comparison fft/fftw/fftw-3.3.4/rdft/scalar/r2cb/hb_9.c @ 19:26056e866c29

Add FFTW to comparison table
author Chris Cannam
date Tue, 06 Oct 2015 13:08:39 +0100
parents
children
comparison
equal deleted inserted replaced
18:8db794ca3e0b 19:26056e866c29
1 /*
2 * Copyright (c) 2003, 2007-14 Matteo Frigo
3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
18 *
19 */
20
21 /* This file was automatically generated --- DO NOT EDIT */
22 /* Generated on Tue Mar 4 13:50:26 EST 2014 */
23
24 #include "codelet-rdft.h"
25
26 #ifdef HAVE_FMA
27
28 /* Generated by: ../../../genfft/gen_hc2hc.native -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -sign 1 -n 9 -dif -name hb_9 -include hb.h */
29
30 /*
31 * This function contains 96 FP additions, 88 FP multiplications,
32 * (or, 24 additions, 16 multiplications, 72 fused multiply/add),
33 * 69 stack variables, 10 constants, and 36 memory accesses
34 */
35 #include "hb.h"
36
37 static void hb_9(R *cr, R *ci, const R *W, stride rs, INT mb, INT me, INT ms)
38 {
39 DK(KP954188894, +0.954188894138671133499268364187245676532219158);
40 DK(KP852868531, +0.852868531952443209628250963940074071936020296);
41 DK(KP492403876, +0.492403876506104029683371512294761506835321626);
42 DK(KP984807753, +0.984807753012208059366743024589523013670643252);
43 DK(KP777861913, +0.777861913430206160028177977318626690410586096);
44 DK(KP839099631, +0.839099631177280011763127298123181364687434283);
45 DK(KP363970234, +0.363970234266202361351047882776834043890471784);
46 DK(KP176326980, +0.176326980708464973471090386868618986121633062);
47 DK(KP866025403, +0.866025403784438646763723170752936183471402627);
48 DK(KP500000000, +0.500000000000000000000000000000000000000000000);
49 {
50 INT m;
51 for (m = mb, W = W + ((mb - 1) * 16); m < me; m = m + 1, cr = cr + ms, ci = ci - ms, W = W + 16, MAKE_VOLATILE_STRIDE(18, rs)) {
52 E T1X, T1S, T1U, T1P, T1Y, T1T;
53 {
54 E T5, Tl, TQ, T1y, T1b, T1J, Tg, TE, TW, T13, T10, Tz, Tw, TT, T1K;
55 E T1B, T1L, T1E;
56 {
57 E T1, Th, T2, T3, Ti, Tj;
58 T1 = cr[0];
59 Th = ci[WS(rs, 8)];
60 T2 = cr[WS(rs, 3)];
61 T3 = ci[WS(rs, 2)];
62 Ti = ci[WS(rs, 5)];
63 Tj = cr[WS(rs, 6)];
64 {
65 E T12, Tb, TZ, TY, Ta, Tq, T11, Tr, Ts, TS, Te, Tt;
66 {
67 E T6, Tm, Tn, To, T9, Tc, Td, Tp;
68 {
69 E T7, T8, T1a, T4;
70 T6 = cr[WS(rs, 1)];
71 T1a = T2 - T3;
72 T4 = T2 + T3;
73 {
74 E TP, Tk, TO, T19;
75 TP = Ti + Tj;
76 Tk = Ti - Tj;
77 T7 = cr[WS(rs, 4)];
78 T5 = T1 + T4;
79 TO = FNMS(KP500000000, T4, T1);
80 Tl = Th + Tk;
81 T19 = FNMS(KP500000000, Tk, Th);
82 TQ = FNMS(KP866025403, TP, TO);
83 T1y = FMA(KP866025403, TP, TO);
84 T1b = FMA(KP866025403, T1a, T19);
