Mercurial > hg > js-dsp-test
comparison fft/fftw/fftw-3.3.4/rdft/scalar/r2cb/hc2cb2_16.c @ 19:26056e866c29
Add FFTW to comparison table
author | Chris Cannam |
---|---|
date | Tue, 06 Oct 2015 13:08:39 +0100 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
18:8db794ca3e0b | 19:26056e866c29 |
---|---|
1 /* | |
2 * Copyright (c) 2003, 2007-14 Matteo Frigo | |
3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology | |
4 * | |
5 * This program is free software; you can redistribute it and/or modify | |
6 * it under the terms of the GNU General Public License as published by | |
7 * the Free Software Foundation; either version 2 of the License, or | |
8 * (at your option) any later version. | |
9 * | |
10 * This program is distributed in the hope that it will be useful, | |
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
13 * GNU General Public License for more details. | |
14 * | |
15 * You should have received a copy of the GNU General Public License | |
16 * along with this program; if not, write to the Free Software | |
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA | |
18 * | |
19 */ | |
20 | |
21 /* This file was automatically generated --- DO NOT EDIT */ | |
22 /* Generated on Tue Mar 4 13:50:42 EST 2014 */ | |
23 | |
24 #include "codelet-rdft.h" | |
25 | |
26 #ifdef HAVE_FMA | |
27 | |
28 /* Generated by: ../../../genfft/gen_hc2c.native -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -sign 1 -twiddle-log3 -precompute-twiddles -n 16 -dif -name hc2cb2_16 -include hc2cb.h */ | |
29 | |
30 /* | |
31 * This function contains 196 FP additions, 134 FP multiplications, | |
32 * (or, 104 additions, 42 multiplications, 92 fused multiply/add), | |
33 * 112 stack variables, 3 constants, and 64 memory accesses | |
34 */ | |
35 #include "hc2cb.h" | |
36 | |
37 static void hc2cb2_16(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) | |
38 { | |
39 DK(KP923879532, +0.923879532511286756128183189396788286822416626); | |
40 DK(KP707106781, +0.707106781186547524400844362104849039284835938); | |
41 DK(KP414213562, +0.414213562373095048801688724209698078569671875); | |
42 { | |
43 INT m; | |
44 for (m = mb, W = W + ((mb - 1) * 8); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 8, MAKE_VOLATILE_STRIDE(64, rs)) { | |
45 E Tv, TB, TF, Ty, T1J, T1O, T1N, T1K; | |
46 { | |
47 E Tw, T2z, T2C, Tx, T3f, T3l, T2F, T3r, Tz; | |
48 Tv = W[0]; | |
49 Tw = W[2]; | |
50 T2z = W[6]; | |
51 T2C = W[7]; | |
52 TB = W[4]; | |
53 Tx = Tv * Tw; | |
54 T3f = Tv * T2z; | |
55 T3l = Tv * T2C; | |
56 T2F = Tv * TB; | |
57 T3r = Tw * TB; | |
58 TF = W[5]; | |
59 Ty = W[1]; | |
60 Tz = W[3]; | |
61 { | |
62 E T2G, T3z, T3m, T3g, T3L, T3s, T1V, TA, T3w, T3Q, T30, T3C, TE, T1X, T1D; | |
63 E TG, T1G, T1o, T2p, T1Y, T2u, T2c, T1Z, TL, T1t, T2d, T3n, T35, T3R, T3F; | |
64 E T1w, T20, T3M, Tf, T3h, T2L, T2e, TW, T2Q, T36, T3I, T3N, T2V, T37, T1d; | |
65 E Tu, T3S, T18, T1z, T1i, T24, T2g, T27, T2h; | |
66 { | |
67 E T2K, TQ, TV, T2H; | |
68 { | |
