, T2R, KP382683432 * T2Q);
602 T30 = FMA(KP382683432, T2R, KP923879532 * T2Q);
603 }
604 }
605 {
606 E Tf, Tu, T1u, T1y, T1B, T1C, T1t, T1v;
607 Tf = T7 + Te;
608 Tu = Tm + Tt;
609 T1u = Tf - Tu;
610 T1y = T1w + T1x;
611 T1B = T1z + T1A;
612 T1C = T1y - T1B;
613 Rp[0] = Tf + Tu;
614 Rm[0] = T1y + T1B;
615 T1t = W[14];
616 T1v = W[15];
617 Rp[WS(rs, 4)] = FNMS(T1v, T1C, T1t * T1u);
618 Rm[WS(rs, 4)] = FMA(T1v, T1u, T1t * T1C);
619 }
620 {
621 E T2U, T34, T32, T36;
622 {
623 E T2M, T2T, T2Y, T31;
624 T2M = T2K - T2L;
625 T2T = T2P + T2S;
626 T2U = T2M - T2T;
627 T34 = T2M + T2T;
628 T2Y = T2W + T2X;
629 T31 = T2Z - T30;
630 T32 = T2Y - T31;
631 T36 = T2Y + T31;
632 }
633 {
634 E T2J, T2V, T33, T35;
635 T2J = W[20];
636 T2V = W[21];
637 Ip[WS(rs, 5)] = FNMS(T2V, T32, T2J * T2U);
638 Im[WS(rs, 5)] = FMA(T2V, T2U, T2J * T32);
639 T33 = W[4];
640 T35 = W[5];
641 Ip[WS(rs, 1)] = FNMS(T35, T36, T33 * T34);
642 Im[WS(rs, 1)] = FMA(T35, T34, T33 * T36);
643 }
644 }
645 {
646 E T3a, T3g, T3e, T3i;
647 {
648 E T38, T39, T3c, T3d;
649 T38 = T2K + T2L;
650 T39 = T2Z + T30;
651 T3a = T38 - T39;
652 T3g = T38 + T39;
653 T3c = T2W - T2X;
654 T3d = T2P - T2S;
655 T3e = T3c + T3d;
656 T3i = T3c - T3d;
657 }
658 {
659 E T37, T3b, T3f, T3h;
660 T37 = W[12];
661 T3b = W[13];
662 Ip[WS(rs, 3)] = FNMS(T3b, T3e, T37 * T3a);
663 Im[WS(rs, 3)] = FMA(T37, T3e, T3b * T3a);
664 T3f = W[28];
665 T3h = W[29];
666 Ip[WS(rs, 7)] = FNMS(T3h, T3i, T3f * T3g);
667 Im[WS(rs, 7)] = FMA(T3f, T3i, T3h * T3g);
668 }
669 }
670 {
671 E TY, T1e, T1c, T1g;
672 {
673 E TE, TX, T18, T1b;
674 TE = Tw + TD;
675 TX = KP707106781 * (TN + TW);
676 TY = TE - TX;
677 T1e = TE + TX;
678 T18 = T10 + T17;
679 T1b = KP707106781 * (T19 + T1a);
680 T1c = T18 - T1b;
681 T1g = T18 + T1b;
682 }
683 {
684 E Tv, TZ, T1d, T1f;
685 Tv = W[18];
686 TZ = W[19];
687 Rp[WS(rs, 5)] = FNMS(TZ, T1c, Tv * TY);
688 Rm[WS(rs, 5)] = FMA(TZ, TY, Tv * T1c);
689 T1d = W[2];
690 T1f = W[3];
691 Rp[WS(rs, 1)] = FNMS(T1f, T1g, T1d * T1e);
692 Rm[WS(rs, 1)] = FMA(T1f, T1e, T1d * T1g);
693 }
694 }
695 {
696 E T1k, T1q, T1o, T1s;
697 {
698 E T1i, T1j, T1m, T1n;
699 T1i = Tw - TD;
700 T1j = KP707106781 * (T1a - T19);
701 T1k = T1i - T1j;
702 T1q = T1i + T1j;
703 T1m = T17 - T10;
704 T1n = KP707106781 * (TN - TW);
