Mercurial > hg > js-dsp-test
comparison fft/fftw/fftw-3.3.4/rdft/scalar/r2cb/hc2cb_16.c @ 19:26056e866c29
Add FFTW to comparison table
author | Chris Cannam |
---|---|
date | Tue, 06 Oct 2015 13:08:39 +0100 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
18:8db794ca3e0b | 19:26056e866c29 |
---|---|
1 /* | |
2 * Copyright (c) 2003, 2007-14 Matteo Frigo | |
3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology | |
4 * | |
5 * This program is free software; you can redistribute it and/or modify | |
6 * it under the terms of the GNU General Public License as published by | |
7 * the Free Software Foundation; either version 2 of the License, or | |
8 * (at your option) any later version. | |
9 * | |
10 * This program is distributed in the hope that it will be useful, | |
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
13 * GNU General Public License for more details. | |
14 * | |
15 * You should have received a copy of the GNU General Public License | |
16 * along with this program; if not, write to the Free Software | |
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA | |
18 * | |
19 */ | |
20 | |
21 /* This file was automatically generated --- DO NOT EDIT */ | |
22 /* Generated on Tue Mar 4 13:50:38 EST 2014 */ | |
23 | |
24 #include "codelet-rdft.h" | |
25 | |
26 #ifdef HAVE_FMA | |
27 | |
28 /* Generated by: ../../../genfft/gen_hc2c.native -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -sign 1 -n 16 -dif -name hc2cb_16 -include hc2cb.h */ | |
29 | |
30 /* | |
31 * This function contains 174 FP additions, 100 FP multiplications, | |
32 * (or, 104 additions, 30 multiplications, 70 fused multiply/add), | |
33 * 78 stack variables, 3 constants, and 64 memory accesses | |
34 */ | |
35 #include "hc2cb.h" | |
36 | |
37 static void hc2cb_16(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) | |
38 { | |
39 DK(KP923879532, +0.923879532511286756128183189396788286822416626); | |
40 DK(KP707106781, +0.707106781186547524400844362104849039284835938); | |
41 DK(KP414213562, +0.414213562373095048801688724209698078569671875); | |
42 { | |
43 INT m; | |
44 for (m = mb, W = W + ((mb - 1) * 30); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 30, MAKE_VOLATILE_STRIDE(64, rs)) { | |
45 E T1I, T1L, T1K, T1M, T1J; | |
46 { | |
47 E T1O, TA, T1h, T21, T3b, T2T, T3D, T3r, T1k, T1P, T3y, Tf, T36, T2A, T22; | |
48 E TL, T2F, T2U, T3u, T3z, T2K, T2V, T12, Tu, T3E, TX, T1n, T17, T1T, T24; | |
49 E T1W, T25; | |
50 { | |
51 E T2z, TF, TK, T2w; | |
52 { | |
53 E Tw, T3, T2Q, T1g, T1d, T6, T2R, Tz, Tb, TB, Ta, T2y, TE, Tc, TH; | |
54 E TI; | |
55 { | |
56 E T4, T5, Tx, Ty; | |
57 { | |
58 E T1, T2, T1e, T1f; | |
59 T1 = Rp[0]; | |
60 T2 = Rm[WS(rs, 7)]; | |
61 T1e = Ip[0]; | |
62 T1f = Im[WS(rs, 7)]; | |
63 T4 = Rp[WS(rs, 4)]; | |
64 Tw = T1 - T2; | |
65 T3 = T1 + T2; | |
