comparison fft/fftw/fftw-3.3.4/rdft/scalar/r2cb/hc2cb2_8.c @ 19:26056e866c29

Add FFTW to comparison table
author Chris Cannam
date Tue, 06 Oct 2015 13:08:39 +0100
parents
children
comparison
equal deleted inserted replaced
18:8db794ca3e0b 19:26056e866c29
1 /*
2 * Copyright (c) 2003, 2007-14 Matteo Frigo
3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
18 *
19 */
20
21 /* This file was automatically generated --- DO NOT EDIT */
22 /* Generated on Tue Mar 4 13:50:41 EST 2014 */
23
24 #include "codelet-rdft.h"
25
26 #ifdef HAVE_FMA
27
28 /* Generated by: ../../../genfft/gen_hc2c.native -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -sign 1 -twiddle-log3 -precompute-twiddles -n 8 -dif -name hc2cb2_8 -include hc2cb.h */
29
30 /*
31 * This function contains 74 FP additions, 50 FP multiplications,
32 * (or, 44 additions, 20 multiplications, 30 fused multiply/add),
33 * 64 stack variables, 1 constants, and 32 memory accesses
34 */
35 #include "hc2cb.h"
36
37 static void hc2cb2_8(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
38 {
39 DK(KP707106781, +0.707106781186547524400844362104849039284835938);
40 {
41 INT m;
42 for (m = mb, W = W + ((mb - 1) * 6); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 6, MAKE_VOLATILE_STRIDE(32, rs)) {
43 E Tf, Ti, TK, Tq, TH, TT, TX, TW, TY, TU, TI;
44 {
45 E Tg, Tl, Tp, Th, T1n, T1t, Tj;
46 Tf = W[0];
47 Tg = W[2];
48 Tl = W[4];
49 Tp = W[5];
50 Ti = W[1];
51 Th = Tf * Tg;
52 T1n = Tf * Tl;
53 T1t = Tf * Tp;
54 Tj = W[3];
55 {
56 E T1o, T1u, Tk, T1b, To, T1e, T13, TP, T1p, T7, T1h, T1v, TZ, Tv, T1i;
57 E TB, TA, TQ, Te, T1w, TE, T1j;
58 {
59 E Tr, T3, Ts, T1f, TO, TL, T6, Tt;
60 {
61 E TM, TN, T4, T5;
62 {
63 E T1, Tn, T2, TJ, Tm;
64 T1 = Rp[0];
65 T1o = FMA(Ti, Tp, T1n);
66 T1u = FNMS(Ti, Tl, T1t);
67 Tk = FMA(Ti, Tj, Th);
68 T1b = FNMS(Ti, Tj, Th);
69 Tn = Tf * Tj;
70 T2 = Rm[WS(rs, 3)];
71 TM = Ip[0];
72 TJ = Tk * Tp;
73 Tm = Tk * Tl;
74 To = FNMS(Ti, Tg, Tn);
75 T1e = FMA(Ti, Tg, Tn);
76 Tr = T1 - T2;
77 T3 = T1 + T2;
78 TK = FNMS(To, Tl, TJ);
79 Tq = FMA(To, Tp, Tm);
80 TN = Im[WS(rs, 3)];
81 }
82 T4 = Rp[WS(rs, 2)];
83 T5 = Rm[WS(rs, 1)];
84 Ts = Ip[WS(rs, 2)];
85 T1f = TM - TN;
86 TO = TM + TN;
87 TL = T4 - T5;
88 T6 = T4 + T5;
89 Tt = Im[WS(rs, 1)];
90 }
91 {