85 T1J = FNMS(KP866025403, T1a, T19);
86 T8 = ci[WS(rs, 1)];
87 }
88 Tm = ci[WS(rs, 7)];
89 Tn = ci[WS(rs, 4)];
90 To = cr[WS(rs, 7)];
91 T9 = T7 + T8;
92 T12 = T7 - T8;
93 }
94 Tb = cr[WS(rs, 2)];
95 TZ = Tn + To;
96 Tp = Tn - To;
97 TY = FNMS(KP500000000, T9, T6);
98 Ta = T6 + T9;
99 Tc = ci[WS(rs, 3)];
100 Td = ci[0];
101 Tq = Tm + Tp;
102 T11 = FMS(KP500000000, Tp, Tm);
103 Tr = ci[WS(rs, 6)];
104 Ts = cr[WS(rs, 5)];
105 TS = Td - Tc;
106 Te = Tc + Td;
107 Tt = cr[WS(rs, 8)];
108 }
109 {
110 E T1C, Tv, TR, T1D, T1z, T1A;
111 {
112 E TU, Tu, TV, Tf;
113 TU = FNMS(KP500000000, Te, Tb);
114 Tf = Tb + Te;
115 Tu = Ts + Tt;
116 TV = Ts - Tt;
117 Tg = Ta + Tf;
118 TE = Ta - Tf;
119 TW = FMA(KP866025403, TV, TU);
120 T1C = FNMS(KP866025403, TV, TU);
121 Tv = Tr - Tu;
122 TR = FMA(KP500000000, Tu, Tr);
123 }
124 T1z = FMA(KP866025403, T12, T11);
125 T13 = FNMS(KP866025403, T12, T11);
126 T10 = FNMS(KP866025403, TZ, TY);
127 T1A = FMA(KP866025403, TZ, TY);
128 Tz = Tv - Tq;
129 Tw = Tq + Tv;
130 T1D = FMA(KP866025403, TS, TR);
131 TT = FNMS(KP866025403, TS, TR);
132 T1K = FNMS(KP176326980, T1z, T1A);
133 T1B = FMA(KP176326980, T1A, T1z);
134 T1L = FNMS(KP363970234, T1C, T1D);
135 T1E = FMA(KP363970234, T1D, T1C);
136 }
137 }
138 }
139 {
140 E T1d, T14, T1c, TX;
141 cr[0] = T5 + Tg;
142 T1d = FNMS(KP839099631, T10, T13);
143 T14 = FMA(KP839099631, T13, T10);
144 T1c = FMA(KP176326980, TT, TW);
145 TX = FNMS(KP176326980, TW, TT);
146 ci[0] = Tl + Tw;
147 {
148 E TL, TK, TJ, Ty, TD;
149 Ty = FNMS(KP500000000, Tg, T5);
150 TD = FNMS(KP500000000, Tw, Tl);
151 {
152 E Tx, TC, TA, TI, TF;
153 Tx = W[10];
154 TC = W[11];
155 TA = FNMS(KP866025403, Tz, Ty);
156 TI = FMA(KP866025403, Tz, Ty);
157 TF = FNMS(KP866025403, TE, TD);
158 TL = FMA(KP866025403, TE, TD);
159 {
160 E TH, TB, TG, TM;
161 TH = W[4];
162 TB = Tx * TA;
163 TK = W[5];
164 TG = Tx * TF;
165 TM = TH * TL;
166 TJ = TH * TI;
167 cr[WS(rs, 6)] = FNMS(TC, TF, TB);
168 ci[WS(rs, 6)] = FMA(TC, TA, TG);
169 ci[WS(rs, 3)] = FMA(TK, TI, TM);
170 }
171 }
172 cr[WS(rs, 3)] = FNMS(TK, TL, TJ);
173 {
174 E T1k, T1p, T1l, T1q, T1m;
175 {
176 E T1e, T1j, T15, T1o;
177 T1e = FNMS(KP777861913, T1d, T1c);
178 T1j = FMA(KP777861913, T1d, T1c);
179 T15 = FNMS(KP777861913, T14, TX);
180 T1o = FMA(KP777861913, T14, TX);
181 {
182 E TN, T16, T1f, T17, T1s, T1v, T18, T1i, T1n, T1r, T1u;
183 TN = W[0];
184 T16 = FNMS(KP984807753, T15, TQ);
185 T1i = FMA(KP492403876, T15, TQ);
186 T1f = FMA(KP984807753, T1e, T1b);
187 T1n = FNMS(KP492403876, T1e, T1b);
188 T17 = TN * T16;
189 T1s = FMA(KP852868531, T1j, T1i);
190 T1k = FNMS(KP852868531, T1j, T1i);