66 T2Q = T1e - T1f; | |
67 T1g = T1e + T1f; | |
68 T5 = Rm[WS(rs, 3)]; | |
69 Tx = Ip[WS(rs, 4)]; | |
70 Ty = Im[WS(rs, 3)]; | |
71 } | |
72 { | |
73 E T8, T9, TC, TD; | |
74 T8 = Rp[WS(rs, 2)]; | |
75 T1d = T4 - T5; | |
76 T6 = T4 + T5; | |
77 T2R = Tx - Ty; | |
78 Tz = Tx + Ty; | |
79 T9 = Rm[WS(rs, 5)]; | |
80 TC = Ip[WS(rs, 2)]; | |
81 TD = Im[WS(rs, 5)]; | |
82 Tb = Rm[WS(rs, 1)]; | |
83 TB = T8 - T9; | |
84 Ta = T8 + T9; | |
85 T2y = TC - TD; | |
86 TE = TC + TD; | |
87 Tc = Rp[WS(rs, 6)]; | |
88 TH = Ip[WS(rs, 6)]; | |
89 TI = Im[WS(rs, 1)]; | |
90 } | |
91 } | |
92 { | |
93 E TG, T2x, TJ, Te, T2P, T2S, T3p, Td; | |
94 T1O = Tw + Tz; | |
95 TA = Tw - Tz; | |
96 TG = Tb - Tc; | |
97 Td = Tb + Tc; | |
98 T2x = TH - TI; | |
99 TJ = TH + TI; | |
100 T1h = T1d + T1g; | |
101 T21 = T1g - T1d; | |
102 Te = Ta + Td; | |
103 T2P = Ta - Td; | |
104 T2S = T2Q - T2R; | |
105 T3p = T2Q + T2R; | |
106 { | |
107 E T1i, T1j, T3q, T7; | |
108 T3q = T2y + T2x; | |
109 T2z = T2x - T2y; | |
110 TF = TB - TE; | |
111 T1i = TB + TE; | |
112 T3b = T2S - T2P; | |
113 T2T = T2P + T2S; | |
114 TK = TG - TJ; | |
115 T1j = TG + TJ; | |
116 T3D = T3p - T3q; | |
117 T3r = T3p + T3q; | |
118 T2w = T3 - T6; | |
119 T7 = T3 + T6; | |
120 T1k = T1i - T1j; | |
121 T1P = T1i + T1j; | |
122 T3y = T7 - Te; | |
123 Tf = T7 + Te; | |
124 } | |
125 } | |
126 } | |
127 { | |
128 E T13, Ti, T2C, T11, TY, Tl, T2D, T16, Tq, TS, Tp, T2H, TQ, Tr, TT; | |
129 E TU; | |
130 { | |
131 E Tj, Tk, T14, T15; | |
132 { | |
133 E Tg, Th, TZ, T10; | |
134 Tg = Rp[WS(rs, 1)]; | |
135 T36 = T2w - T2z; | |
136 T2A = T2w + T2z; | |
137 T22 = TF - TK; | |
138 TL = TF + TK; | |
139 Th = Rm[WS(rs, 6)]; | |
140 TZ = Ip[WS(rs, 1)]; | |
141 T10 = Im[WS(rs, 6)]; | |
142 Tj = Rp[WS(rs, 5)]; | |
143 T13 = Tg - Th; | |
144 Ti = Tg + Th; | |
145 T2C = TZ - T10; | |
146 T11 = TZ + T10; | |
147 Tk = Rm[WS(rs, 2)]; | |
148 T14 = Ip[WS(rs, 5)]; | |
149 T15 = Im[WS(rs, 2)]; | |
150 } | |
151 { | |
152 E Tn, To, TO, TP; | |
153 Tn = Rm[0]; | |
154 TY = Tj - Tk; | |
155 Tl = Tj + Tk; | |
156 T2D = T14 - T15; | |
157 T16 = T14 + T15; | |
158 To = Rp[WS(rs, 7)]; | |
159 TO = Ip[WS(rs, 7)]; | |
160 TP = Im[0]; | |
161 Tq = Rp[WS(rs, 3)]; | |
162 TS = Tn - To; | |
163 Tp = Tn + To; | |
164 T2H = TO - TP; | |
165 TQ = TO + TP; | |
166 Tr = Rm[WS(rs, 4)]; | |
167 TT = Ip[WS(rs, 3)]; | |
168 TU = Im[WS(rs, 4)]; | |
169 } | |
170 } | |
171 { | |
172 E TN, TV, Tm, Tt; | |
173 { | |
174 E T2E, T3s, Ts, T2B, T3t, T2J, T2I, T2G; | |
175 T2E = T2C - T2D; | |
176 T3s = T2C + T2D; | |
177 TN = Tq - Tr; | |
178 Ts = Tq + Tr; | |
179 T2I = TT - TU; | |
180 TV = TT + TU; | |
181 T2B = Ti - Tl; | |
182 Tm = Ti + Tl; | |
183 T3t = T2H + T2I; | |
184 T2J = T2H - T2I; | |
185 Tt = Tp + Ts; | |
186 T2G = Tp - Ts; | |
187 T2F = T2B - T2E; | |
188 T2U = T2B + T2E; | |
