Mercurial > hg > js-dsp-test
comparison fft/fftw/fftw-3.3.4/rdft/scalar/r2cb/hb_9.c @ 19:26056e866c29
Add FFTW to comparison table
author | Chris Cannam |
---|---|
date | Tue, 06 Oct 2015 13:08:39 +0100 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
18:8db794ca3e0b | 19:26056e866c29 |
---|---|
1 /* | |
2 * Copyright (c) 2003, 2007-14 Matteo Frigo | |
3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology | |
4 * | |
5 * This program is free software; you can redistribute it and/or modify | |
6 * it under the terms of the GNU General Public License as published by | |
7 * the Free Software Foundation; either version 2 of the License, or | |
8 * (at your option) any later version. | |
9 * | |
10 * This program is distributed in the hope that it will be useful, | |
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
13 * GNU General Public License for more details. | |
14 * | |
15 * You should have received a copy of the GNU General Public License | |
16 * along with this program; if not, write to the Free Software | |
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA | |
18 * | |
19 */ | |
20 | |
21 /* This file was automatically generated --- DO NOT EDIT */ | |
22 /* Generated on Tue Mar 4 13:50:26 EST 2014 */ | |
23 | |
24 #include "codelet-rdft.h" | |
25 | |
26 #ifdef HAVE_FMA | |
27 | |
28 /* Generated by: ../../../genfft/gen_hc2hc.native -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -sign 1 -n 9 -dif -name hb_9 -include hb.h */ | |
29 | |
30 /* | |
31 * This function contains 96 FP additions, 88 FP multiplications, | |
32 * (or, 24 additions, 16 multiplications, 72 fused multiply/add), | |
33 * 69 stack variables, 10 constants, and 36 memory accesses | |
34 */ | |
35 #include "hb.h" | |
36 | |
37 static void hb_9(R *cr, R *ci, const R *W, stride rs, INT mb, INT me, INT ms) | |
38 { | |
39 DK(KP954188894, +0.954188894138671133499268364187245676532219158); | |
40 DK(KP852868531, +0.852868531952443209628250963940074071936020296); | |
41 DK(KP492403876, +0.492403876506104029683371512294761506835321626); | |
42 DK(KP984807753, +0.984807753012208059366743024589523013670643252); | |
43 DK(KP777861913, +0.777861913430206160028177977318626690410586096); | |
44 DK(KP839099631, +0.839099631177280011763127298123181364687434283); | |
45 DK(KP363970234, +0.363970234266202361351047882776834043890471784); | |
46 DK(KP176326980, +0.176326980708464973471090386868618986121633062); | |
47 DK(KP866025403, +0.866025403784438646763723170752936183471402627); | |
48 DK(KP500000000, +0.500000000000000000000000000000000000000000000); | |
49 { | |
50 INT m; | |