191 T1v = FMA(KP852868531, T1o, T1n);
192 T1p = FNMS(KP852868531, T1o, T1n);
193 T18 = W[1];
194 T1r = W[6];
195 T1u = W[7];
196 {
197 E T1h, T1g, T1w, T1t;
198 T1h = W[12];
199 cr[WS(rs, 1)] = FNMS(T18, T1f, T17);
200 T1g = T18 * T16;
201 T1w = T1r * T1v;
202 T1t = T1r * T1s;
203 T1l = T1h * T1k;
204 ci[WS(rs, 1)] = FMA(TN, T1f, T1g);
205 ci[WS(rs, 4)] = FMA(T1u, T1s, T1w);
206 cr[WS(rs, 4)] = FNMS(T1u, T1v, T1t);
207 T1q = T1h * T1p;
208 }
209 T1m = W[13];
210 }
211 }
212 {
213 E T1F, T1W, T1R, T1V, T1N, T1M, T1x, T1I;
214 T1F = FNMS(KP954188894, T1E, T1B);
215 T1W = FMA(KP954188894, T1E, T1B);
216 T1M = FNMS(KP954188894, T1L, T1K);
217 T1R = FMA(KP954188894, T1L, T1K);
218 ci[WS(rs, 7)] = FMA(T1m, T1k, T1q);
219 cr[WS(rs, 7)] = FNMS(T1m, T1p, T1l);
220 T1V = FNMS(KP492403876, T1M, T1J);
221 T1N = FMA(KP984807753, T1M, T1J);
222 T1x = W[2];
223 T1I = W[3];
224 {
225 E T23, T22, T20, T1Z, T24, T21;
226 T1X = FMA(KP852868531, T1W, T1V);
227 T23 = FNMS(KP852868531, T1W, T1V);
228 {
229 E T1G, T1Q, T1O, T1H;
230 T1G = FMA(KP984807753, T1F, T1y);
231 T1Q = FNMS(KP492403876, T1F, T1y);
232 T1O = T1x * T1N;
233 T22 = W[15];
234 T1H = T1x * T1G;
235 T20 = FMA(KP852868531, T1R, T1Q);
236 T1S = FNMS(KP852868531, T1R, T1Q);
237 ci[WS(rs, 2)] = FMA(T1I, T1G, T1O);
238 cr[WS(rs, 2)] = FNMS(T1I, T1N, T1H);
239 T1Z = W[14];
240 T24 = T22 * T20;
241 }
242 T1U = W[9];
243 T21 = T1Z * T20;
244 ci[WS(rs, 8)] = FMA(T1Z, T23, T24);
245 T1P = W[8];
246 T1Y = T1U * T1S;
247 cr[WS(rs, 8)] = FNMS(T22, T23, T21);
248 }
249 }
250 }
251 }
252 }
253 }
254 T1T = T1P * T1S;
255 ci[WS(rs, 5)] = FMA(T1P, T1X, T1Y);
256 cr[WS(rs, 5)] = FNMS(T1U, T1X, T1T);
257 }
258 }
259 }
260
261 static const tw_instr twinstr[] = {
262 {TW_FULL, 1, 9},
263 {TW_NEXT, 1, 0}
264 };
265
266 static const hc2hc_desc desc = { 9, "hb_9", twinstr, &GENUS, {24, 16, 72, 0} };
267
268 void X(codelet_hb_9) (planner *p) {
269 X(khc2hc_register) (p, hb_9, &desc);
270 }
271 #else /* HAVE_FMA */
272
273 /* Generated by: ../../../genfft/gen_hc2hc.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 9 -dif -name hb_9 -include hb.h */
274
275 /*
276 * This function contains 96 FP additions, 72 FP multiplications,
277 * (or, 60 additions, 36 multiplications, 36 fused multiply/add),
278 * 53 stack variables, 8 constants, and 36 memory accesses
279 */
280 #include "hb.h"
281
282 static void hb_9(R *cr, R *ci, const R *W, stride rs, INT mb, INT me, INT ms)
283 {
284 DK(KP984807753, +0.984807753012208059366743024589523013670643252);
285 DK(KP173648177, +0.173648177666930348851716626769314796000375677);
286 DK(KP342020143, +0.342020143325668733044099614682259580763083368);
