Mercurial > hg > js-dsp-test
comparison fft/fftw/fftw-3.3.4/rdft/scalar/r2cb/hb_7.c @ 19:26056e866c29
Add FFTW to comparison table
author | Chris Cannam |
---|---|
date | Tue, 06 Oct 2015 13:08:39 +0100 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
18:8db794ca3e0b | 19:26056e866c29 |
---|---|
1 /* | |
2 * Copyright (c) 2003, 2007-14 Matteo Frigo | |
3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology | |
4 * | |
5 * This program is free software; you can redistribute it and/or modify | |
6 * it under the terms of the GNU General Public License as published by | |
7 * the Free Software Foundation; either version 2 of the License, or | |
8 * (at your option) any later version. | |
9 * | |
10 * This program is distributed in the hope that it will be useful, | |
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
13 * GNU General Public License for more details. | |
14 * | |
15 * You should have received a copy of the GNU General Public License | |
16 * along with this program; if not, write to the Free Software | |
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA | |
18 * | |
19 */ | |
20 | |
21 /* This file was automatically generated --- DO NOT EDIT */ | |
22 /* Generated on Tue Mar 4 13:50:25 EST 2014 */ | |
23 | |
24 #include "codelet-rdft.h" | |
25 | |
26 #ifdef HAVE_FMA | |
27 | |
28 /* Generated by: ../../../genfft/gen_hc2hc.native -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -sign 1 -n 7 -dif -name hb_7 -include hb.h */ | |
29 | |
30 /* | |
31 * This function contains 72 FP additions, 66 FP multiplications, | |
32 * (or, 18 additions, 12 multiplications, 54 fused multiply/add), | |
33 * 67 stack variables, 6 constants, and 28 memory accesses | |
34 */ | |
35 #include "hb.h" | |
36 | |
37 static void hb_7(R *cr, R *ci, const R *W, stride rs, INT mb, INT me, INT ms) | |
38 { | |
39 DK(KP974927912, +0.974927912181823607018131682993931217232785801); | |
40 DK(KP900968867, +0.900968867902419126236102319507445051165919162); | |
41 DK(KP801937735, +0.801937735804838252472204639014890102331838324); | |
42 DK(KP692021471, +0.692021471630095869627814897002069140197260599); | |
43 DK(KP356895867, +0.356895867892209443894399510021300583399127187); | |
44 DK(KP554958132, +0.554958132087371191422194871006410481067288862); | |
45 { | |
46 INT m; | |
47 for (m = mb, W = W + ((mb - 1) * 12); m < me; m = m + 1, cr = cr + ms, ci = ci - ms, W = W + 12, MAKE_VOLATILE_STRIDE(14, rs)) { | |
48 E T1q, T1p, T1t, T1r, T1s, T1u; | |
49 { | |
50 E T1, T4, TC, T7, TB, Tt, TD, Ta, TA, T1l, TZ, T1b, Th, Tw, Td; | |
51 E TP, Ti, Tj, Tl, Tm, T8, T9, T1a; | |
52 T1 = cr[0]; | |
53 { | |
54 E T2, T3, T5, T6; | |
55 T2 = cr[WS(rs, 1)]; | |
56 T3 = ci[0]; | |
57 T5 = cr[WS(rs, 2)]; | |
58 T6 = ci[WS(rs, 1)]; | |
59 T8 = cr[WS(rs, 3)]; | |
60 T4 = T2 + T3; | |
61 TC = T2 - T3; | |
62 T7 = T5 + T6; | |
63 TB = T5 - T6; | |
64 T9 = ci[WS(rs, 2)]; | |
65 } | |
66 Tt = ci[WS(rs, 6)]; | |