189 T3u = T3s + T3t; | |
190 T3z = T3t - T3s; | |
191 T2K = T2G + T2J; | |
192 T2V = T2J - T2G; | |
193 } | |
194 { | |
195 E T1U, T1V, T1R, T1S, TR, TW; | |
196 TR = TN - TQ; | |
197 T1U = TN + TQ; | |
198 T1V = TS + TV; | |
199 TW = TS - TV; | |
200 T1R = T11 - TY; | |
201 T12 = TY + T11; | |
202 Tu = Tm + Tt; | |
203 T3E = Tm - Tt; | |
204 TX = FNMS(KP414213562, TW, TR); | |
205 T1n = FMA(KP414213562, TR, TW); | |
206 T17 = T13 - T16; | |
207 T1S = T13 + T16; | |
208 T1T = FNMS(KP414213562, T1S, T1R); | |
209 T24 = FMA(KP414213562, T1R, T1S); | |
210 T1W = FNMS(KP414213562, T1V, T1U); | |
211 T25 = FMA(KP414213562, T1U, T1V); | |
212 } | |
213 } | |
214 } | |
215 } | |
216 { | |
217 E T18, T1m, T2W, T2L, T3j, T3i, T3h; | |
218 { | |
219 E T3m, T3v, T3l, T3o; | |
220 Rp[0] = Tf + Tu; | |
221 T18 = FMA(KP414213562, T17, T12); | |
222 T1m = FNMS(KP414213562, T12, T17); | |
223 T3m = Tf - Tu; | |
224 T3v = T3r - T3u; | |
225 T3l = W[14]; | |
226 T3o = W[15]; | |
227 Rm[0] = T3r + T3u; | |
228 { | |
229 E T3A, T3I, T3L, T3F, T3C, T3G, T3B, T3x, T3n, T3w, T3H, T3K; | |
230 T3A = T3y - T3z; | |
231 T3I = T3y + T3z; | |
232 T3n = T3l * T3m; | |
233 T3w = T3o * T3m; | |
234 T3L = T3E + T3D; | |
235 T3F = T3D - T3E; | |
236 T3x = W[22]; | |
237 Rp[WS(rs, 4)] = FNMS(T3o, T3v, T3n); | |
238 Rm[WS(rs, 4)] = FMA(T3l, T3v, T3w); | |
239 T3C = W[23]; | |
240 T3G = T3x * T3F; | |
241 T3B = T3x * T3A; | |
242 Rm[WS(rs, 6)] = FMA(T3C, T3A, T3G); | |
243 Rp[WS(rs, 6)] = FNMS(T3C, T3F, T3B); | |
244 T3H = W[6]; | |
245 T3K = W[7]; | |
246 { | |
247 E T3g, T38, T3d, T35, T3a; | |
248 { | |
249 E T37, T3c, T3M, T3J; | |
250 T37 = T2V - T2U; | |
251 T2W = T2U + T2V; | |
252 T2L = T2F + T2K; | |
253 T3c = T2F - T2K; | |
254 T3M = T3H * T3L; | |
255 T3J = T3H * T3I; | |
256 T3g = FMA(KP707106781, T37, T36); | |
257 T38 = FNMS(KP707106781, T37, T36); | |
258 Rm[WS(rs, 2)] = FMA(T3K, T3I, T3M); | |
259 Rp[WS(rs, 2)] = FNMS(T3K, T3L, T3J); | |
260 T3d = FNMS(KP707106781, T3c, T3b); | |
261 T3j = FMA(KP707106781, T3c, T3b); | |
262 } | |
263 T35 = W[26]; | |
264 T3a = W[27]; | |
265 { | |
266 E T3f, T3e, T39, T3k; | |
267 T3f = W[10]; | |
268 T3i = W[11]; | |
269 T3e = T35 * T3d; | |
270 T39 = T35 * T38; | |
271 T3k = T3f * T3j; | |
272 T3h = T3f * T3g; | |
273 Rm[WS(rs, 7)] = FMA(T3a, T38, T3e); | |
274 Rp[WS(rs, 7)] = FNMS(T3a, T3d, T39); | |
275 Rm[WS(rs, 3)] = FMA(T3i, T3g, T3k); | |
276 } | |
277 } | |
278 } | |
279 } | |
280 Rp[WS(rs, 3)] = FNMS(T3i, T3j, T3h); | |
281 { | |
282 E T2g, T2m, T2l, T2h, T2d, T29, T2c, T2b, T2e; | |
283 { | |
284 E T33, T2Z, T32, T31, T34; | |
285 { | |
286 E T2v, T30, T2M, T2X, T2O, T2N, T2Y; | |
287 T2v = W[18]; | |
288 T30 = FMA(KP707106781, T2L, T2A); | |
289 T2M = FNMS(KP707106781, T2L, T2A); | |
290 T33 = FMA(KP707106781, T2W, T2T); | |
291 T2X = FNMS(KP707106781, T2W, T2T); | |