287 DK(KP939692620, +0.939692620785908384054109277324731469936208134);
288 DK(KP642787609, +0.642787609686539326322643409907263432907559884);
289 DK(KP766044443, +0.766044443118978035202392650555416673935832457);
290 DK(KP500000000, +0.500000000000000000000000000000000000000000000);
291 DK(KP866025403, +0.866025403784438646763723170752936183471402627);
292 {
293 INT m;
294 for (m = mb, W = W + ((mb - 1) * 16); m < me; m = m + 1, cr = cr + ms, ci = ci - ms, W = W + 16, MAKE_VOLATILE_STRIDE(18, rs)) {
295 E T5, Tl, TM, T1o, T16, T1y, Ta, Tf, Tg, Tq, Tv, Tw, TT, T17, T1u;
296 E T1A, T1r, T1z, T10, T18;
297 {
298 E T1, Th, T4, T14, Tk, TL, TK, T15;
299 T1 = cr[0];
300 Th = ci[WS(rs, 8)];
301 {
302 E T2, T3, Ti, Tj;
303 T2 = cr[WS(rs, 3)];
304 T3 = ci[WS(rs, 2)];
305 T4 = T2 + T3;
306 T14 = KP866025403 * (T2 - T3);
307 Ti = ci[WS(rs, 5)];
308 Tj = cr[WS(rs, 6)];
309 Tk = Ti - Tj;
310 TL = KP866025403 * (Ti + Tj);
311 }
312 T5 = T1 + T4;
313 Tl = Th + Tk;
314 TK = FNMS(KP500000000, T4, T1);
315 TM = TK - TL;
316 T1o = TK + TL;
317 T15 = FNMS(KP500000000, Tk, Th);
318 T16 = T14 + T15;
319 T1y = T15 - T14;
320 }
321 {
322 E T6, T9, TN, TQ, Tm, Tp, TO, TR, Tb, Te, TU, TX, Tr, Tu, TV;
323 E TY;
324 {
325 E T7, T8, Tn, To;
326 T6 = cr[WS(rs, 1)];
327 T7 = cr[WS(rs, 4)];
328 T8 = ci[WS(rs, 1)];
329 T9 = T7 + T8;
330 TN = FNMS(KP500000000, T9, T6);
331 TQ = KP866025403 * (T7 - T8);
332 Tm = ci[WS(rs, 7)];
333 Tn = ci[WS(rs, 4)];
334 To = cr[WS(rs, 7)];
335 Tp = Tn - To;
336 TO = KP866025403 * (Tn + To);
337 TR = FNMS(KP500000000, Tp, Tm);
338 }
339 {
340 E Tc, Td, Ts, Tt;
341 Tb = cr[WS(rs, 2)];
342 Tc = ci[WS(rs, 3)];
343 Td = ci[0];
344 Te = Tc + Td;
345 TU = FNMS(KP500000000, Te, Tb);
346 TX = KP866025403 * (Tc - Td);
347 Tr = ci[WS(rs, 6)];
348 Ts = cr[WS(rs, 5)];
349 Tt = cr[WS(rs, 8)];
350 Tu = Ts + Tt;
351 TV = KP866025403 * (Ts - Tt);
352 TY = FMA(KP500000000, Tu, Tr);
353 }
354 {
355 E TP, TS, T1s, T1t;
356 Ta = T6 + T9;
357 Tf = Tb + Te;
358 Tg = Ta + Tf;
359 Tq = Tm + Tp;
360 Tv = Tr - Tu;
361 Tw = Tq + Tv;
362 TP = TN - TO;
363 TS = TQ + TR;
364 TT = FNMS(KP642787609, TS, KP766044443 * TP);
365 T17 = FMA(KP766044443, TS, KP642787609 * TP);
366 T1s = TU - TV;
367 T1t = TY - TX;
368 T1u = FMA(KP939692620, T1s, KP342020143 * T1t);
369 T1A = FNMS(KP939692620, T1t, KP342020143 * T1s);
370 {
371 E T1p, T1q, TW, TZ;
372 T1p = TN + TO;
373 T1q = TR - TQ;
374 T1r = FNMS(KP984807753, T1q, KP173648177 * T1p);
375 T1z = FMA(KP173648177, T1q, KP984807753 * T1p);
376 TW = TU + TV;
377 TZ = TX + TY;
378 T10 = FNMS(KP984807753, TZ, KP173648177 * TW);