67 TD = FNMS(KP554958132, TC, TB); | |
68 T1a = FNMS(KP356895867, T7, T4); | |
69 Ta = T8 + T9; | |
70 TA = T8 - T9; | |
71 { | |
72 E Tf, Tg, Tc, TO; | |
73 Tf = ci[WS(rs, 3)]; | |
74 Tg = cr[WS(rs, 4)]; | |
75 T1l = FMA(KP554958132, TA, TC); | |
76 TZ = FMA(KP554958132, TB, TA); | |
77 Tc = FNMS(KP356895867, Ta, T7); | |
78 TO = FNMS(KP356895867, T4, Ta); | |
79 T1b = FNMS(KP692021471, T1a, Ta); | |
80 Th = Tf + Tg; | |
81 Tw = Tf - Tg; | |
82 Td = FNMS(KP692021471, Tc, T4); | |
83 TP = FNMS(KP692021471, TO, T7); | |
84 } | |
85 Ti = ci[WS(rs, 4)]; | |
86 Tj = cr[WS(rs, 5)]; | |
87 Tl = ci[WS(rs, 5)]; | |
88 Tm = cr[WS(rs, 6)]; | |
89 { | |
90 E Ty, TS, TX, T1j, T1e, Tp, Tk, Tv; | |
91 cr[0] = T1 + T4 + T7 + Ta; | |
92 Tk = Ti + Tj; | |
93 Tv = Ti - Tj; | |
94 { | |
95 E Tn, Tu, Tx, TR; | |
96 Tn = Tl + Tm; | |
97 Tu = Tl - Tm; | |
98 Tx = FNMS(KP356895867, Tw, Tv); | |
99 TR = FMA(KP554958132, Tk, Th); | |
100 { | |
101 E TW, T1i, T1d, To; | |
102 TW = FNMS(KP356895867, Tu, Tw); | |
103 T1i = FNMS(KP356895867, Tv, Tu); | |
104 T1d = FMA(KP554958132, Th, Tn); | |
105 To = FNMS(KP554958132, Tn, Tk); | |
106 Ty = FNMS(KP692021471, Tx, Tu); | |
107 TS = FNMS(KP801937735, TR, Tn); | |
108 TX = FNMS(KP692021471, TW, Tv); | |
109 T1j = FNMS(KP692021471, T1i, Tw); | |
110 T1e = FMA(KP801937735, T1d, Tk); | |
111 Tp = FNMS(KP801937735, To, Th); | |
112 ci[0] = Tt + Tu + Tv + Tw; | |
113 } | |
114 } | |
115 { | |
116 E TL, TH, TK, TJ, TM, Te, Tz, TE; | |
117 Te = FNMS(KP900968867, Td, T1); | |
118 Tz = FNMS(KP900968867, Ty, Tt); | |
119 TE = FNMS(KP801937735, TD, TA); | |
120 { | |
121 E Tb, TI, Tq, TF, Ts, Tr, TG; | |
122 Tb = W[4]; | |
123 TI = FMA(KP974927912, Tp, Te); | |
124 Tq = FNMS(KP974927912, Tp, Te); | |
125 TL = FNMS(KP974927912, TE, Tz); | |
126 TF = FMA(KP974927912, TE, Tz); | |
127 Ts = W[5]; | |
128 Tr = Tb * Tq; | |
129 TH = W[6]; | |
130 TK = W[7]; | |
131 TG = Ts * Tq; | |
132 cr[WS(rs, 3)] = FNMS(Ts, TF, Tr); | |
133 TJ = TH * TI; | |
134 TM = TK * TI; | |
135 ci[WS(rs, 3)] = FMA(Tb, TF, TG); | |
136 } | |
137 { | |
138 E T14, T13, T17, T15, T16; | |
139 { | |
140 E TY, TT, T10, TQ; | |
141 TQ = FNMS(KP900968867, TP, T1); | |
142 cr[WS(rs, 4)] = FNMS(TK, TL, TJ); | |
143 ci[WS(rs, 4)] = FMA(TH, TL, TM); | |
144 TY = FNMS(KP900968867, TX, Tt); | |
145 TT = FNMS(KP974927912, TS, TQ); | |
146 T14 = FMA(KP974927912, TS, TQ); | |
147 T10 = FNMS(KP801937735, TZ, TC); | |
148 { | |
149 E TN, TV, T11, TU, T12; | |
150 TN = W[2]; | |
151 TV = W[3]; | |
152 T13 = W[8]; | |
153 T11 = FMA(KP974927912, T10, TY); | |
154 T17 = FNMS(KP974927912, T10, TY); | |
155 TU = TN * TT; | |
156 T12 = TV * TT; | |
157 T15 = T13 * T14; | |
158 T16 = W[9]; | |
159 cr[WS(rs, 2)] = FNMS(TV, T11, TU); | |
160 ci[WS(rs, 2)] = FMA(TN, T11, T12); | |
161 } | |
162 } | |
163 { | |
164 E T1k, T1f, T1m, T1c, T18; | |
165 T1c = FNMS(KP900968867, T1b, T1); | |
166 cr[WS(rs, 5)] = FNMS(T16, T17, T15); | |
167 T18 = T16 * T14; | |