51 for (m = mb, W = W + ((mb - 1) * 16); m < me; m = m + 1, cr = cr + ms, ci = ci - ms, W = W + 16, MAKE_VOLATILE_STRIDE(18, rs)) { | |
52 E T1X, T1S, T1U, T1P, T1Y, T1T; | |
53 { | |
54 E T5, Tl, TQ, T1y, T1b, T1J, Tg, TE, TW, T13, T10, Tz, Tw, TT, T1K; | |
55 E T1B, T1L, T1E; | |
56 { | |
57 E T1, Th, T2, T3, Ti, Tj; | |
58 T1 = cr[0]; | |
59 Th = ci[WS(rs, 8)]; | |
60 T2 = cr[WS(rs, 3)]; | |
61 T3 = ci[WS(rs, 2)]; | |
62 Ti = ci[WS(rs, 5)]; | |
63 Tj = cr[WS(rs, 6)]; | |
64 { | |
65 E T12, Tb, TZ, TY, Ta, Tq, T11, Tr, Ts, TS, Te, Tt; | |
66 { | |
67 E T6, Tm, Tn, To, T9, Tc, Td, Tp; | |
68 { | |
69 E T7, T8, T1a, T4; | |
70 T6 = cr[WS(rs, 1)]; | |
71 T1a = T2 - T3; | |
72 T4 = T2 + T3; | |
73 { | |
74 E TP, Tk, TO, T19; | |
75 TP = Ti + Tj; | |
76 Tk = Ti - Tj; | |
77 T7 = cr[WS(rs, 4)]; | |
78 T5 = T1 + T4; | |
79 TO = FNMS(KP500000000, T4, T1); | |
80 Tl = Th + Tk; | |
81 T19 = FNMS(KP500000000, Tk, Th); | |
82 TQ = FNMS(KP866025403, TP, TO); | |
83 T1y = FMA(KP866025403, TP, TO); | |
84 T1b = FMA(KP866025403, T1a, T19); | |
85 T1J = FNMS(KP866025403, T1a, T19); | |
86 T8 = ci[WS(rs, 1)]; | |
87 } | |
88 Tm = ci[WS(rs, 7)]; | |
89 Tn = ci[WS(rs, 4)]; | |
90 To = cr[WS(rs, 7)]; | |
91 T9 = T7 + T8; | |
92 T12 = T7 - T8; | |
93 } | |
94 Tb = cr[WS(rs, 2)]; | |
95 TZ = Tn + To; | |
96 Tp = Tn - To; | |
97 TY = FNMS(KP500000000, T9, T6); | |
98 Ta = T6 + T9; | |
99 Tc = ci[WS(rs, 3)]; | |
100 Td = ci[0]; | |
101 Tq = Tm + Tp; | |
102 T11 = FMS(KP500000000, Tp, Tm); | |
103 Tr = ci[WS(rs, 6)]; | |
104 Ts = cr[WS(rs, 5)]; | |
105 TS = Td - Tc; | |
106 Te = Tc + Td; | |
107 Tt = cr[WS(rs, 8)]; | |
108 } | |
109 { | |
110 E T1C, Tv, TR, T1D, T1z, T1A; | |
111 { | |
112 E TU, Tu, TV, Tf; | |
113 TU = FNMS(KP500000000, Te, Tb); | |
114 Tf = Tb + Te; | |
115 Tu = Ts + Tt; | |
116 TV = Ts - Tt; | |
117 Tg = Ta + Tf; | |
118 TE = Ta - Tf; | |
119 TW = FMA(KP866025403, TV, TU); | |
120 T1C = FNMS(KP866025403, TV, TU); | |
121 Tv = Tr - Tu; | |
122 TR = FMA(KP500000000, Tu, Tr); | |
123 } | |
124 T1z = FMA(KP866025403, T12, T11); | |
125 T13 = FNMS(KP866025403, T12, T11); | |
126 T10 = FNMS(KP866025403, TZ, TY); | |
127 T1A = FMA(KP866025403, TZ, TY); | |
128 Tz = Tv - Tq; | |
129 Tw = Tq + Tv; | |
130 T1D = FMA(KP866025403, TS, TR); | |
131 TT = FNMS(KP866025403, TS, TR); | |
132 T1K = FNMS(KP176326980, T1z, T1A); | |
133 T1B = FMA(KP176326980, T1A, T1z); | |
134 T1L = FNMS(KP363970234, T1C, T1D); | |
135 T1E = FMA(KP363970234, T1D, T1C); | |
136 } | |
137 } | |
138 } | |
139 { | |
140 E T1d, T14, T1c, TX; | |
141 cr[0] = T5 + Tg; | |
142 T1d = FNMS(KP839099631, T10, T13); | |
143 T14 = FMA(KP839099631, T13, T10); | |