69 E TH, T3, T32, T1s, T1p, T6, T33, TK, TM, Ta, TS, T2J, TP, TR, Td; | |
70 E TT, TI, TJ; | |
71 { | |
72 E T1q, T1r, T4, T5; | |
73 { | |
74 E T1, T1n, TC, T2b, T1W, T2, T3v, T2Z, TD; | |
75 T1 = Rp[0]; | |
76 T3v = Tw * TF; | |
77 T2Z = Tv * TF; | |
78 T2G = FNMS(Ty, TF, T2F); | |
79 T3z = FMA(Ty, TF, T2F); | |
80 T3m = FNMS(Ty, T2z, T3l); | |
81 T3g = FMA(Ty, T2C, T3f); | |
82 T3L = FNMS(Tz, TF, T3r); | |
83 T3s = FMA(Tz, TF, T3r); | |
84 T1V = FMA(Ty, Tz, Tx); | |
85 TA = FNMS(Ty, Tz, Tx); | |
86 TD = Tv * Tz; | |
87 T3w = FNMS(Tz, TB, T3v); | |
88 T3Q = FMA(Tz, TB, T3v); | |
89 T30 = FMA(Ty, TB, T2Z); | |
90 T3C = FNMS(Ty, TB, T2Z); | |
91 T1n = TA * TF; | |
92 TC = TA * TB; | |
93 T2b = T1V * TF; | |
94 T1W = T1V * TB; | |
95 TE = FMA(Ty, Tw, TD); | |
96 T1X = FNMS(Ty, Tw, TD); | |
97 T2 = Rm[WS(rs, 7)]; | |
98 T1q = Ip[0]; | |
99 T1D = FMA(TE, TF, TC); | |
100 TG = FNMS(TE, TF, TC); | |
101 T1G = FNMS(TE, TB, T1n); | |
102 T1o = FMA(TE, TB, T1n); | |
103 T2p = FMA(T1X, TF, T1W); | |
104 T1Y = FNMS(T1X, TF, T1W); | |
105 T2u = FNMS(T1X, TB, T2b); | |
106 T2c = FMA(T1X, TB, T2b); | |
107 TH = T1 - T2; | |
108 T3 = T1 + T2; | |
109 T1r = Im[WS(rs, 7)]; | |
110 } | |
111 T4 = Rp[WS(rs, 4)]; | |
112 T5 = Rm[WS(rs, 3)]; | |
113 TI = Ip[WS(rs, 4)]; | |
114 T32 = T1q - T1r; | |
115 T1s = T1q + T1r; | |
116 T1p = T4 - T5; | |
117 T6 = T4 + T5; | |
118 TJ = Im[WS(rs, 3)]; | |
119 } | |
120 { | |
121 E TN, TO, T8, T9, Tb, Tc; | |
122 T8 = Rp[WS(rs, 2)]; | |
123 T9 = Rm[WS(rs, 5)]; | |
124 TN = Ip[WS(rs, 2)]; | |
125 T33 = TI - TJ; | |
126 TK = TI + TJ; | |
127 TM = T8 - T9; | |
128 Ta = T8 + T9; | |
129 TO = Im[WS(rs, 5)]; | |
130 Tb = Rm[WS(rs, 1)]; | |
131 Tc = Rp[WS(rs, 6)]; | |
132 TS = Ip[WS(rs, 6)]; | |
133 T2J = TN - TO; | |
134 TP = TN + TO; | |
135 TR = Tb - Tc; | |
136 Td = Tb + Tc; | |
137 TT = Im[WS(rs, 1)]; | |
138 } | |
139 { | |
140 E T2I, TU, Te, T31, T34, T3D; | |
141 T1Z = TH + TK; | |
142 TL = TH - TK; | |
143 T1t = T1p + T1s; | |
144 T2d = T1s - T1p; | |
145 T2I = TS - TT; | |
146 TU = TS + TT; | |
147 Te = Ta + Td; | |
148 T31 = Ta - Td; | |
149 T34 = T32 - T33; | |
150 T3D = T32 + T33; | |
151 { | |
152 E T1u, T1v, T3E, T7; | |
153 T3E = T2J + T2I; | |
154 T2K = T2I - T2J; | |
155 TQ = TM - TP; | |
156 T1u = TM + TP; | |
157 T3n = T34 - T31; | |
158 T35 = T31 + T34; | |
159 TV = TR - TU; | |
160 T1v = TR + TU; | |
161 T3R = T3D - T3E; | |
162 T3F = T3D + T3E; | |
163 T2H = T3 - T6; | |
164 T7 = T3 + T6; | |
165 T1w = T1u - T1v; | |
166 T20 = T1u + T1v; | |
167 T3M = T7 - Te; | |
168 Tf = T7 + Te; | |
169 } | |
170 } | |
171 } | |
172 { | |
173 E T1e, Ti, T2N, T1c, T19, Tl, T2O, T1h, Tq, T13, Tp, T2S, T11, Tr, T14; | |
174 E T15; | |
175 { | |
176 E Tj, Tk, T1f, T1g; | |
177 { | |
178 E Tg, Th, T1a, T1b; | |
179 Tg = Rp[WS(rs, 1)]; | |
180 T3h = T2H - T2K; | |
181 T2L = T2H + T2K; | |
182 T2e = TQ - TV; | |
183 TW = TQ + TV; | |
184 Th = Rm[WS(rs, 6)]; | |
185 T1a = Ip[WS(rs, 1)]; | |
186 T1b = Im[WS(rs, 6)]; | |
187 Tj = Rp[WS(rs, 5)]; | |
188 T1e = Tg - Th; | |