705 T1o = T1m - T1n;
706 T1s = T1m + T1n;
707 }
708 {
709 E T1h, T1l, T1p, T1r;
710 T1h = W[26];
711 T1l = W[27];
712 Rp[WS(rs, 7)] = FNMS(T1l, T1o, T1h * T1k);
713 Rm[WS(rs, 7)] = FMA(T1h, T1o, T1l * T1k);
714 T1p = W[10];
715 T1r = W[11];
716 Rp[WS(rs, 3)] = FNMS(T1r, T1s, T1p * T1q);
717 Rm[WS(rs, 3)] = FMA(T1p, T1s, T1r * T1q);
718 }
719 }
720 {
721 E T2g, T2u, T2s, T2w;
722 {
723 E T20, T2f, T2o, T2r;
724 T20 = T1S - T1Z;
725 T2f = T27 - T2e;
726 T2g = T20 - T2f;
727 T2u = T20 + T2f;
728 T2o = T2k - T2n;
729 T2r = T2p - T2q;
730 T2s = T2o - T2r;
731 T2w = T2o + T2r;
732 }
733 {
734 E T1P, T2h, T2t, T2v;
735 T1P = W[24];
736 T2h = W[25];
737 Ip[WS(rs, 6)] = FNMS(T2h, T2s, T1P * T2g);
738 Im[WS(rs, 6)] = FMA(T2h, T2g, T1P * T2s);
739 T2t = W[8];
740 T2v = W[9];
741 Ip[WS(rs, 2)] = FNMS(T2v, T2w, T2t * T2u);
742 Im[WS(rs, 2)] = FMA(T2v, T2u, T2t * T2w);
743 }
744 }
745 {
746 E T2A, T2G, T2E, T2I;
747 {
748 E T2y, T2z, T2C, T2D;
749 T2y = T1S + T1Z;
750 T2z = T2p + T2q;
751 T2A = T2y - T2z;
752 T2G = T2y + T2z;
753 T2C = T2k + T2n;
754 T2D = T2e + T27;
755 T2E = T2C - T2D;
756 T2I = T2C + T2D;
757 }
758 {
759 E T2x, T2B, T2F, T2H;
760 T2x = W[16];
761 T2B = W[17];
762 Ip[WS(rs, 4)] = FNMS(T2B, T2E, T2x * T2A);
763 Im[WS(rs, 4)] = FMA(T2x, T2E, T2B * T2A);
764 T2F = W[0];
765 T2H = W[1];
766 Ip[0] = FNMS(T2H, T2I, T2F * T2G);
767 Im[0] = FMA(T2F, T2I, T2H * T2G);
768 }
769 }
770 {
771 E T1G, T1M, T1K, T1O;
772 {
773 E T1E, T1F, T1I, T1J;
774 T1E = T7 - Te;
775 T1F = T1A - T1z;
776 T1G = T1E - T1F;
777 T1M = T1E + T1F;
778 T1I = T1w - T1x;
779 T1J = Tm - Tt;
780 T1K = T1I - T1J;
781 T1O = T1J + T1I;
782 }
783 {
784 E T1D, T1H, T1L, T1N;
785 T1D = W[22];
786 T1H = W[23];
787 Rp[WS(rs, 6)] = FNMS(T1H, T1K, T1D * T1G);
788 Rm[WS(rs, 6)] = FMA(T1D, T1K, T1H * T1G);
789 T1L = W[6];
790 T1N = W[7];
791 Rp[WS(rs, 2)] = FNMS(T1N, T1O, T1L * T1M);
792 Rm[WS(rs, 2)] = FMA(T1L, T1O, T1N * T1M);
793 }
794 }
795 }
796 }
797 }
798
799 static const tw_instr twinstr[] = {
800 {TW_FULL, 1, 16},
801 {TW_NEXT, 1, 0}
802 };
803
804 static const hc2c_desc desc = { 16, "hc2cb_16", twinstr, &GENUS, {136, 46, 38, 0} };
805
806 void X(codelet_hc2cb_16) (planner *p) {
807 X(khc2c_register) (p, hc2cb_16, &desc, HC2C_VIA_RDFT);
808 }
809 #endif /* HAVE_FMA */