comparison fft/fftw/fftw-3.3.4/rdft/scalar/r2cb/hb_5.c @ 19:26056e866c29

Add FFTW to comparison table
author Chris Cannam
date Tue, 06 Oct 2015 13:08:39 +0100
parents
children
comparison
equal deleted inserted replaced
18:8db794ca3e0b 19:26056e866c29
1 /*
2 * Copyright (c) 2003, 2007-14 Matteo Frigo
3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
18 *
19 */
20
21 /* This file was automatically generated --- DO NOT EDIT */
22 /* Generated on Tue Mar 4 13:50:25 EST 2014 */
23
24 #include "codelet-rdft.h"
25
26 #ifdef HAVE_FMA
27
28 /* Generated by: ../../../genfft/gen_hc2hc.native -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -sign 1 -n 5 -dif -name hb_5 -include hb.h */
29
30 /*
31 * This function contains 40 FP additions, 34 FP multiplications,
32 * (or, 14 additions, 8 multiplications, 26 fused multiply/add),
33 * 42 stack variables, 4 constants, and 20 memory accesses
34 */
35 #include "hb.h"
36
37 static void hb_5(R *cr, R *ci, const R *W, stride rs, INT mb, INT me, INT ms)
38 {
39 DK(KP951056516, +0.951056516295153572116439333379382143405698634);
40 DK(KP559016994, +0.559016994374947424102293417182819058860154590);
41 DK(KP250000000, +0.250000000000000000000000000000000000000000000);
42 DK(KP618033988, +0.618033988749894848204586834365638117720309180);
43 {
44 INT m;
45 for (m = mb, W = W + ((mb - 1) * 8); m < me; m = m + 1, cr = cr + ms, ci = ci - ms, W = W + 8, MAKE_VOLATILE_STRIDE(10, rs)) {
46 E TQ, TP, TT, TR, TS, TU;
47 {
48 E T1, Tn, TM, Tw, Tb, T8, To, Tf, Ta, Tg, Th;
49 {
50 E T2, T3, T5, T6, T4, Tu;
51 T1 = cr[0];
52 T2 = cr[WS(rs, 1)];
53 T3 = ci[0];
54 T5 = cr[WS(rs, 2)];
55 T6 = ci[WS(rs, 1)];
56 Tn = ci[WS(rs, 4)];
57 T4 = T2 + T3;
58 Tu = T2 - T3;
59 {
60 E T7, Tv, Td, Te;
61 T7 = T5 + T6;
62 Tv = T5 - T6;
63 Td = ci[WS(rs, 3)];
64 Te = cr[WS(rs, 4)];
65 TM = FNMS(KP618033988, Tu, Tv);
66 Tw = FMA(KP618033988, Tv, Tu);
67 Tb = T4 - T7;
68 T8 = T4 + T7;
69 To = Td - Te;
70 Tf = Td + Te;
71 Ta = FNMS(KP250000000, T8, T1);
72 Tg = ci[WS(rs, 2)];
73 Th = cr[WS(rs, 3)];
74 }
75 }
76 cr[0] = T1 + T8;
77 {
78 E TG, T9, Tm, Tz, TH, TC, TA, Tk, Tt, TL, Tc, Ti, Tp, TI;
79 TG = FNMS(KP559016994, Tb, Ta);
80 Tc = FMA(KP559016994, Tb, Ta);
81 T9 = W[0];
82 Ti = Tg + Th;
83 Tp = Tg - Th;
84 Tm = W[1];
85 {
86 E Ts, Tj, Tr, Tq;
87 Tz = W[6];
88 Ts = To - Tp;
89 Tq = To + Tp;
90 Tj = FMA(KP618033988, Ti, Tf);
91 TH = FNMS(KP618033988, Tf, Ti);
92 ci[0] = Tn + Tq;
93 Tr = FNMS(KP250000000, Tq, Tn);
94 TC = W[7];
95 TA = FMA(KP951056516, Tj, Tc);
96 Tk = FNMS(KP951056516, Tj, Tc);
97 Tt = FMA(KP559016994, Ts, Tr);
98 TL = FNMS(KP559016994, Ts, Tr);
99 }
100 {
101 E TE, TB, Ty, Tl, TD, Tx;
102 TE = TC * TA;
103 TB = Tz * TA;
104 Ty = Tm * Tk;
105 Tl = T9 * Tk;
106 TD = FNMS(KP951056516, Tw, Tt);
107 Tx = FMA(KP951056516, Tw, Tt);
108 TI = FMA(KP951056516, TH, TG);
109 TQ = FNMS(KP951056516, TH, TG);
110 ci[WS(rs, 4)] = FMA(Tz, TD, TE);
111 cr[WS(rs, 4)] = FNMS(TC, TD, TB);
112 ci[WS(rs, 1)] = FMA(T9, Tx, Ty);
113 cr[WS(rs, 1)] = FNMS(Tm, Tx, Tl);
114 }
115 {
116 E TF, TK, TN, TJ, TO;
117 TF = W[2];
118 TK = W[3];
119 TP = W[4];
120 TT = FMA(KP951056516, TM, TL);
121 TN = FNMS(KP951056516, TM, TL);
122 TJ = TF * TI;
123 TO = TK * TI;
124 TR = TP * TQ;
125 TS = W[5];
126 cr[WS(rs, 2)] = FNMS(TK, TN, TJ);
127 ci[WS(rs, 2)] = FMA(TF, TN, TO);
128 }
129 }
130 }
131 cr[WS(rs, 3)] = FNMS(TS, TT, TR);