144 T1c = FMA(KP176326980, TT, TW); | |
145 TX = FNMS(KP176326980, TW, TT); | |
146 ci[0] = Tl + Tw; | |
147 { | |
148 E TL, TK, TJ, Ty, TD; | |
149 Ty = FNMS(KP500000000, Tg, T5); | |
150 TD = FNMS(KP500000000, Tw, Tl); | |
151 { | |
152 E Tx, TC, TA, TI, TF; | |
153 Tx = W[10]; | |
154 TC = W[11]; | |
155 TA = FNMS(KP866025403, Tz, Ty); | |
156 TI = FMA(KP866025403, Tz, Ty); | |
157 TF = FNMS(KP866025403, TE, TD); | |
158 TL = FMA(KP866025403, TE, TD); | |
159 { | |
160 E TH, TB, TG, TM; | |
161 TH = W[4]; | |
162 TB = Tx * TA; | |
163 TK = W[5]; | |
164 TG = Tx * TF; | |
165 TM = TH * TL; | |
166 TJ = TH * TI; | |
167 cr[WS(rs, 6)] = FNMS(TC, TF, TB); | |
168 ci[WS(rs, 6)] = FMA(TC, TA, TG); | |
169 ci[WS(rs, 3)] = FMA(TK, TI, TM); | |
170 } | |
171 } | |
172 cr[WS(rs, 3)] = FNMS(TK, TL, TJ); | |
173 { | |
174 E T1k, T1p, T1l, T1q, T1m; | |
175 { | |
176 E T1e, T1j, T15, T1o; | |
177 T1e = FNMS(KP777861913, T1d, T1c); | |
178 T1j = FMA(KP777861913, T1d, T1c); | |
179 T15 = FNMS(KP777861913, T14, TX); | |
180 T1o = FMA(KP777861913, T14, TX); | |
181 { | |
182 E TN, T16, T1f, T17, T1s, T1v, T18, T1i, T1n, T1r, T1u; | |
183 TN = W[0]; | |
184 T16 = FNMS(KP984807753, T15, TQ); | |
185 T1i = FMA(KP492403876, T15, TQ); | |
186 T1f = FMA(KP984807753, T1e, T1b); | |
187 T1n = FNMS(KP492403876, T1e, T1b); | |
188 T17 = TN * T16; | |
189 T1s = FMA(KP852868531, T1j, T1i); | |
190 T1k = FNMS(KP852868531, T1j, T1i); | |
191 T1v = FMA(KP852868531, T1o, T1n); | |
192 T1p = FNMS(KP852868531, T1o, T1n); | |
193 T18 = W[1]; | |
194 T1r = W[6]; | |
195 T1u = W[7]; | |
196 { | |
197 E T1h, T1g, T1w, T1t; | |
198 T1h = W[12]; | |
199 cr[WS(rs, 1)] = FNMS(T18, T1f, T17); | |
200 T1g = T18 * T16; | |
201 T1w = T1r * T1v; | |
202 T1t = T1r * T1s; | |
203 T1l = T1h * T1k; | |
204 ci[WS(rs, 1)] = FMA(TN, T1f, T1g); | |
205 ci[WS(rs, 4)] = FMA(T1u, T1s, T1w); | |
206 cr[WS(rs, 4)] = FNMS(T1u, T1v, T1t); | |
207 T1q = T1h * T1p; | |
208 } | |
209 T1m = W[13]; | |
210 } | |
211 } | |
212 { | |
213 E T1F, T1W, T1R, T1V, T1N, T1M, T1x, T1I; | |
214 T1F = FNMS(KP954188894, T1E, T1B); | |
215 T1W = FMA(KP954188894, T1E, T1B); | |
216 T1M = FNMS(KP954188894, T1L, T1K); | |
217 T1R = FMA(KP954188894, T1L, T1K); | |
218 ci[WS(rs, 7)] = FMA(T1m, T1k, T1q); | |
219 cr[WS(rs, 7)] = FNMS(T1m, T1p, T1l); | |
220 T1V = FNMS(KP492403876, T1M, T1J); | |
221 T1N = FMA(KP984807753, T1M, T1J); | |
222 T1x = W[2]; | |
223 T1I = W[3]; | |
224 { | |
225 E T23, T22, T20, T1Z, T24, T21; | |
226 T1X = FMA(KP852868531, T1W, T1V); | |
227 T23 = FNMS(KP852868531, T1W, T1V); | |
228 { | |
229 E T1G, T1Q, T1O, T1H; | |