292 T2O = W[19]; | |
293 T2N = T2v * T2M; | |
294 T2Z = W[2]; | |
295 T32 = W[3]; | |
296 T2Y = T2O * T2M; | |
297 Rp[WS(rs, 5)] = FNMS(T2O, T2X, T2N); | |
298 T31 = T2Z * T30; | |
299 T34 = T32 * T30; | |
300 Rm[WS(rs, 5)] = FMA(T2v, T2X, T2Y); | |
301 } | |
302 { | |
303 E T1Q, T1X, T23, T26; | |
304 T2g = FMA(KP707106781, T1P, T1O); | |
305 T1Q = FNMS(KP707106781, T1P, T1O); | |
306 Rp[WS(rs, 1)] = FNMS(T32, T33, T31); | |
307 Rm[WS(rs, 1)] = FMA(T2Z, T33, T34); | |
308 T1X = T1T + T1W; | |
309 T2m = T1W - T1T; | |
310 T2l = FNMS(KP707106781, T22, T21); | |
311 T23 = FMA(KP707106781, T22, T21); | |
312 T26 = T24 - T25; | |
313 T2h = T24 + T25; | |
314 { | |
315 E T1N, T2a, T1Y, T27, T20, T1Z, T28; | |
316 T1N = W[20]; | |
317 T2a = FNMS(KP923879532, T1X, T1Q); | |
318 T1Y = FMA(KP923879532, T1X, T1Q); | |
319 T2d = FMA(KP923879532, T26, T23); | |
320 T27 = FNMS(KP923879532, T26, T23); | |
321 T20 = W[21]; | |
322 T1Z = T1N * T1Y; | |
323 T29 = W[4]; | |
324 T2c = W[5]; | |
325 T28 = T20 * T1Y; | |
326 Ip[WS(rs, 5)] = FNMS(T20, T27, T1Z); | |
327 T2b = T29 * T2a; | |
328 T2e = T2c * T2a; | |
329 Im[WS(rs, 5)] = FMA(T1N, T27, T28); | |
330 } | |
331 } | |
332 } | |
333 { | |
334 E T1y, T1E, T1D, T1z, T1v, T1r, T1u, T1t, T1w; | |
335 { | |
336 E TM, T19, T1l, T1o; | |
337 T1y = FMA(KP707106781, TL, TA); | |
338 TM = FNMS(KP707106781, TL, TA); | |
339 Ip[WS(rs, 1)] = FNMS(T2c, T2d, T2b); | |
340 Im[WS(rs, 1)] = FMA(T29, T2d, T2e); | |
341 T19 = TX - T18; | |
342 T1E = T18 + TX; | |
343 T1D = FMA(KP707106781, T1k, T1h); | |
344 T1l = FNMS(KP707106781, T1k, T1h); | |
345 T1o = T1m - T1n; | |
346 T1z = T1m + T1n; | |
347 { | |
348 E Tv, T1s, T1a, T1p, T1c, T1b, T1q; | |
349 Tv = W[24]; | |
350 T1s = FMA(KP923879532, T19, TM); | |
351 T1a = FNMS(KP923879532, T19, TM); | |
352 T1v = FMA(KP923879532, T1o, T1l); | |
353 T1p = FNMS(KP923879532, T1o, T1l); | |
354 T1c = W[25]; | |
355 T1b = Tv * T1a; | |
356 T1r = W[8]; | |
357 T1u = W[9]; | |
358 T1q = T1c * T1a; | |
359 Ip[WS(rs, 6)] = FNMS(T1c, T1p, T1b); | |
360 T1t = T1r * T1s; | |
361 T1w = T1u * T1s; | |
362 Im[WS(rs, 6)] = FMA(Tv, T1p, T1q); | |
363 } | |
364 } | |
365 { | |
366 E T2q, T2t, T2s, T2u, T2r; | |
367 Ip[WS(rs, 2)] = FNMS(T1u, T1v, T1t); | |
368 Im[WS(rs, 2)] = FMA(T1r, T1v, T1w); | |
369 { | |
370 E T2f, T2i, T2n, T2k, T2j, T2p, T2o; | |
371 T2f = W[12]; | |
372 T2q = FMA(KP923879532, T2h, T2g); | |
373 T2i = FNMS(KP923879532, T2h, T2g); | |
374 T2t = FNMS(KP923879532, T2m, T2l); | |
375 T2n = FMA(KP923879532, T2m, T2l); | |
376 T2k = W[13]; | |
377 T2j = T2f * T2i; | |
378 T2p = W[28]; | |
379 T2o = T2f * T2n; | |
380 T2s = W[29]; | |
381 Ip[WS(rs, 3)] = FNMS(T2k, T2n, T2j); | |
382 T2u = T2p * T2t; | |
383 T2r = T2p * T2q; | |
384 Im[WS(rs, 3)] = FMA(T2k, T2i, T2o); | |
385 } | |
386 Im[WS(rs, 7)] = FMA(T2s, T2q, T2u); | |