132 TU = TS * TQ;
133 ci[WS(rs, 3)] = FMA(TP, TT, TU);
134 }
135 }
136 }
137
138 static const tw_instr twinstr[] = {
139 {TW_FULL, 1, 5},
140 {TW_NEXT, 1, 0}
141 };
142
143 static const hc2hc_desc desc = { 5, "hb_5", twinstr, &GENUS, {14, 8, 26, 0} };
144
145 void X(codelet_hb_5) (planner *p) {
146 X(khc2hc_register) (p, hb_5, &desc);
147 }
148 #else /* HAVE_FMA */
149
150 /* Generated by: ../../../genfft/gen_hc2hc.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 5 -dif -name hb_5 -include hb.h */
151
152 /*
153 * This function contains 40 FP additions, 28 FP multiplications,
154 * (or, 26 additions, 14 multiplications, 14 fused multiply/add),
155 * 27 stack variables, 4 constants, and 20 memory accesses
156 */
157 #include "hb.h"
158
159 static void hb_5(R *cr, R *ci, const R *W, stride rs, INT mb, INT me, INT ms)
160 {
161 DK(KP250000000, +0.250000000000000000000000000000000000000000000);
162 DK(KP587785252, +0.587785252292473129168705954639072768597652438);
163 DK(KP951056516, +0.951056516295153572116439333379382143405698634);
164 DK(KP559016994, +0.559016994374947424102293417182819058860154590);
165 {
166 INT m;
167 for (m = mb, W = W + ((mb - 1) * 8); m < me; m = m + 1, cr = cr + ms, ci = ci - ms, W = W + 8, MAKE_VOLATILE_STRIDE(10, rs)) {
168 E T1, Tj, TG, Ts, T8, Ti, T9, Tn, TD, Tu, Tg, Tt;
169 {
170 E T4, Tq, T7, Tr;
171 T1 = cr[0];
172 {
173 E T2, T3, T5, T6;
174 T2 = cr[WS(rs, 1)];
175 T3 = ci[0];
176 T4 = T2 + T3;
177 Tq = T2 - T3;
178 T5 = cr[WS(rs, 2)];
179 T6 = ci[WS(rs, 1)];
180 T7 = T5 + T6;
181 Tr = T5 - T6;
182 }
183 Tj = KP559016994 * (T4 - T7);
184 TG = FMA(KP951056516, Tq, KP587785252 * Tr);
185 Ts = FNMS(KP951056516, Tr, KP587785252 * Tq);
186 T8 = T4 + T7;
187 Ti = FNMS(KP250000000, T8, T1);
188 }
189 {
190 E Tc, Tl, Tf, Tm;
191 T9 = ci[WS(rs, 4)];
192 {
193 E Ta, Tb, Td, Te;
194 Ta = ci[WS(rs, 3)];
195 Tb = cr[WS(rs, 4)];
196 Tc = Ta - Tb;
197 Tl = Ta + Tb;
198 Td = ci[WS(rs, 2)];
199 Te = cr[WS(rs, 3)];
200 Tf = Td - Te;
201 Tm = Td + Te;
202 }
203 Tn = FNMS(KP951056516, Tm, KP587785252 * Tl);
204 TD = FMA(KP951056516, Tl, KP587785252 * Tm);
205 Tu = KP559016994 * (Tc - Tf);
206 Tg = Tc + Tf;
207 Tt = FNMS(KP250000000, Tg, T9);
208 }
209 cr[0] = T1 + T8;
210 ci[0] = T9 + Tg;
211 {
212 E To, Ty, Tw, TA, Tk, Tv;
213 Tk = Ti - Tj;
214 To = Tk - Tn;
215 Ty = Tk + Tn;
216 Tv = Tt - Tu;
217 Tw = Ts + Tv;
218 TA = Tv - Ts;
219 {
220 E Th, Tp, Tx, Tz;
221 Th = W[2];
222 Tp = W[3];
223 cr[WS(rs, 2)] = FNMS(Tp, Tw, Th * To);
224 ci[WS(rs, 2)] = FMA(Th, Tw, Tp * To);
225 Tx = W[4];
226 Tz = W[5];
227 cr[WS(rs, 3)] = FNMS(Tz, TA, Tx * Ty);
228 ci[WS(rs, 3)] = FMA(Tx, TA, Tz * Ty);
229 }
230 }
231 {
232 E TE, TK, TI, TM, TC, TH;
233 TC = Tj + Ti;
234 TE = TC - TD;
235 TK = TC + TD;
236 TH = Tu + Tt;
237 TI = TG + TH;
238 TM = TH - TG;
239 {
240 E TB, TF, TJ, TL;
241 TB = W[0];
242 TF = W[1];
243 cr[WS(rs, 1)] = FNMS(TF, TI, TB * TE);
244 ci[WS(rs, 1)] = FMA(TB, TI, TF * TE);
245 TJ = W[6];
246 TL = W[7];
247 cr[WS(rs, 4)] = FNMS(TL, TM, TJ * TK);
248 ci[WS(rs, 4)] = FMA(TJ, TM, TL * TK);
249 }
250 }
251 }
252 }
253 }
254
255 static const tw_instr twinstr[] = {
256 {TW_FULL, 1, 5},
257 {TW_NEXT, 1, 0}
258 };
259
260 static const hc2hc_desc desc = { 5, "hb_5", twinstr, &GENUS, {26, 14, 14, 0} };
261
262 void X(codelet_hb_5) (planner *p) {
263 X(khc2hc_register) (p, hb_5, &desc);
264 }
265 #endif /* HAVE_FMA */