189 Ti = Tg + Th; | |
190 T2N = T1a - T1b; | |
191 T1c = T1a + T1b; | |
192 Tk = Rm[WS(rs, 2)]; | |
193 T1f = Ip[WS(rs, 5)]; | |
194 T1g = Im[WS(rs, 2)]; | |
195 } | |
196 { | |
197 E Tn, To, TZ, T10; | |
198 Tn = Rm[0]; | |
199 T19 = Tj - Tk; | |
200 Tl = Tj + Tk; | |
201 T2O = T1f - T1g; | |
202 T1h = T1f + T1g; | |
203 To = Rp[WS(rs, 7)]; | |
204 TZ = Ip[WS(rs, 7)]; | |
205 T10 = Im[0]; | |
206 Tq = Rp[WS(rs, 3)]; | |
207 T13 = Tn - To; | |
208 Tp = Tn + To; | |
209 T2S = TZ - T10; | |
210 T11 = TZ + T10; | |
211 Tr = Rm[WS(rs, 4)]; | |
212 T14 = Ip[WS(rs, 3)]; | |
213 T15 = Im[WS(rs, 4)]; | |
214 } | |
215 } | |
216 { | |
217 E TY, T16, Tm, Tt; | |
218 { | |
219 E T2P, T3G, Ts, T2M, T3H, T2U, T2T, T2R; | |
220 T2P = T2N - T2O; | |
221 T3G = T2N + T2O; | |
222 TY = Tq - Tr; | |
223 Ts = Tq + Tr; | |
224 T2T = T14 - T15; | |
225 T16 = T14 + T15; | |
226 T2M = Ti - Tl; | |
227 Tm = Ti + Tl; | |
228 T3H = T2S + T2T; | |
229 T2U = T2S - T2T; | |
230 Tt = Tp + Ts; | |
231 T2R = Tp - Ts; | |
232 T2Q = T2M - T2P; | |
233 T36 = T2M + T2P; | |
234 T3I = T3G + T3H; | |
235 T3N = T3H - T3G; | |
236 T2V = T2R + T2U; | |
237 T37 = T2U - T2R; | |
238 } | |
239 { | |
240 E T25, T26, T22, T23, T12, T17; | |
241 T12 = TY - T11; | |
242 T25 = TY + T11; | |
243 T26 = T13 + T16; | |
244 T17 = T13 - T16; | |
245 T22 = T1c - T19; | |
246 T1d = T19 + T1c; | |
247 Tu = Tm + Tt; | |
248 T3S = Tm - Tt; | |
249 T18 = FNMS(KP414213562, T17, T12); | |
250 T1z = FMA(KP414213562, T12, T17); | |
251 T1i = T1e - T1h; | |
252 T23 = T1e + T1h; | |
253 T24 = FNMS(KP414213562, T23, T22); | |
254 T2g = FMA(KP414213562, T22, T23); | |
255 T27 = FNMS(KP414213562, T26, T25); | |
256 T2h = FMA(KP414213562, T25, T26); | |
257 } | |
258 } | |
259 } | |
260 } | |
261 { | |
262 E T1j, T1y, T3V, T3X, T3W, T38, T3i, T3o, T2W, T3K, T3B, T3A; | |
263 Rp[0] = Tf + Tu; | |
264 T3A = Tf - Tu; | |
265 T1j = FMA(KP414213562, T1i, T1d); | |
266 T1y = FNMS(KP414213562, T1d, T1i); | |
267 T3K = T3C * T3A; | |
268 T3B = T3z * T3A; | |
269 { | |
270 E T3O, T3T, T3J, T3P, T3U; | |
271 T3O = T3M - T3N; | |
272 T3V = T3M + T3N; | |
273 T3X = T3S + T3R; | |
274 T3T = T3R - T3S; | |
275 Rm[0] = T3F + T3I; | |
276 T3J = T3F - T3I; | |
277 T3P = T3L * T3O; | |
278 T3U = T3L * T3T; | |
279 T3W = TA * T3V; | |
280 Rp[WS(rs, 4)] = FNMS(T3C, T3J, T3B); | |
281 Rm[WS(rs, 4)] = FMA(T3z, T3J, T3K); | |
282 Rp[WS(rs, 6)] = FNMS(T3Q, T3T, T3P); | |
283 Rm[WS(rs, 6)] = FMA(T3Q, T3O, T3U); | |
284 T38 = T36 + T37; | |
285 T3i = T37 - T36; | |
286 T3o = T2Q - T2V; | |
287 T2W = T2Q + T2V; | |
288 } | |
289 { | |
290 E T2q, T21, T28, T2w, T2v, T2f, T2i, T2r; | |
291 { | |
292 E T2Y, T3a, T3c, T3d, T39, T3e, T3b, T2X, T3Y; | |
293 Rp[WS(rs, 2)] = FNMS(TE, T3X, T3W); | |
294 T3Y = TA * T3X; | |
295 { | |
296 E T3t, T3j, T3x, T3p; | |
297 T3t = FMA(KP707106781, T3i, T3h); | |
298 T3j = FNMS(KP707106781, T3i, T3h); | |
299 T3x = FMA(KP707106781, T3o, T3n); | |
300 T3p = FNMS(KP707106781, T3o, T3n); | |
301 Rm[WS(rs, 2)] = FMA(TE, T3V, T3Y); | |