387 Ip[WS(rs, 7)] = FNMS(T2s, T2t, T2r); | |
388 { | |
389 E T1x, T1A, T1F, T1C, T1B, T1H, T1G; | |
390 T1x = W[16]; | |
391 T1I = FMA(KP923879532, T1z, T1y); | |
392 T1A = FNMS(KP923879532, T1z, T1y); | |
393 T1L = FMA(KP923879532, T1E, T1D); | |
394 T1F = FNMS(KP923879532, T1E, T1D); | |
395 T1C = W[17]; | |
396 T1B = T1x * T1A; | |
397 T1H = W[0]; | |
398 T1G = T1x * T1F; | |
399 T1K = W[1]; | |
400 Ip[WS(rs, 4)] = FNMS(T1C, T1F, T1B); | |
401 T1M = T1H * T1L; | |
402 T1J = T1H * T1I; | |
403 Im[WS(rs, 4)] = FMA(T1C, T1A, T1G); | |
404 } | |
405 } | |
406 } | |
407 } | |
408 } | |
409 } | |
410 Im[0] = FMA(T1K, T1I, T1M); | |
411 Ip[0] = FNMS(T1K, T1L, T1J); | |
412 } | |
413 } | |
414 } | |
415 | |
416 static const tw_instr twinstr[] = { | |
417 {TW_FULL, 1, 16}, | |
418 {TW_NEXT, 1, 0} | |
419 }; | |
420 | |
421 static const hc2c_desc desc = { 16, "hc2cb_16", twinstr, &GENUS, {104, 30, 70, 0} }; | |
422 | |
423 void X(codelet_hc2cb_16) (planner *p) { | |
424 X(khc2c_register) (p, hc2cb_16, &desc, HC2C_VIA_RDFT); | |
425 } | |
426 #else /* HAVE_FMA */ | |
427 | |
428 /* Generated by: ../../../genfft/gen_hc2c.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 16 -dif -name hc2cb_16 -include hc2cb.h */ | |
429 | |
430 /* | |
431 * This function contains 174 FP additions, 84 FP multiplications, | |
432 * (or, 136 additions, 46 multiplications, 38 fused multiply/add), | |
433 * 50 stack variables, 3 constants, and 64 memory accesses | |
434 */ | |
435 #include "hc2cb.h" | |
436 | |
437 static void hc2cb_16(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) | |
438 { | |
439 DK(KP382683432, +0.382683432365089771728459984030398866761344562); | |
440 DK(KP923879532, +0.923879532511286756128183189396788286822416626); | |
441 DK(KP707106781, +0.707106781186547524400844362104849039284835938); | |
442 { | |
443 INT m; | |
444 for (m = mb, W = W + ((mb - 1) * 30); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 30, MAKE_VOLATILE_STRIDE(64, rs)) { | |
445 E T7, T2K, T2W, Tw, T17, T1S, T2k, T1w, Te, TD, T1x, T10, T2n, T2L, T1Z; | |
446 E T2X, Tm, T1z, TN, T19, T2e, T2p, T2P, T2Z, Tt, T1A, TW, T1a, T27, T2q; | |
447 E T2S, T30; | |
448 { | |
449 E T3, T1Q, T13, T2j, T6, T2i, T16, T1R; | |
450 { | |
451 E T1, T2, T11, T12; | |
452 T1 = Rp[0]; | |
453 T2 = Rm[WS(rs, 7)]; | |
454 T3 = T1 + T2; | |
455 T1Q = T1 - T2; | |
456 T11 = Ip[0]; | |
457 T12 = Im[WS(rs, 7)]; | |
458 T13 = T11 - T12; | |
459 T2j = T11 + T12; | |
460 } | |
461 { | |
462 E T4, T5, T14, T15; | |
463 T4 = Rp[WS(rs, 4)]; | |
464 T5 = Rm[WS(rs, 3)]; | |
465 T6 = T4 + T5; | |
466 T2i = T4 - T5; | |
467 T14 = Ip[WS(rs, 4)]; | |
468 T15 = Im[WS(rs, 3)]; | |
469 T16 = T14 - T15; | |
470 T1R = T14 + T15; | |
471 } | |
472 T7 = T3 + T6; | |
473 T2K = T1Q + T1R; | |
474 T2W = T2j - T2i; | |
475 Tw = T3 - T6; | |