230 T1G = FMA(KP984807753, T1F, T1y); | |
231 T1Q = FNMS(KP492403876, T1F, T1y); | |
232 T1O = T1x * T1N; | |
233 T22 = W[15]; | |
234 T1H = T1x * T1G; | |
235 T20 = FMA(KP852868531, T1R, T1Q); | |
236 T1S = FNMS(KP852868531, T1R, T1Q); | |
237 ci[WS(rs, 2)] = FMA(T1I, T1G, T1O); | |
238 cr[WS(rs, 2)] = FNMS(T1I, T1N, T1H); | |
239 T1Z = W[14]; | |
240 T24 = T22 * T20; | |
241 } | |
242 T1U = W[9]; | |
243 T21 = T1Z * T20; | |
244 ci[WS(rs, 8)] = FMA(T1Z, T23, T24); | |
245 T1P = W[8]; | |
246 T1Y = T1U * T1S; | |
247 cr[WS(rs, 8)] = FNMS(T22, T23, T21); | |
248 } | |
249 } | |
250 } | |
251 } | |
252 } | |
253 } | |
254 T1T = T1P * T1S; | |
255 ci[WS(rs, 5)] = FMA(T1P, T1X, T1Y); | |
256 cr[WS(rs, 5)] = FNMS(T1U, T1X, T1T); | |
257 } | |
258 } | |
259 } | |
260 | |
261 static const tw_instr twinstr[] = { | |
262 {TW_FULL, 1, 9}, | |
263 {TW_NEXT, 1, 0} | |
264 }; | |
265 | |
266 static const hc2hc_desc desc = { 9, "hb_9", twinstr, &GENUS, {24, 16, 72, 0} }; | |
267 | |
268 void X(codelet_hb_9) (planner *p) { | |
269 X(khc2hc_register) (p, hb_9, &desc); | |
270 } | |
271 #else /* HAVE_FMA */ | |
272 | |
273 /* Generated by: ../../../genfft/gen_hc2hc.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 9 -dif -name hb_9 -include hb.h */ | |
274 | |
275 /* | |
276 * This function contains 96 FP additions, 72 FP multiplications, | |
277 * (or, 60 additions, 36 multiplications, 36 fused multiply/add), | |
278 * 53 stack variables, 8 constants, and 36 memory accesses | |
279 */ | |
280 #include "hb.h" | |
281 | |
282 static void hb_9(R *cr, R *ci, const R *W, stride rs, INT mb, INT me, INT ms) | |
283 { | |
284 DK(KP984807753, +0.984807753012208059366743024589523013670643252); | |
285 DK(KP173648177, +0.173648177666930348851716626769314796000375677); | |
286 DK(KP342020143, +0.342020143325668733044099614682259580763083368); | |
287 DK(KP939692620, +0.939692620785908384054109277324731469936208134); | |
288 DK(KP642787609, +0.642787609686539326322643409907263432907559884); | |
289 DK(KP766044443, +0.766044443118978035202392650555416673935832457); | |
290 DK(KP500000000, +0.500000000000000000000000000000000000000000000); | |
291 DK(KP866025403, +0.866025403784438646763723170752936183471402627); | |
292 { | |
293 INT m; | |
294 for (m = mb, W = W + ((mb - 1) * 16); m < me; m = m + 1, cr = cr + ms, ci = ci - ms, W = W + 16, MAKE_VOLATILE_STRIDE(18, rs)) { | |
295 E T5, Tl, TM, T1o, T16, T1y, Ta, Tf, Tg, Tq, Tv, Tw, TT, T17, T1u; | |
296 E T1A, T1r, T1z, T10, T18; | |
297 { | |
298 E T1, Th, T4, T14, Tk, TL, TK, T15; | |
299 T1 = cr[0]; | |
300 Th = ci[WS(rs, 8)]; | |
301 { | |
302 E T2, T3, Ti, Tj; | |