302 { | |
303 E T3u, T3k, T3y, T3q; | |
304 T3u = T3s * T3t; | |
305 T3k = T3g * T3j; | |
306 T3y = T3s * T3x; | |
307 T3q = T3g * T3p; | |
308 Rp[WS(rs, 3)] = FNMS(T3w, T3x, T3u); | |
309 Rp[WS(rs, 7)] = FNMS(T3m, T3p, T3k); | |
310 Rm[WS(rs, 3)] = FMA(T3w, T3t, T3y); | |
311 Rm[WS(rs, 7)] = FMA(T3m, T3j, T3q); | |
312 T3b = FMA(KP707106781, T2W, T2L); | |
313 T2X = FNMS(KP707106781, T2W, T2L); | |
314 } | |
315 } | |
316 T2Y = T2G * T2X; | |
317 T3a = T30 * T2X; | |
318 T3c = T1V * T3b; | |
319 T3d = FMA(KP707106781, T38, T35); | |
320 T39 = FNMS(KP707106781, T38, T35); | |
321 T3e = T1X * T3b; | |
322 T2q = FMA(KP707106781, T20, T1Z); | |
323 T21 = FNMS(KP707106781, T20, T1Z); | |
324 Rp[WS(rs, 1)] = FNMS(T1X, T3d, T3c); | |
325 Rm[WS(rs, 5)] = FMA(T2G, T39, T3a); | |
326 Rp[WS(rs, 5)] = FNMS(T30, T39, T2Y); | |
327 Rm[WS(rs, 1)] = FMA(T1V, T3d, T3e); | |
328 T28 = T24 + T27; | |
329 T2w = T27 - T24; | |
330 T2v = FNMS(KP707106781, T2e, T2d); | |
331 T2f = FMA(KP707106781, T2e, T2d); | |
332 T2i = T2g - T2h; | |
333 T2r = T2g + T2h; | |
334 } | |
335 { | |
336 E TX, T1k, T1x, T1A; | |
337 T1J = FMA(KP707106781, TW, TL); | |
338 TX = FNMS(KP707106781, TW, TL); | |
339 { | |
340 E T2l, T29, T2n, T2j; | |
341 T2l = FNMS(KP923879532, T28, T21); | |
342 T29 = FMA(KP923879532, T28, T21); | |
343 T2n = FMA(KP923879532, T2i, T2f); | |
344 T2j = FNMS(KP923879532, T2i, T2f); | |
345 { | |
346 E T2o, T2m, T2k, T2a; | |
347 T2o = Tz * T2l; | |
348 T2m = Tw * T2l; | |
349 T2k = T2c * T29; | |
350 T2a = T1Y * T29; | |
351 Im[WS(rs, 1)] = FMA(Tw, T2n, T2o); | |
352 Ip[WS(rs, 1)] = FNMS(Tz, T2n, T2m); | |
353 Im[WS(rs, 5)] = FMA(T1Y, T2j, T2k); | |
354 Ip[WS(rs, 5)] = FNMS(T2c, T2j, T2a); | |
355 T1k = T18 - T1j; | |
356 T1O = T1j + T18; | |
357 } | |
358 } | |
359 T1N = FMA(KP707106781, T1w, T1t); | |
360 T1x = FNMS(KP707106781, T1w, T1t); | |
361 T1A = T1y - T1z; | |
362 T1K = T1y + T1z; | |
363 { | |
364 E T1E, T1l, T1H, T1B; | |
365 T1E = FMA(KP923879532, T1k, TX); | |
366 T1l = FNMS(KP923879532, T1k, TX); | |
367 T1H = FMA(KP923879532, T1A, T1x); | |
368 T1B = FNMS(KP923879532, T1A, T1x); | |
369 { | |
370 E T1I, T1F, T1C, T1m; | |
371 T1I = T1G * T1E; | |
372 T1F = T1D * T1E; | |
373 T1C = T1o * T1l; | |
374 T1m = TG * T1l; | |
375 Im[WS(rs, 2)] = FMA(T1D, T1H, T1I); | |
376 Ip[WS(rs, 2)] = FNMS(T1G, T1H, T1F); | |
377 Im[WS(rs, 6)] = FMA(TG, T1B, T1C); | |
378 Ip[WS(rs, 6)] = FNMS(T1o, T1B, T1m); | |
379 } | |
380 } | |
381 { | |
382 E T2A, T2s, T2D, T2x; | |
383 T2A = FMA(KP923879532, T2r, T2q); | |
384 T2s = FNMS(KP923879532, T2r, T2q); | |
385 T2D = FNMS(KP923879532, T2w, T2v); | |
386 T2x = FMA(KP923879532, T2w, T2v); | |
387 { | |
388 E T2B, T2t, T2E, T2y; | |
389 T2B = T2z * T2A; | |
390 T2t = T2p * T2s; | |
391 T2E = T2z * T2D; | |
392 T2y = T2p * T2x; | |
393 Ip[WS(rs, 7)] = FNMS(T2C, T2D, T2B); | |
394 Ip[WS(rs, 3)] = FNMS(T2u, T2x, T2t); | |
395 Im[WS(rs, 7)] = FMA(T2C, T2A, T2E); | |
396 Im[WS(rs, 3)] = FMA(T2u, T2s, T2y); | |
397 } | |
398 } | |