476 T17 = T13 - T16; | |
477 T1S = T1Q - T1R; | |
478 T2k = T2i + T2j; | |
479 T1w = T13 + T16; | |
480 } | |
481 { | |
482 E Ta, T1T, TC, T1U, Td, T1W, Tz, T1X; | |
483 { | |
484 E T8, T9, TA, TB; | |
485 T8 = Rp[WS(rs, 2)]; | |
486 T9 = Rm[WS(rs, 5)]; | |
487 Ta = T8 + T9; | |
488 T1T = T8 - T9; | |
489 TA = Ip[WS(rs, 2)]; | |
490 TB = Im[WS(rs, 5)]; | |
491 TC = TA - TB; | |
492 T1U = TA + TB; | |
493 } | |
494 { | |
495 E Tb, Tc, Tx, Ty; | |
496 Tb = Rm[WS(rs, 1)]; | |
497 Tc = Rp[WS(rs, 6)]; | |
498 Td = Tb + Tc; | |
499 T1W = Tb - Tc; | |
500 Tx = Ip[WS(rs, 6)]; | |
501 Ty = Im[WS(rs, 1)]; | |
502 Tz = Tx - Ty; | |
503 T1X = Tx + Ty; | |
504 } | |
505 Te = Ta + Td; | |
506 TD = Tz - TC; | |
507 T1x = TC + Tz; | |
508 T10 = Ta - Td; | |
509 { | |
510 E T2l, T2m, T1V, T1Y; | |
511 T2l = T1T + T1U; | |
512 T2m = T1W + T1X; | |
513 T2n = KP707106781 * (T2l - T2m); | |
514 T2L = KP707106781 * (T2l + T2m); | |
515 T1V = T1T - T1U; | |
516 T1Y = T1W - T1X; | |
517 T1Z = KP707106781 * (T1V + T1Y); | |
518 T2X = KP707106781 * (T1V - T1Y); | |
519 } | |
520 } | |
521 { | |
522 E Ti, T2b, TI, T29, Tl, T28, TL, T2c, TF, TM; | |
523 { | |
524 E Tg, Th, TG, TH; | |
525 Tg = Rp[WS(rs, 1)]; | |
526 Th = Rm[WS(rs, 6)]; | |
527 Ti = Tg + Th; | |
528 T2b = Tg - Th; | |
529 TG = Ip[WS(rs, 1)]; | |
530 TH = Im[WS(rs, 6)]; | |
531 TI = TG - TH; | |
532 T29 = TG + TH; | |
533 } | |
534 { | |
535 E Tj, Tk, TJ, TK; | |
536 Tj = Rp[WS(rs, 5)]; | |
537 Tk = Rm[WS(rs, 2)]; | |
538 Tl = Tj + Tk; | |
539 T28 = Tj - Tk; | |
540 TJ = Ip[WS(rs, 5)]; | |
541 TK = Im[WS(rs, 2)]; | |
542 TL = TJ - TK; | |
543 T2c = TJ + TK; | |
544 } | |
545 Tm = Ti + Tl; | |
546 T1z = TI + TL; | |
547 TF = Ti - Tl; | |
548 TM = TI - TL; | |
549 TN = TF - TM; | |
550 T19 = TF + TM; | |
551 { | |
552 E T2a, T2d, T2N, T2O; | |
553 T2a = T28 + T29; | |
554 T2d = T2b - T2c; | |
555 T2e = FMA(KP923879532, T2a, KP382683432 * T2d); | |
556 T2p = FNMS(KP382683432, T2a, KP923879532 * T2d); | |
557 T2N = T2b + T2c; | |
558 T2O = T29 - T28; | |
559 T2P = FNMS(KP923879532, T2O, KP382683432 * T2N); | |
560 T2Z = FMA(KP382683432, T2O, KP923879532 * T2N); | |
561 } | |
562 } | |
563 { | |
564 E Tp, T24, TR, T22, Ts, T21, TU, T25, TO, TV; | |
565 { | |
566 E Tn, To, TP, TQ; | |
567 Tn = Rm[0]; | |
568 To = Rp[WS(rs, 7)]; | |
569 Tp = Tn + To; | |
570 T24 = Tn - To; | |
571 TP = Ip[WS(rs, 7)]; | |
572 TQ = Im[0]; | |
573 TR = TP - TQ; | |
574 T22 = TP + TQ; | |
575 } | |
576 { | |
577 E Tq, Tr, TS, TT; | |
578 Tq = Rp[WS(rs, 3)]; | |
579 Tr = Rm[WS(rs, 4)]; | |
580 Ts = Tq + Tr; | |
581 T21 = Tq - Tr; | |
582 TS = Ip[WS(rs, 3)]; | |
583 TT = Im[WS(rs, 4)]; | |
584 TU = TS - TT; | |
585 T25 = TS + TT; | |
586 } | |
587 Tt = Tp + Ts; | |
588 T1A = TR + TU; | |
589 TO = Tp - Ts; | |
590 TV = TR - TU; | |
591 TW = TO + TV; | |
592 T1a = TV - TO; | |