379 T18 = FMA(KP984807753, TW, KP173648177 * TZ);
380 }
381 }
382 }
383 cr[0] = T5 + Tg;
384 ci[0] = Tl + Tw;
385 {
386 E TA, TG, TE, TI;
387 {
388 E Ty, Tz, TC, TD;
389 Ty = FNMS(KP500000000, Tg, T5);
390 Tz = KP866025403 * (Tv - Tq);
391 TA = Ty - Tz;
392 TG = Ty + Tz;
393 TC = FNMS(KP500000000, Tw, Tl);
394 TD = KP866025403 * (Ta - Tf);
395 TE = TC - TD;
396 TI = TD + TC;
397 }
398 {
399 E Tx, TB, TF, TH;
400 Tx = W[10];
401 TB = W[11];
402 cr[WS(rs, 6)] = FNMS(TB, TE, Tx * TA);
403 ci[WS(rs, 6)] = FMA(Tx, TE, TB * TA);
404 TF = W[4];
405 TH = W[5];
406 cr[WS(rs, 3)] = FNMS(TH, TI, TF * TG);
407 ci[WS(rs, 3)] = FMA(TF, TI, TH * TG);
408 }
409 }
410 {
411 E T1d, T1h, T12, T1c, T1a, T1g, T11, T19, TJ, T13;
412 T1d = KP866025403 * (T18 - T17);
413 T1h = KP866025403 * (TT - T10);
414 T11 = TT + T10;
415 T12 = TM + T11;
416 T1c = FNMS(KP500000000, T11, TM);
417 T19 = T17 + T18;
418 T1a = T16 + T19;
419 T1g = FNMS(KP500000000, T19, T16);
420 TJ = W[0];
421 T13 = W[1];
422 cr[WS(rs, 1)] = FNMS(T13, T1a, TJ * T12);
423 ci[WS(rs, 1)] = FMA(T13, T12, TJ * T1a);
424 {
425 E T1k, T1m, T1j, T1l;
426 T1k = T1c + T1d;
427 T1m = T1h + T1g;
428 T1j = W[6];
429 T1l = W[7];
430 cr[WS(rs, 4)] = FNMS(T1l, T1m, T1j * T1k);
431 ci[WS(rs, 4)] = FMA(T1j, T1m, T1l * T1k);
432 }
433 {
434 E T1e, T1i, T1b, T1f;
435 T1e = T1c - T1d;
436 T1i = T1g - T1h;
437 T1b = W[12];
438 T1f = W[13];
439 cr[WS(rs, 7)] = FNMS(T1f, T1i, T1b * T1e);
440 ci[WS(rs, 7)] = FMA(T1b, T1i, T1f * T1e);
441 }
442 }
443 {
444 E T1F, T1J, T1w, T1E, T1C, T1I, T1v, T1B, T1n, T1x;
445 T1F = KP866025403 * (T1A - T1z);
446 T1J = KP866025403 * (T1r + T1u);
447 T1v = T1r - T1u;
448 T1w = T1o + T1v;
449 T1E = FNMS(KP500000000, T1v, T1o);
450 T1B = T1z + T1A;
451 T1C = T1y + T1B;
452 T1I = FNMS(KP500000000, T1B, T1y);
453 T1n = W[2];
454 T1x = W[3];
455 cr[WS(rs, 2)] = FNMS(T1x, T1C, T1n * T1w);
456 ci[WS(rs, 2)] = FMA(T1n, T1C, T1x * T1w);
457 {
458 E T1M, T1O, T1L, T1N;
459 T1M = T1F + T1E;
460 T1O = T1I + T1J;
461 T1L = W[8];
462 T1N = W[9];
463 cr[WS(rs, 5)] = FNMS(T1N, T1O, T1L * T1M);
464 ci[WS(rs, 5)] = FMA(T1N, T1M, T1L * T1O);
465 }
466 {
467 E T1G, T1K, T1D, T1H;
468 T1G = T1E - T1F;
469 T1K = T1I - T1J;
470 T1D = W[14];
471 T1H = W[15];
472 cr[WS(rs, 8)] = FNMS(T1H, T1K, T1D * T1G);
473 ci[WS(rs, 8)] = FMA(T1H, T1G, T1D * T1K);
474 }
475 }
476 }
477 }
478 }
479
480 static const tw_instr twinstr[] = {
481 {TW_FULL, 1, 9},
482 {TW_NEXT, 1, 0}
483 };
484
485 static const hc2hc_desc desc = { 9, "hb_9", twinstr, &GENUS, {60, 36, 36, 0} };
486
487 void X(codelet_hb_9) (planner *p) {
488 X(khc2hc_register) (p, hb_9, &desc);
489 }
490 #endif /* HAVE_FMA */