399 } | |
400 } | |
401 } | |
402 } | |
403 } | |
404 { | |
405 E T1L, T1R, T1P, T1T; | |
406 T1L = FNMS(KP923879532, T1K, T1J); | |
407 T1R = FMA(KP923879532, T1K, T1J); | |
408 T1P = FNMS(KP923879532, T1O, T1N); | |
409 T1T = FMA(KP923879532, T1O, T1N); | |
410 { | |
411 E T1S, T1M, T1U, T1Q; | |
412 T1S = Tv * T1R; | |
413 T1M = TB * T1L; | |
414 T1U = Tv * T1T; | |
415 T1Q = TB * T1P; | |
416 Ip[0] = FNMS(Ty, T1T, T1S); | |
417 Ip[WS(rs, 4)] = FNMS(TF, T1P, T1M); | |
418 Im[0] = FMA(Ty, T1R, T1U); | |
419 Im[WS(rs, 4)] = FMA(TF, T1L, T1Q); | |
420 } | |
421 } | |
422 } | |
423 } | |
424 } | |
425 | |
426 static const tw_instr twinstr[] = { | |
427 {TW_CEXP, 1, 1}, | |
428 {TW_CEXP, 1, 3}, | |
429 {TW_CEXP, 1, 9}, | |
430 {TW_CEXP, 1, 15}, | |
431 {TW_NEXT, 1, 0} | |
432 }; | |
433 | |
434 static const hc2c_desc desc = { 16, "hc2cb2_16", twinstr, &GENUS, {104, 42, 92, 0} }; | |
435 | |
436 void X(codelet_hc2cb2_16) (planner *p) { | |
437 X(khc2c_register) (p, hc2cb2_16, &desc, HC2C_VIA_RDFT); | |
438 } | |
439 #else /* HAVE_FMA */ | |
440 | |
441 /* Generated by: ../../../genfft/gen_hc2c.native -compact -variables 4 -pipeline-latency 4 -sign 1 -twiddle-log3 -precompute-twiddles -n 16 -dif -name hc2cb2_16 -include hc2cb.h */ | |
442 | |
443 /* | |
444 * This function contains 196 FP additions, 108 FP multiplications, | |
445 * (or, 156 additions, 68 multiplications, 40 fused multiply/add), | |
446 * 80 stack variables, 3 constants, and 64 memory accesses | |
447 */ | |
448 #include "hc2cb.h" | |
449 | |
450 static void hc2cb2_16(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) | |
451 { | |
452 DK(KP382683432, +0.382683432365089771728459984030398866761344562); | |
453 DK(KP923879532, +0.923879532511286756128183189396788286822416626); | |
454 DK(KP707106781, +0.707106781186547524400844362104849039284835938); | |
455 { | |
456 INT m; | |
457 for (m = mb, W = W + ((mb - 1) * 8); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 8, MAKE_VOLATILE_STRIDE(64, rs)) { | |
458 E Tv, Ty, T1l, T1n, T1p, T1t, T27, T25, Tz, Tw, TB, T21, T1P, T1H, T1X; | |
459 E T17, T1L, T1N, T1v, T1w, T1x, T1B, T2F, T2T, T2b, T2R, T3j, T3x, T35, T3t; | |
460 { | |
461 E TA, T1J, T15, T1G, Tx, T1K, T16, T1F; | |
462 { | |
463 E T1m, T1s, T1o, T1r; | |
464 Tv = W[0]; | |
465 Ty = W[1]; | |
466 T1l = W[2]; | |
467 T1n = W[3]; | |
468 T1m = Tv * T1l; | |
469 T1s = Ty * T1l; | |
470 T1o = Ty * T1n; | |
471 T1r = Tv * T1n; | |
472 T1p = T1m + T1o; | |
473 T1t = T1r - T1s; | |
474 T27 = T1r + T1s; | |
475 T25 = T1m - T1o; | |
476 Tz = W[5]; | |
477 TA = Ty * Tz; | |
478 T1J = T1l * Tz; | |
479 T15 = Tv * Tz; | |
480 T1G = T1n * Tz; | |
481 Tw = W[4]; | |
482 Tx = Tv * Tw; | |
483 T1K = T1n * Tw; | |
484 T16 = Ty * Tw; | |
485 T1F = T1l * Tw; | |
486 } | |
487 TB = Tx - TA; | |
488 T21 = T1J + T1K; | |
489 T1P = T15 - T16; | |
490 T1H = T1F + T1G; | |
491 T1X = T1F - T1G; | |
492 T17 = T15 + T16; | |
493 T1L = T1J - T1K; | |
494 T1N = Tx + TA; | |
495 T1v = W[6]; | |
496 T1w = W[7]; | |