593 { | |
594 E T23, T26, T2Q, T2R; | |
595 T23 = T21 - T22; | |
596 T26 = T24 - T25; | |
597 T27 = FNMS(KP382683432, T26, KP923879532 * T23); | |
598 T2q = FMA(KP382683432, T23, KP923879532 * T26); | |
599 T2Q = T24 + T25; | |
600 T2R = T21 + T22; | |
601 T2S = FNMS(KP923879532, T2R, KP382683432 * T2Q); | |
602 T30 = FMA(KP382683432, T2R, KP923879532 * T2Q); | |
603 } | |
604 } | |
605 { | |
606 E Tf, Tu, T1u, T1y, T1B, T1C, T1t, T1v; | |
607 Tf = T7 + Te; | |
608 Tu = Tm + Tt; | |
609 T1u = Tf - Tu; | |
610 T1y = T1w + T1x; | |
611 T1B = T1z + T1A; | |
612 T1C = T1y - T1B; | |
613 Rp[0] = Tf + Tu; | |
614 Rm[0] = T1y + T1B; | |
615 T1t = W[14]; | |
616 T1v = W[15]; | |
617 Rp[WS(rs, 4)] = FNMS(T1v, T1C, T1t * T1u); | |
618 Rm[WS(rs, 4)] = FMA(T1v, T1u, T1t * T1C); | |
619 } | |
620 { | |
621 E T2U, T34, T32, T36; | |
622 { | |
623 E T2M, T2T, T2Y, T31; | |
624 T2M = T2K - T2L; | |
625 T2T = T2P + T2S; | |
626 T2U = T2M - T2T; | |
627 T34 = T2M + T2T; | |
628 T2Y = T2W + T2X; | |
629 T31 = T2Z - T30; | |
630 T32 = T2Y - T31; | |
631 T36 = T2Y + T31; | |
632 } | |
633 { | |
634 E T2J, T2V, T33, T35; | |
635 T2J = W[20]; | |
636 T2V = W[21]; | |
637 Ip[WS(rs, 5)] = FNMS(T2V, T32, T2J * T2U); | |
638 Im[WS(rs, 5)] = FMA(T2V, T2U, T2J * T32); | |
639 T33 = W[4]; | |
640 T35 = W[5]; | |
641 Ip[WS(rs, 1)] = FNMS(T35, T36, T33 * T34); | |
642 Im[WS(rs, 1)] = FMA(T35, T34, T33 * T36); | |
643 } | |
644 } | |
645 { | |
646 E T3a, T3g, T3e, T3i; | |
647 { | |
648 E T38, T39, T3c, T3d; | |
649 T38 = T2K + T2L; | |
650 T39 = T2Z + T30; | |
651 T3a = T38 - T39; | |
652 T3g = T38 + T39; | |
653 T3c = T2W - T2X; | |
654 T3d = T2P - T2S; | |
655 T3e = T3c + T3d; | |
656 T3i = T3c - T3d; | |
657 } | |
658 { | |
659 E T37, T3b, T3f, T3h; | |
660 T37 = W[12]; | |
661 T3b = W[13]; | |
662 Ip[WS(rs, 3)] = FNMS(T3b, T3e, T37 * T3a); | |
663 Im[WS(rs, 3)] = FMA(T37, T3e, T3b * T3a); | |
664 T3f = W[28]; | |
665 T3h = W[29]; | |
666 Ip[WS(rs, 7)] = FNMS(T3h, T3i, T3f * T3g); | |
667 Im[WS(rs, 7)] = FMA(T3f, T3i, T3h * T3g); | |
668 } | |
669 } | |
670 { | |
671 E TY, T1e, T1c, T1g; | |
672 { | |
673 E TE, TX, T18, T1b; | |
674 TE = Tw + TD; | |
675 TX = KP707106781 * (TN + TW); | |
676 TY = TE - TX; | |
677 T1e = TE + TX; | |
678 T18 = T10 + T17; | |
679 T1b = KP707106781 * (T19 + T1a); | |
680 T1c = T18 - T1b; | |
681 T1g = T18 + T1b; | |
682 } | |
683 { | |
684 E Tv, TZ, T1d, T1f; | |
685 Tv = W[18]; | |
686 TZ = W[19]; | |
687 Rp[WS(rs, 5)] = FNMS(TZ, T1c, Tv * TY); | |
688 Rm[WS(rs, 5)] = FMA(TZ, TY, Tv * T1c); | |
689 T1d = W[2]; | |
690 T1f = W[3]; | |
691 Rp[WS(rs, 1)] = FNMS(T1f, T1g, T1d * T1e); | |
692 Rm[WS(rs, 1)] = FMA(T1f, T1e, T1d * T1g); | |
693 } | |
694 } | |
695 { | |
696 E T1k, T1q, T1o, T1s; | |
697 { | |
698 E T1i, T1j, T1m, T1n; | |
699 T1i = Tw - TD; | |