303 T2 = cr[WS(rs, 3)]; | |
304 T3 = ci[WS(rs, 2)]; | |
305 T4 = T2 + T3; | |
306 T14 = KP866025403 * (T2 - T3); | |
307 Ti = ci[WS(rs, 5)]; | |
308 Tj = cr[WS(rs, 6)]; | |
309 Tk = Ti - Tj; | |
310 TL = KP866025403 * (Ti + Tj); | |
311 } | |
312 T5 = T1 + T4; | |
313 Tl = Th + Tk; | |
314 TK = FNMS(KP500000000, T4, T1); | |
315 TM = TK - TL; | |
316 T1o = TK + TL; | |
317 T15 = FNMS(KP500000000, Tk, Th); | |
318 T16 = T14 + T15; | |
319 T1y = T15 - T14; | |
320 } | |
321 { | |
322 E T6, T9, TN, TQ, Tm, Tp, TO, TR, Tb, Te, TU, TX, Tr, Tu, TV; | |
323 E TY; | |
324 { | |
325 E T7, T8, Tn, To; | |
326 T6 = cr[WS(rs, 1)]; | |
327 T7 = cr[WS(rs, 4)]; | |
328 T8 = ci[WS(rs, 1)]; | |
329 T9 = T7 + T8; | |
330 TN = FNMS(KP500000000, T9, T6); | |
331 TQ = KP866025403 * (T7 - T8); | |
332 Tm = ci[WS(rs, 7)]; | |
333 Tn = ci[WS(rs, 4)]; | |
334 To = cr[WS(rs, 7)]; | |
335 Tp = Tn - To; | |
336 TO = KP866025403 * (Tn + To); | |
337 TR = FNMS(KP500000000, Tp, Tm); | |
338 } | |
339 { | |
340 E Tc, Td, Ts, Tt; | |
341 Tb = cr[WS(rs, 2)]; | |
342 Tc = ci[WS(rs, 3)]; | |
343 Td = ci[0]; | |
344 Te = Tc + Td; | |
345 TU = FNMS(KP500000000, Te, Tb); | |
346 TX = KP866025403 * (Tc - Td); | |
347 Tr = ci[WS(rs, 6)]; | |
348 Ts = cr[WS(rs, 5)]; | |
349 Tt = cr[WS(rs, 8)]; | |
350 Tu = Ts + Tt; | |
351 TV = KP866025403 * (Ts - Tt); | |
352 TY = FMA(KP500000000, Tu, Tr); | |
353 } | |
354 { | |
355 E TP, TS, T1s, T1t; | |
356 Ta = T6 + T9; | |
357 Tf = Tb + Te; | |
358 Tg = Ta + Tf; | |
359 Tq = Tm + Tp; | |
360 Tv = Tr - Tu; | |
361 Tw = Tq + Tv; | |
362 TP = TN - TO; | |
363 TS = TQ + TR; | |
364 TT = FNMS(KP642787609, TS, KP766044443 * TP); | |
365 T17 = FMA(KP766044443, TS, KP642787609 * TP); | |
366 T1s = TU - TV; | |
367 T1t = TY - TX; | |
368 T1u = FMA(KP939692620, T1s, KP342020143 * T1t); | |
369 T1A = FNMS(KP939692620, T1t, KP342020143 * T1s); | |
370 { | |
371 E T1p, T1q, TW, TZ; | |
372 T1p = TN + TO; | |
373 T1q = TR - TQ; | |
374 T1r = FNMS(KP984807753, T1q, KP173648177 * T1p); | |
375 T1z = FMA(KP173648177, T1q, KP984807753 * T1p); | |
376 TW = TU + TV; | |
377 TZ = TX + TY; | |
378 T10 = FNMS(KP984807753, TZ, KP173648177 * TW); | |
379 T18 = FMA(KP984807753, TW, KP173648177 * TZ); | |
380 } | |
381 } | |
382 } | |
383 cr[0] = T5 + Tg; | |
384 ci[0] = Tl + Tw; | |
385 { | |
386 E TA, TG, TE, TI; | |
387 { | |
388 E Ty, Tz, TC, TD; | |
389 Ty = FNMS(KP500000000, Tg, T5); | |
390 Tz = KP866025403 * (Tv - Tq); | |
391 TA = Ty - Tz; | |
392 TG = Ty + Tz; | |
393 TC = FNMS(KP500000000, Tw, Tl); | |
394 TD = KP866025403 * (Ta - Tf); | |
395 TE = TC - TD; | |
396 TI = TD + TC; | |
397 } | |