168 T1k = FNMS(KP900968867, T1j, Tt); | |
169 T1f = FNMS(KP974927912, T1e, T1c); | |
170 T1q = FMA(KP974927912, T1e, T1c); | |
171 ci[WS(rs, 5)] = FMA(T13, T17, T18); | |
172 T1m = FMA(KP801937735, T1l, TB); | |
173 { | |
174 E T19, T1h, T1n, T1g, T1o; | |
175 T19 = W[0]; | |
176 T1h = W[1]; | |
177 T1p = W[10]; | |
178 T1t = FNMS(KP974927912, T1m, T1k); | |
179 T1n = FMA(KP974927912, T1m, T1k); | |
180 T1g = T19 * T1f; | |
181 T1o = T1h * T1f; | |
182 T1r = T1p * T1q; | |
183 T1s = W[11]; | |
184 cr[WS(rs, 1)] = FNMS(T1h, T1n, T1g); | |
185 ci[WS(rs, 1)] = FMA(T19, T1n, T1o); | |
186 } | |
187 } | |
188 } | |
189 } | |
190 } | |
191 } | |
192 cr[WS(rs, 6)] = FNMS(T1s, T1t, T1r); | |
193 T1u = T1s * T1q; | |
194 ci[WS(rs, 6)] = FMA(T1p, T1t, T1u); | |
195 } | |
196 } | |
197 } | |
198 | |
199 static const tw_instr twinstr[] = { | |
200 {TW_FULL, 1, 7}, | |
201 {TW_NEXT, 1, 0} | |
202 }; | |
203 | |
204 static const hc2hc_desc desc = { 7, "hb_7", twinstr, &GENUS, {18, 12, 54, 0} }; | |
205 | |
206 void X(codelet_hb_7) (planner *p) { | |
207 X(khc2hc_register) (p, hb_7, &desc); | |
208 } | |
209 #else /* HAVE_FMA */ | |
210 | |
211 /* Generated by: ../../../genfft/gen_hc2hc.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 7 -dif -name hb_7 -include hb.h */ | |
212 | |
213 /* | |
214 * This function contains 72 FP additions, 60 FP multiplications, | |
215 * (or, 36 additions, 24 multiplications, 36 fused multiply/add), | |
216 * 36 stack variables, 6 constants, and 28 memory accesses | |
217 */ | |
218 #include "hb.h" | |
219 | |
220 static void hb_7(R *cr, R *ci, const R *W, stride rs, INT mb, INT me, INT ms) | |
221 { | |
222 DK(KP222520933, +0.222520933956314404288902564496794759466355569); | |
223 DK(KP900968867, +0.900968867902419126236102319507445051165919162); | |
224 DK(KP623489801, +0.623489801858733530525004884004239810632274731); | |
225 DK(KP781831482, +0.781831482468029808708444526674057750232334519); | |
226 DK(KP974927912, +0.974927912181823607018131682993931217232785801); | |
227 DK(KP433883739, +0.433883739117558120475768332848358754609990728); | |
228 { | |
229 INT m; | |
230 for (m = mb, W = W + ((mb - 1) * 12); m < me; m = m + 1, cr = cr + ms, ci = ci - ms, W = W + 12, MAKE_VOLATILE_STRIDE(14, rs)) { | |
231 E T1, T4, T7, Ta, Tx, TI, TV, TQ, TE, Tm, Tb, Te, Th, Tk, Tq; | |
232 E TF, TR, TU, TJ, Tt; | |
233 { | |
234 E Tu, Tw, Tv, T2, T3; | |
235 T1 = cr[0]; | |
236 T2 = cr[WS(rs, 1)]; | |
237 T3 = ci[0]; | |
238 T4 = T2 + T3; | |
239 Tu = T2 - T3; | |
240 { | |
241 E T5, T6, T8, T9; | |
242 T5 = cr[WS(rs, 2)]; | |
243 T6 = ci[WS(rs, 1)]; | |
244 T7 = T5 + T6; | |
245 Tw = T5 - T6; | |
246 T8 = cr[WS(rs, 3)]; | |
247 T9 = ci[WS(rs, 2)]; | |
248 Ta = T8 + T9; | |
249 Tv = T8 - T9; | |
250 } | |
251 Tx = FMA(KP433883739, Tu, KP974927912 * Tv) - (KP781831482 * Tw); | |
252 TI = FMA(KP781831482, Tu, KP974927912 * Tw) + (KP433883739 * Tv); | |
253 TV = FNMS(KP781831482, Tv, KP974927912 * Tu) - (KP433883739 * Tw); | |