700 T1j = KP707106781 * (T1a - T19); | |
701 T1k = T1i - T1j; | |
702 T1q = T1i + T1j; | |
703 T1m = T17 - T10; | |
704 T1n = KP707106781 * (TN - TW); | |
705 T1o = T1m - T1n; | |
706 T1s = T1m + T1n; | |
707 } | |
708 { | |
709 E T1h, T1l, T1p, T1r; | |
710 T1h = W[26]; | |
711 T1l = W[27]; | |
712 Rp[WS(rs, 7)] = FNMS(T1l, T1o, T1h * T1k); | |
713 Rm[WS(rs, 7)] = FMA(T1h, T1o, T1l * T1k); | |
714 T1p = W[10]; | |
715 T1r = W[11]; | |
716 Rp[WS(rs, 3)] = FNMS(T1r, T1s, T1p * T1q); | |
717 Rm[WS(rs, 3)] = FMA(T1p, T1s, T1r * T1q); | |
718 } | |
719 } | |
720 { | |
721 E T2g, T2u, T2s, T2w; | |
722 { | |
723 E T20, T2f, T2o, T2r; | |
724 T20 = T1S - T1Z; | |
725 T2f = T27 - T2e; | |
726 T2g = T20 - T2f; | |
727 T2u = T20 + T2f; | |
728 T2o = T2k - T2n; | |
729 T2r = T2p - T2q; | |
730 T2s = T2o - T2r; | |
731 T2w = T2o + T2r; | |
732 } | |
733 { | |
734 E T1P, T2h, T2t, T2v; | |
735 T1P = W[24]; | |
736 T2h = W[25]; | |
737 Ip[WS(rs, 6)] = FNMS(T2h, T2s, T1P * T2g); | |
738 Im[WS(rs, 6)] = FMA(T2h, T2g, T1P * T2s); | |
739 T2t = W[8]; | |
740 T2v = W[9]; | |
741 Ip[WS(rs, 2)] = FNMS(T2v, T2w, T2t * T2u); | |
742 Im[WS(rs, 2)] = FMA(T2v, T2u, T2t * T2w); | |
743 } | |
744 } | |
745 { | |
746 E T2A, T2G, T2E, T2I; | |
747 { | |
748 E T2y, T2z, T2C, T2D; | |
749 T2y = T1S + T1Z; | |
750 T2z = T2p + T2q; | |
751 T2A = T2y - T2z; | |
752 T2G = T2y + T2z; | |
753 T2C = T2k + T2n; | |
754 T2D = T2e + T27; | |
755 T2E = T2C - T2D; | |
756 T2I = T2C + T2D; | |
757 } | |
758 { | |
759 E T2x, T2B, T2F, T2H; | |
760 T2x = W[16]; | |
761 T2B = W[17]; | |
762 Ip[WS(rs, 4)] = FNMS(T2B, T2E, T2x * T2A); | |
763 Im[WS(rs, 4)] = FMA(T2x, T2E, T2B * T2A); | |
764 T2F = W[0]; | |
765 T2H = W[1]; | |
766 Ip[0] = FNMS(T2H, T2I, T2F * T2G); | |
767 Im[0] = FMA(T2F, T2I, T2H * T2G); | |
768 } | |
769 } | |
770 { | |
771 E T1G, T1M, T1K, T1O; | |
772 { | |
773 E T1E, T1F, T1I, T1J; | |
774 T1E = T7 - Te; | |
775 T1F = T1A - T1z; | |
776 T1G = T1E - T1F; | |
777 T1M = T1E + T1F; | |
778 T1I = T1w - T1x; | |
779 T1J = Tm - Tt; | |
780 T1K = T1I - T1J; | |
781 T1O = T1J + T1I; | |
782 } | |
783 { | |
784 E T1D, T1H, T1L, T1N; | |
785 T1D = W[22]; | |
786 T1H = W[23]; | |
787 Rp[WS(rs, 6)] = FNMS(T1H, T1K, T1D * T1G); | |
788 Rm[WS(rs, 6)] = FMA(T1D, T1K, T1H * T1G); | |
789 T1L = W[6]; | |
790 T1N = W[7]; | |
791 Rp[WS(rs, 2)] = FNMS(T1N, T1O, T1L * T1M); | |
792 Rm[WS(rs, 2)] = FMA(T1L, T1O, T1N * T1M); | |
793 } | |
794 } | |
795 } | |
796 } | |
797 } | |
798 | |
799 static const tw_instr twinstr[] = { | |
800 {TW_FULL, 1, 16}, | |
801 {TW_NEXT, 1, 0} | |
802 }; | |
803 | |
804 static const hc2c_desc desc = { 16, "hc2cb_16", twinstr, &GENUS, {136, 46, 38, 0} }; | |
805 | |
806 void X(codelet_hc2cb_16) (planner *p) { | |
807 X(khc2c_register) (p, hc2cb_16, &desc, HC2C_VIA_RDFT); | |
808 } | |
809 #endif /* HAVE_FMA */ |