92 E Tw, Ta, TC, Tz, Td, TD;
93 {
94 E Tx, Ty, Tb, Tc;
95 {
96 E T8, T1g, Tu, T9;
97 T8 = Rp[WS(rs, 1)];
98 T13 = TO - TL;
99 TP = TL + TO;
100 T1p = T3 - T6;
101 T7 = T3 + T6;
102 T1g = Ts - Tt;
103 Tu = Ts + Tt;
104 T9 = Rm[WS(rs, 2)];
105 Tx = Ip[WS(rs, 1)];
106 T1h = T1f + T1g;
107 T1v = T1f - T1g;
108 TZ = Tr + Tu;
109 Tv = Tr - Tu;
110 Tw = T8 - T9;
111 Ta = T8 + T9;
112 Ty = Im[WS(rs, 2)];
113 }
114 Tb = Rm[0];
115 Tc = Rp[WS(rs, 3)];
116 TC = Ip[WS(rs, 3)];
117 T1i = Tx - Ty;
118 Tz = Tx + Ty;
119 TB = Tb - Tc;
120 Td = Tb + Tc;
121 TD = Im[0];
122 }
123 TA = Tw - Tz;
124 TQ = Tw + Tz;
125 Te = Ta + Td;
126 T1w = Ta - Td;
127 TE = TC + TD;
128 T1j = TC - TD;
129 }
130 }
131 {
132 E T1x, T1k, T1r, TG, TS, T19, T15, T17, T11, T16, T12;
133 {
134 E T1B, T1z, T10, T1A, T1C;
135 T1x = T1v - T1w;
136 T1B = T1w + T1v;
137 Rp[0] = T7 + Te;
138 {
139 E T1q, TR, TF, T14;
140 T1k = T1i + T1j;
141 T1q = T1j - T1i;
142 TR = TB + TE;
143 TF = TB - TE;
144 T1r = T1p - T1q;
145 T1z = T1p + T1q;
146 Rm[0] = T1h + T1k;
147 TG = TA + TF;
148 T14 = TA - TF;
149 TS = TQ - TR;
150 T10 = TQ + TR;
151 T1A = Tk * T1z;
152 T19 = FNMS(KP707106781, T14, T13);
153 T15 = FMA(KP707106781, T14, T13);
154 T1C = Tk * T1B;
155 }
156 T17 = FMA(KP707106781, T10, TZ);
157 T11 = FNMS(KP707106781, T10, TZ);
158 Rp[WS(rs, 1)] = FNMS(To, T1B, T1A);
159 T16 = Tg * T15;
160 Rm[WS(rs, 1)] = FMA(To, T1z, T1C);
161 }
162 T12 = Tg * T11;
163 {
164 E T1l, T1a, T1c, T18;
165 Im[WS(rs, 1)] = FMA(Tj, T11, T16);
166 Ip[WS(rs, 1)] = FNMS(Tj, T15, T12);
167 T18 = Tl * T17;
168 T1l = T1h - T1k;
169 T1a = Tl * T19;
170 T1c = T7 - Te;
171 Ip[WS(rs, 3)] = FNMS(Tp, T19, T18);
172 {
173 E T1s, T1m, T1d, T1y, TV;
174 Im[WS(rs, 3)] = FMA(Tp, T17, T1a);
175 T1m = T1e * T1c;
176 T1d = T1b * T1c;
177 T1s = T1o * T1r;
178 Rm[WS(rs, 2)] = FMA(T1b, T1l, T1m);
179 Rp[WS(rs, 2)] = FNMS(T1e, T1l, T1d);
180 Rp[WS(rs, 3)] = FNMS(T1u, T1x, T1s);
181 T1y = T1o * T1x;
182 TV = FMA(KP707106781, TG, Tv);
183 TH = FNMS(KP707106781, TG, Tv);
184 TT = FNMS(KP707106781, TS, TP);
185 TX = FMA(KP707106781, TS, TP);
186 Rm[WS(rs, 3)] = FMA(T1u, T1r, T1y);
187 TW = Tf * TV;
188 TY = Ti * TV;
189 }
190 }
191 }
192 }
193 }
194 Ip[0] = FNMS(Ti, TX, TW);
195 Im[0] = FMA(Tf, TX, TY);
196 TU = TK * TH;