398 { | |
399 E Tx, TB, TF, TH; | |
400 Tx = W[10]; | |
401 TB = W[11]; | |
402 cr[WS(rs, 6)] = FNMS(TB, TE, Tx * TA); | |
403 ci[WS(rs, 6)] = FMA(Tx, TE, TB * TA); | |
404 TF = W[4]; | |
405 TH = W[5]; | |
406 cr[WS(rs, 3)] = FNMS(TH, TI, TF * TG); | |
407 ci[WS(rs, 3)] = FMA(TF, TI, TH * TG); | |
408 } | |
409 } | |
410 { | |
411 E T1d, T1h, T12, T1c, T1a, T1g, T11, T19, TJ, T13; | |
412 T1d = KP866025403 * (T18 - T17); | |
413 T1h = KP866025403 * (TT - T10); | |
414 T11 = TT + T10; | |
415 T12 = TM + T11; | |
416 T1c = FNMS(KP500000000, T11, TM); | |
417 T19 = T17 + T18; | |
418 T1a = T16 + T19; | |
419 T1g = FNMS(KP500000000, T19, T16); | |
420 TJ = W[0]; | |
421 T13 = W[1]; | |
422 cr[WS(rs, 1)] = FNMS(T13, T1a, TJ * T12); | |
423 ci[WS(rs, 1)] = FMA(T13, T12, TJ * T1a); | |
424 { | |
425 E T1k, T1m, T1j, T1l; | |
426 T1k = T1c + T1d; | |
427 T1m = T1h + T1g; | |
428 T1j = W[6]; | |
429 T1l = W[7]; | |
430 cr[WS(rs, 4)] = FNMS(T1l, T1m, T1j * T1k); | |
431 ci[WS(rs, 4)] = FMA(T1j, T1m, T1l * T1k); | |
432 } | |
433 { | |
434 E T1e, T1i, T1b, T1f; | |
435 T1e = T1c - T1d; | |
436 T1i = T1g - T1h; | |
437 T1b = W[12]; | |
438 T1f = W[13]; | |
439 cr[WS(rs, 7)] = FNMS(T1f, T1i, T1b * T1e); | |
440 ci[WS(rs, 7)] = FMA(T1b, T1i, T1f * T1e); | |
441 } | |
442 } | |
443 { | |
444 E T1F, T1J, T1w, T1E, T1C, T1I, T1v, T1B, T1n, T1x; | |
445 T1F = KP866025403 * (T1A - T1z); | |
446 T1J = KP866025403 * (T1r + T1u); | |
447 T1v = T1r - T1u; | |
448 T1w = T1o + T1v; | |
449 T1E = FNMS(KP500000000, T1v, T1o); | |
450 T1B = T1z + T1A; | |
451 T1C = T1y + T1B; | |
452 T1I = FNMS(KP500000000, T1B, T1y); | |
453 T1n = W[2]; | |
454 T1x = W[3]; | |
455 cr[WS(rs, 2)] = FNMS(T1x, T1C, T1n * T1w); | |
456 ci[WS(rs, 2)] = FMA(T1n, T1C, T1x * T1w); | |
457 { | |
458 E T1M, T1O, T1L, T1N; | |
459 T1M = T1F + T1E; | |
460 T1O = T1I + T1J; | |
461 T1L = W[8]; | |
462 T1N = W[9]; | |
463 cr[WS(rs, 5)] = FNMS(T1N, T1O, T1L * T1M); | |
464 ci[WS(rs, 5)] = FMA(T1N, T1M, T1L * T1O); | |
465 } | |
466 { | |
467 E T1G, T1K, T1D, T1H; | |
468 T1G = T1E - T1F; | |
469 T1K = T1I - T1J; | |
470 T1D = W[14]; | |
471 T1H = W[15]; | |
472 cr[WS(rs, 8)] = FNMS(T1H, T1K, T1D * T1G); | |
473 ci[WS(rs, 8)] = FMA(T1H, T1G, T1D * T1K); | |
474 } | |
475 } | |
476 } | |
477 } | |
478 } | |
479 | |
480 static const tw_instr twinstr[] = { | |
481 {TW_FULL, 1, 9}, | |
482 {TW_NEXT, 1, 0} | |
483 }; | |
484 | |
485 static const hc2hc_desc desc = { 9, "hb_9", twinstr, &GENUS, {60, 36, 36, 0} }; | |
486 | |
487 void X(codelet_hb_9) (planner *p) { | |
488 X(khc2hc_register) (p, hb_9, &desc); | |
489 } | |
490 #endif /* HAVE_FMA */ |