497 T1x = FMA(Tv, T1v, Ty * T1w); | |
498 T1B = FNMS(Ty, T1v, Tv * T1w); | |
499 { | |
500 E T2D, T2E, T29, T2a; | |
501 T2D = T25 * Tz; | |
502 T2E = T27 * Tw; | |
503 T2F = T2D + T2E; | |
504 T2T = T2D - T2E; | |
505 T29 = T25 * Tw; | |
506 T2a = T27 * Tz; | |
507 T2b = T29 - T2a; | |
508 T2R = T29 + T2a; | |
509 } | |
510 { | |
511 E T3h, T3i, T33, T34; | |
512 T3h = T1p * Tz; | |
513 T3i = T1t * Tw; | |
514 T3j = T3h + T3i; | |
515 T3x = T3h - T3i; | |
516 T33 = T1p * Tw; | |
517 T34 = T1t * Tz; | |
518 T35 = T33 - T34; | |
519 T3t = T33 + T34; | |
520 } | |
521 } | |
522 { | |
523 E T7, T36, T3k, TC, T1f, T2e, T2I, T1Q, Te, TJ, T1R, T18, T2L, T37, T2l; | |
524 E T3l, Tm, T1T, TT, T1h, T2A, T2N, T3b, T3n, Tt, T1U, T12, T1i, T2t, T2O; | |
525 E T3e, T3o; | |
526 { | |
527 E T3, T2c, T1b, T2H, T6, T2G, T1e, T2d; | |
528 { | |
529 E T1, T2, T19, T1a; | |
530 T1 = Rp[0]; | |
531 T2 = Rm[WS(rs, 7)]; | |
532 T3 = T1 + T2; | |
533 T2c = T1 - T2; | |
534 T19 = Ip[0]; | |
535 T1a = Im[WS(rs, 7)]; | |
536 T1b = T19 - T1a; | |
537 T2H = T19 + T1a; | |
538 } | |
539 { | |
540 E T4, T5, T1c, T1d; | |
541 T4 = Rp[WS(rs, 4)]; | |
542 T5 = Rm[WS(rs, 3)]; | |
543 T6 = T4 + T5; | |
544 T2G = T4 - T5; | |
545 T1c = Ip[WS(rs, 4)]; | |
546 T1d = Im[WS(rs, 3)]; | |
547 T1e = T1c - T1d; | |
548 T2d = T1c + T1d; | |
549 } | |
550 T7 = T3 + T6; | |
551 T36 = T2c + T2d; | |
552 T3k = T2H - T2G; | |
553 TC = T3 - T6; | |
554 T1f = T1b - T1e; | |
555 T2e = T2c - T2d; | |
556 T2I = T2G + T2H; | |
557 T1Q = T1b + T1e; | |
558 } | |
559 { | |
560 E Ta, T2f, TI, T2g, Td, T2i, TF, T2j; | |
561 { | |
562 E T8, T9, TG, TH; | |
563 T8 = Rp[WS(rs, 2)]; | |
564 T9 = Rm[WS(rs, 5)]; | |
565 Ta = T8 + T9; | |
566 T2f = T8 - T9; | |
567 TG = Ip[WS(rs, 2)]; | |
568 TH = Im[WS(rs, 5)]; | |
569 TI = TG - TH; | |
570 T2g = TG + TH; | |
571 } | |
572 { | |
573 E Tb, Tc, TD, TE; | |
574 Tb = Rm[WS(rs, 1)]; | |
575 Tc = Rp[WS(rs, 6)]; | |
576 Td = Tb + Tc; | |
577 T2i = Tb - Tc; | |
578 TD = Ip[WS(rs, 6)]; | |
579 TE = Im[WS(rs, 1)]; | |
580 TF = TD - TE; | |
581 T2j = TD + TE; | |
582 } | |
583 Te = Ta + Td; | |
584 TJ = TF - TI; | |
585 T1R = TI + TF; | |
586 T18 = Ta - Td; | |
587 { | |
588 E T2J, T2K, T2h, T2k; | |
589 T2J = T2f + T2g; | |
590 T2K = T2i + T2j; | |
591 T2L = KP707106781 * (T2J - T2K); | |
592 T37 = KP707106781 * (T2J + T2K); | |
593 T2h = T2f - T2g; | |
594 T2k = T2i - T2j; | |
595 T2l = KP707106781 * (T2h + T2k); | |
596 T3l = KP707106781 * (T2h - T2k); | |
597 } | |
598 } | |
599 { | |
600 E Ti, T2x, TO, T2v, Tl, T2u, TR, T2y, TL, TS; | |
601 { | |
602 E Tg, Th, TM, TN; | |
603 Tg = Rp[WS(rs, 1)]; | |
604 Th = Rm[WS(rs, 6)]; | |
605 Ti = Tg + Th; | |
606 T2x = Tg - Th; | |
607 TM = Ip[WS(rs, 1)]; | |
608 TN = Im[WS(rs, 6)]; | |
609 TO = TM - TN; | |
610 T2v = TM + TN; | |
611 } | |
612 { | |
613 E Tj, Tk, TP, TQ; | |
614 Tj = Rp[WS(rs, 5)]; | |
615 Tk = Rm[WS(rs, 2)]; | |
616 Tl = Tj + Tk; | |
617 T2u = Tj - Tk; | |
618 TP = Ip[WS(rs, 5)]; | |
619 TQ = Im[WS(rs, 2)]; | |