197 TI = Tq * TH;
198 Im[WS(rs, 2)] = FMA(Tq, TT, TU);
199 Ip[WS(rs, 2)] = FNMS(TK, TT, TI);
200 }
201 }
202 }
203
204 static const tw_instr twinstr[] = {
205 {TW_CEXP, 1, 1},
206 {TW_CEXP, 1, 3},
207 {TW_CEXP, 1, 7},
208 {TW_NEXT, 1, 0}
209 };
210
211 static const hc2c_desc desc = { 8, "hc2cb2_8", twinstr, &GENUS, {44, 20, 30, 0} };
212
213 void X(codelet_hc2cb2_8) (planner *p) {
214 X(khc2c_register) (p, hc2cb2_8, &desc, HC2C_VIA_RDFT);
215 }
216 #else /* HAVE_FMA */
217
218 /* Generated by: ../../../genfft/gen_hc2c.native -compact -variables 4 -pipeline-latency 4 -sign 1 -twiddle-log3 -precompute-twiddles -n 8 -dif -name hc2cb2_8 -include hc2cb.h */
219
220 /*
221 * This function contains 74 FP additions, 44 FP multiplications,
222 * (or, 56 additions, 26 multiplications, 18 fused multiply/add),
223 * 46 stack variables, 1 constants, and 32 memory accesses
224 */
225 #include "hc2cb.h"
226
227 static void hc2cb2_8(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
228 {
229 DK(KP707106781, +0.707106781186547524400844362104849039284835938);
230 {
231 INT m;
232 for (m = mb, W = W + ((mb - 1) * 6); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 6, MAKE_VOLATILE_STRIDE(32, rs)) {
233 E Tf, Ti, Tg, Tj, Tl, Tp, TP, TR, TF, TG, TH, T15, TL, TT;
234 {
235 E Th, To, Tk, Tn;
236 Tf = W[0];
237 Ti = W[1];
238 Tg = W[2];
239 Tj = W[3];
240 Th = Tf * Tg;
241 To = Ti * Tg;
242 Tk = Ti * Tj;
243 Tn = Tf * Tj;
244 Tl = Th - Tk;
245 Tp = Tn + To;
246 TP = Th + Tk;
247 TR = Tn - To;
248 TF = W[4];
249 TG = W[5];
250 TH = FMA(Tf, TF, Ti * TG);
251 T15 = FNMS(TR, TF, TP * TG);
252 TL = FNMS(Ti, TF, Tf * TG);
253 TT = FMA(TP, TF, TR * TG);
254 }
255 {
256 E T7, T1f, T1i, Tw, TI, TW, T18, TM, Te, T19, T1a, TD, TJ, TZ, T12;
257 E TN, Tm, TE;
258 {
259 E T3, TU, Ts, T17, T6, T16, Tv, TV;
260 {
261 E T1, T2, Tq, Tr;
262 T1 = Rp[0];
263 T2 = Rm[WS(rs, 3)];
264 T3 = T1 + T2;
265 TU = T1 - T2;
266 Tq = Ip[0];
267 Tr = Im[WS(rs, 3)];
268 Ts = Tq - Tr;
269 T17 = Tq + Tr;
270 }
271 {
272 E T4, T5, Tt, Tu;
273 T4 = Rp[WS(rs, 2)];
274 T5 = Rm[WS(rs, 1)];
275 T6 = T4 + T5;
276 T16 = T4 - T5;
277 Tt = Ip[WS(rs, 2)];
278 Tu = Im[WS(rs, 1)];
279 Tv = Tt - Tu;
280 TV = Tt + Tu;
281 }
282 T7 = T3 + T6;
283 T1f = TU + TV;
284 T1i = T17 - T16;