254 TQ = FMA(KP623489801, Ta, T1) + FNMA(KP900968867, T7, KP222520933 * T4); | |
255 TE = FMA(KP623489801, T4, T1) + FNMA(KP900968867, Ta, KP222520933 * T7); | |
256 Tm = FMA(KP623489801, T7, T1) + FNMA(KP222520933, Ta, KP900968867 * T4); | |
257 } | |
258 { | |
259 E Tp, Tn, To, Tc, Td; | |
260 Tb = ci[WS(rs, 6)]; | |
261 Tc = ci[WS(rs, 5)]; | |
262 Td = cr[WS(rs, 6)]; | |
263 Te = Tc - Td; | |
264 Tp = Tc + Td; | |
265 { | |
266 E Tf, Tg, Ti, Tj; | |
267 Tf = ci[WS(rs, 4)]; | |
268 Tg = cr[WS(rs, 5)]; | |
269 Th = Tf - Tg; | |
270 Tn = Tf + Tg; | |
271 Ti = ci[WS(rs, 3)]; | |
272 Tj = cr[WS(rs, 4)]; | |
273 Tk = Ti - Tj; | |
274 To = Ti + Tj; | |
275 } | |
276 Tq = FNMS(KP974927912, To, KP781831482 * Tn) - (KP433883739 * Tp); | |
277 TF = FMA(KP781831482, Tp, KP974927912 * Tn) + (KP433883739 * To); | |
278 TR = FMA(KP433883739, Tn, KP781831482 * To) - (KP974927912 * Tp); | |
279 TU = FMA(KP623489801, Tk, Tb) + FNMA(KP900968867, Th, KP222520933 * Te); | |
280 TJ = FMA(KP623489801, Te, Tb) + FNMA(KP900968867, Tk, KP222520933 * Th); | |
281 Tt = FMA(KP623489801, Th, Tb) + FNMA(KP222520933, Tk, KP900968867 * Te); | |
282 } | |
283 cr[0] = T1 + T4 + T7 + Ta; | |
284 ci[0] = Tb + Te + Th + Tk; | |
285 { | |
286 E Tr, Ty, Tl, Ts; | |
287 Tr = Tm - Tq; | |
288 Ty = Tt - Tx; | |
289 Tl = W[6]; | |
290 Ts = W[7]; | |
291 cr[WS(rs, 4)] = FNMS(Ts, Ty, Tl * Tr); | |
292 ci[WS(rs, 4)] = FMA(Tl, Ty, Ts * Tr); | |
293 } | |
294 { | |
295 E TY, T10, TX, TZ; | |
296 TY = TQ + TR; | |
297 T10 = TV + TU; | |
298 TX = W[2]; | |
299 TZ = W[3]; | |
300 cr[WS(rs, 2)] = FNMS(TZ, T10, TX * TY); | |
301 ci[WS(rs, 2)] = FMA(TX, T10, TZ * TY); | |
302 } | |
303 { | |
304 E TA, TC, Tz, TB; | |
305 TA = Tm + Tq; | |
306 TC = Tx + Tt; | |
307 Tz = W[4]; | |
308 TB = W[5]; | |
309 cr[WS(rs, 3)] = FNMS(TB, TC, Tz * TA); | |
310 ci[WS(rs, 3)] = FMA(Tz, TC, TB * TA); | |
311 } | |
312 { | |
313 E TM, TO, TL, TN; | |
314 TM = TE + TF; | |
315 TO = TJ - TI; | |
316 TL = W[10]; | |
317 TN = W[11]; | |
318 cr[WS(rs, 6)] = FNMS(TN, TO, TL * TM); | |
319 ci[WS(rs, 6)] = FMA(TL, TO, TN * TM); | |
320 } | |
321 { | |
322 E TS, TW, TP, TT; | |
323 TS = TQ - TR; | |
324 TW = TU - TV; | |
325 TP = W[8]; | |
326 TT = W[9]; | |
327 cr[WS(rs, 5)] = FNMS(TT, TW, TP * TS); | |
328 ci[WS(rs, 5)] = FMA(TP, TW, TT * TS); | |
329 } | |
330 { | |
331 E TG, TK, TD, TH; | |
332 TG = TE - TF; | |
333 TK = TI + TJ; | |
334 TD = W[0]; | |
335 TH = W[1]; | |
336 cr[WS(rs, 1)] = FNMS(TH, TK, TD * TG); | |
337 ci[WS(rs, 1)] = FMA(TD, TK, TH * TG); | |
338 } | |
339 } | |
340 } | |
341 } | |
342 | |
343 static const tw_instr twinstr[] = { | |
344 {TW_FULL, 1, 7}, | |
345 {TW_NEXT, 1, 0} | |
346 }; | |
347 | |
348 static const hc2hc_desc desc = { 7, "hb_7", twinstr, &GENUS, {36, 24, 36, 0} }; | |
349 | |
350 void X(codelet_hb_7) (planner *p) { | |
351 X(khc2hc_register) (p, hb_7, &desc); | |
352 } | |
353 #endif /* HAVE_FMA */ |