620 TR = TP - TQ; | |
621 T2y = TP + TQ; | |
622 } | |
623 Tm = Ti + Tl; | |
624 T1T = TO + TR; | |
625 TL = Ti - Tl; | |
626 TS = TO - TR; | |
627 TT = TL - TS; | |
628 T1h = TL + TS; | |
629 { | |
630 E T2w, T2z, T39, T3a; | |
631 T2w = T2u + T2v; | |
632 T2z = T2x - T2y; | |
633 T2A = FMA(KP923879532, T2w, KP382683432 * T2z); | |
634 T2N = FNMS(KP382683432, T2w, KP923879532 * T2z); | |
635 T39 = T2x + T2y; | |
636 T3a = T2v - T2u; | |
637 T3b = FNMS(KP923879532, T3a, KP382683432 * T39); | |
638 T3n = FMA(KP382683432, T3a, KP923879532 * T39); | |
639 } | |
640 } | |
641 { | |
642 E Tp, T2q, TX, T2o, Ts, T2n, T10, T2r, TU, T11; | |
643 { | |
644 E Tn, To, TV, TW; | |
645 Tn = Rm[0]; | |
646 To = Rp[WS(rs, 7)]; | |
647 Tp = Tn + To; | |
648 T2q = Tn - To; | |
649 TV = Ip[WS(rs, 7)]; | |
650 TW = Im[0]; | |
651 TX = TV - TW; | |
652 T2o = TV + TW; | |
653 } | |
654 { | |
655 E Tq, Tr, TY, TZ; | |
656 Tq = Rp[WS(rs, 3)]; | |
657 Tr = Rm[WS(rs, 4)]; | |
658 Ts = Tq + Tr; | |
659 T2n = Tq - Tr; | |
660 TY = Ip[WS(rs, 3)]; | |
661 TZ = Im[WS(rs, 4)]; | |
662 T10 = TY - TZ; | |
663 T2r = TY + TZ; | |
664 } | |
665 Tt = Tp + Ts; | |
666 T1U = TX + T10; | |
667 TU = Tp - Ts; | |
668 T11 = TX - T10; | |
669 T12 = TU + T11; | |
670 T1i = T11 - TU; | |
671 { | |
672 E T2p, T2s, T3c, T3d; | |
673 T2p = T2n - T2o; | |
674 T2s = T2q - T2r; | |
675 T2t = FNMS(KP382683432, T2s, KP923879532 * T2p); | |
676 T2O = FMA(KP382683432, T2p, KP923879532 * T2s); | |
677 T3c = T2q + T2r; | |
678 T3d = T2n + T2o; | |
679 T3e = FNMS(KP923879532, T3d, KP382683432 * T3c); | |
680 T3o = FMA(KP382683432, T3d, KP923879532 * T3c); | |
681 } | |
682 } | |
683 { | |
684 E Tf, Tu, T1O, T1S, T1V, T1W; | |
685 Tf = T7 + Te; | |
686 Tu = Tm + Tt; | |
687 T1O = Tf - Tu; | |
688 T1S = T1Q + T1R; | |
689 T1V = T1T + T1U; | |
690 T1W = T1S - T1V; | |
691 Rp[0] = Tf + Tu; | |
692 Rm[0] = T1S + T1V; | |
693 Rp[WS(rs, 4)] = FNMS(T1P, T1W, T1N * T1O); | |
694 Rm[WS(rs, 4)] = FMA(T1P, T1O, T1N * T1W); | |
695 } | |
696 { | |
697 E T3g, T3r, T3q, T3s; | |
698 { | |
699 E T38, T3f, T3m, T3p; | |
700 T38 = T36 - T37; | |
701 T3f = T3b + T3e; | |
702 T3g = T38 - T3f; | |
703 T3r = T38 + T3f; | |
704 T3m = T3k + T3l; | |
705 T3p = T3n - T3o; | |
706 T3q = T3m - T3p; | |
707 T3s = T3m + T3p; | |
708 } | |
709 Ip[WS(rs, 5)] = FNMS(T3j, T3q, T35 * T3g); | |
710 Im[WS(rs, 5)] = FMA(T3j, T3g, T35 * T3q); | |
711 Ip[WS(rs, 1)] = FNMS(T1n, T3s, T1l * T3r); | |
712 Im[WS(rs, 1)] = FMA(T1n, T3r, T1l * T3s); | |
713 } | |
714 { | |
715 E T3w, T3B, T3A, T3C; | |
716 { | |
717 E T3u, T3v, T3y, T3z; | |
718 T3u = T36 + T37; | |
719 T3v = T3n + T3o; | |
720 T3w = T3u - T3v; | |
721 T3B = T3u + T3v; | |
722 T3y = T3k - T3l; | |
723 T3z = T3b - T3e; | |
724 T3A = T3y + T3z; | |
725 T3C = T3y - T3z; | |
726 } | |
727 Ip[WS(rs, 3)] = FNMS(T3x, T3A, T3t * T3w); | |
728 Im[WS(rs, 3)] = FMA(T3t, T3A, T3x * T3w); | |
729 Ip[WS(rs, 7)] = FNMS(T1w, T3C, T1v * T3B); | |
730 Im[WS(rs, 7)] = FMA(T1v, T3C, T1w * T3B); | |
731 } | |
732 { | |