285 Tw = Ts + Tv;
286 TI = T3 - T6;
287 TW = TU - TV;
288 T18 = T16 + T17;
289 TM = Ts - Tv;
290 }
291 {
292 E Ta, TX, Tz, TY, Td, T10, TC, T11;
293 {
294 E T8, T9, Tx, Ty;
295 T8 = Rp[WS(rs, 1)];
296 T9 = Rm[WS(rs, 2)];
297 Ta = T8 + T9;
298 TX = T8 - T9;
299 Tx = Ip[WS(rs, 1)];
300 Ty = Im[WS(rs, 2)];
301 Tz = Tx - Ty;
302 TY = Tx + Ty;
303 }
304 {
305 E Tb, Tc, TA, TB;
306 Tb = Rm[0];
307 Tc = Rp[WS(rs, 3)];
308 Td = Tb + Tc;
309 T10 = Tb - Tc;
310 TA = Ip[WS(rs, 3)];
311 TB = Im[0];
312 TC = TA - TB;
313 T11 = TA + TB;
314 }
315 Te = Ta + Td;
316 T19 = TX + TY;
317 T1a = T10 + T11;
318 TD = Tz + TC;
319 TJ = TC - Tz;
320 TZ = TX - TY;
321 T12 = T10 - T11;
322 TN = Ta - Td;
323 }
324 Rp[0] = T7 + Te;
325 Rm[0] = Tw + TD;
326 Tm = T7 - Te;
327 TE = Tw - TD;
328 Rp[WS(rs, 2)] = FNMS(Tp, TE, Tl * Tm);
329 Rm[WS(rs, 2)] = FMA(Tp, Tm, Tl * TE);
330 {
331 E TQ, TS, TK, TO;
332 TQ = TI + TJ;
333 TS = TN + TM;
334 Rp[WS(rs, 1)] = FNMS(TR, TS, TP * TQ);
335 Rm[WS(rs, 1)] = FMA(TP, TS, TR * TQ);
336 TK = TI - TJ;
337 TO = TM - TN;
338 Rp[WS(rs, 3)] = FNMS(TL, TO, TH * TK);
339 Rm[WS(rs, 3)] = FMA(TH, TO, TL * TK);
340 }
341 {
342 E T1h, T1l, T1k, T1m, T1g, T1j;
343 T1g = KP707106781 * (T19 + T1a);
344 T1h = T1f - T1g;
345 T1l = T1f + T1g;
346 T1j = KP707106781 * (TZ - T12);
347 T1k = T1i + T1j;
348 T1m = T1i - T1j;
349 Ip[WS(rs, 1)] = FNMS(Tj, T1k, Tg * T1h);
350 Im[WS(rs, 1)] = FMA(Tg, T1k, Tj * T1h);
351 Ip[WS(rs, 3)] = FNMS(TG, T1m, TF * T1l);
352 Im[WS(rs, 3)] = FMA(TF, T1m, TG * T1l);
353 }
354 {
355 E T14, T1d, T1c, T1e, T13, T1b;
356 T13 = KP707106781 * (TZ + T12);
357 T14 = TW - T13;
358 T1d = TW + T13;
359 T1b = KP707106781 * (T19 - T1a);
360 T1c = T18 - T1b;
361 T1e = T18 + T1b;
362 Ip[WS(rs, 2)] = FNMS(T15, T1c, TT * T14);
363 Im[WS(rs, 2)] = FMA(T15, T14, TT * T1c);
364 Ip[0] = FNMS(Ti, T1e, Tf * T1d);
365 Im[0] = FMA(Ti, T1d, Tf * T1e);
366 }
367 }
368 }
369 }
370 }
371
372 static const tw_instr twinstr[] = {
373 {TW_CEXP, 1, 1},
374 {TW_CEXP, 1, 3},
375 {TW_CEXP, 1, 7},
376 {TW_NEXT, 1, 0}
377 };
378
379 static const hc2c_desc desc = { 8, "hc2cb2_8", twinstr, &GENUS, {56, 26, 18, 0} };
380
381 void X(codelet_hc2cb2_8) (planner *p) {
382 X(khc2c_register) (p, hc2cb2_8, &desc, HC2C_VIA_RDFT);
383 }
384 #endif /* HAVE_FMA */