733 E T14, T1q, T1k, T1u; | |
734 { | |
735 E TK, T13, T1g, T1j; | |
736 TK = TC + TJ; | |
737 T13 = KP707106781 * (TT + T12); | |
738 T14 = TK - T13; | |
739 T1q = TK + T13; | |
740 T1g = T18 + T1f; | |
741 T1j = KP707106781 * (T1h + T1i); | |
742 T1k = T1g - T1j; | |
743 T1u = T1g + T1j; | |
744 } | |
745 Rp[WS(rs, 5)] = FNMS(T17, T1k, TB * T14); | |
746 Rm[WS(rs, 5)] = FMA(T17, T14, TB * T1k); | |
747 Rp[WS(rs, 1)] = FNMS(T1t, T1u, T1p * T1q); | |
748 Rm[WS(rs, 1)] = FMA(T1t, T1q, T1p * T1u); | |
749 } | |
750 { | |
751 E T1A, T1I, T1E, T1M; | |
752 { | |
753 E T1y, T1z, T1C, T1D; | |
754 T1y = TC - TJ; | |
755 T1z = KP707106781 * (T1i - T1h); | |
756 T1A = T1y - T1z; | |
757 T1I = T1y + T1z; | |
758 T1C = T1f - T18; | |
759 T1D = KP707106781 * (TT - T12); | |
760 T1E = T1C - T1D; | |
761 T1M = T1C + T1D; | |
762 } | |
763 Rp[WS(rs, 7)] = FNMS(T1B, T1E, T1x * T1A); | |
764 Rm[WS(rs, 7)] = FMA(T1x, T1E, T1B * T1A); | |
765 Rp[WS(rs, 3)] = FNMS(T1L, T1M, T1H * T1I); | |
766 Rm[WS(rs, 3)] = FMA(T1H, T1M, T1L * T1I); | |
767 } | |
768 { | |
769 E T2C, T2S, T2Q, T2U; | |
770 { | |
771 E T2m, T2B, T2M, T2P; | |
772 T2m = T2e - T2l; | |
773 T2B = T2t - T2A; | |
774 T2C = T2m - T2B; | |
775 T2S = T2m + T2B; | |
776 T2M = T2I - T2L; | |
777 T2P = T2N - T2O; | |
778 T2Q = T2M - T2P; | |
779 T2U = T2M + T2P; | |
780 } | |
781 Ip[WS(rs, 6)] = FNMS(T2F, T2Q, T2b * T2C); | |
782 Im[WS(rs, 6)] = FMA(T2F, T2C, T2b * T2Q); | |
783 Ip[WS(rs, 2)] = FNMS(T2T, T2U, T2R * T2S); | |
784 Im[WS(rs, 2)] = FMA(T2T, T2S, T2R * T2U); | |
785 } | |
786 { | |
787 E T2X, T31, T30, T32; | |
788 { | |
789 E T2V, T2W, T2Y, T2Z; | |
790 T2V = T2e + T2l; | |
791 T2W = T2N + T2O; | |
792 T2X = T2V - T2W; | |
793 T31 = T2V + T2W; | |
794 T2Y = T2I + T2L; | |
795 T2Z = T2A + T2t; | |
796 T30 = T2Y - T2Z; | |
797 T32 = T2Y + T2Z; | |
798 } | |
799 Ip[WS(rs, 4)] = FNMS(Tz, T30, Tw * T2X); | |
800 Im[WS(rs, 4)] = FMA(Tw, T30, Tz * T2X); | |
801 Ip[0] = FNMS(Ty, T32, Tv * T31); | |
802 Im[0] = FMA(Tv, T32, Ty * T31); | |
803 } | |
804 { | |
805 E T20, T26, T24, T28; | |
806 { | |
807 E T1Y, T1Z, T22, T23; | |
808 T1Y = T7 - Te; | |
809 T1Z = T1U - T1T; | |
810 T20 = T1Y - T1Z; | |
811 T26 = T1Y + T1Z; | |
812 T22 = T1Q - T1R; | |
813 T23 = Tm - Tt; | |
814 T24 = T22 - T23; | |
815 T28 = T23 + T22; | |
816 } | |
817 Rp[WS(rs, 6)] = FNMS(T21, T24, T1X * T20); | |
818 Rm[WS(rs, 6)] = FMA(T1X, T24, T21 * T20); | |
819 Rp[WS(rs, 2)] = FNMS(T27, T28, T25 * T26); | |
820 Rm[WS(rs, 2)] = FMA(T25, T28, T27 * T26); | |
821 } | |
822 } | |
823 } | |
824 } | |
825 } | |
826 | |
827 static const tw_instr twinstr[] = { | |
828 {TW_CEXP, 1, 1}, | |
829 {TW_CEXP, 1, 3}, | |
830 {TW_CEXP, 1, 9}, | |
831 {TW_CEXP, 1, 15}, | |
832 {TW_NEXT, 1, 0} | |
833 }; | |
834 | |
835 static const hc2c_desc desc = { 16, "hc2cb2_16", twinstr, &GENUS, {156, 68, 40, 0} }; | |
836 | |
837 void X(codelet_hc2cb2_16) (planner *p) { | |
838 X(khc2c_register) (p, hc2cb2_16, &desc, HC2C_VIA_RDFT); | |
839 } | |
840 #endif /* HAVE_FMA */ |