Mercurial > hg > js-dsp-test
comparison fft/fftw/fftw-3.3.4/rdft/scalar/r2cb/hb_20.c @ 19:26056e866c29
Add FFTW to comparison table
author | Chris Cannam |
---|---|
date | Tue, 06 Oct 2015 13:08:39 +0100 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
18:8db794ca3e0b | 19:26056e866c29 |
---|---|
1 /* | |
2 * Copyright (c) 2003, 2007-14 Matteo Frigo | |
3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology | |
4 * | |
5 * This program is free software; you can redistribute it and/or modify | |
6 * it under the terms of the GNU General Public License as published by | |
7 * the Free Software Foundation; either version 2 of the License, or | |
8 * (at your option) any later version. | |
9 * | |
10 * This program is distributed in the hope that it will be useful, | |
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
13 * GNU General Public License for more details. | |
14 * | |
15 * You should have received a copy of the GNU General Public License | |
16 * along with this program; if not, write to the Free Software | |
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA | |
18 * | |
19 */ | |
20 | |
21 /* This file was automatically generated --- DO NOT EDIT */ | |
22 /* Generated on Tue Mar 4 13:50:28 EST 2014 */ | |
23 | |
24 #include "codelet-rdft.h" | |
25 | |
26 #ifdef HAVE_FMA | |
27 | |
28 /* Generated by: ../../../genfft/gen_hc2hc.native -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -sign 1 -n 20 -dif -name hb_20 -include hb.h */ | |
29 | |
30 /* | |
31 * This function contains 246 FP additions, 148 FP multiplications, | |
32 * (or, 136 additions, 38 multiplications, 110 fused multiply/add), | |
33 * 101 stack variables, 4 constants, and 80 memory accesses | |
34 */ | |
35 #include "hb.h" | |
36 | |
37 static void hb_20(R *cr, R *ci, const R *W, stride rs, INT mb, INT me, INT ms) | |
38 { | |
39 DK(KP951056516, +0.951056516295153572116439333379382143405698634); | |
40 DK(KP559016994, +0.559016994374947424102293417182819058860154590); | |
41 DK(KP618033988, +0.618033988749894848204586834365638117720309180); | |
42 DK(KP250000000, +0.250000000000000000000000000000000000000000000); | |
43 { | |
44 INT m; | |
45 for (m = mb, W = W + ((mb - 1) * 38); m < me; m = m + 1, cr = cr + ms, ci = ci - ms, W = W + 38, MAKE_VOLATILE_STRIDE(40, rs)) { | |
46 E T1T, T1Q, T1P; | |
47 { | |
48 E T2W, T4e, T7, TE, T3z, T4z, T1t, T2l, T3a, T3G, T13, T33, T3H, T1i, T2g; | |
49 E T4H, T4G, T2d, T1B, T4u, T4B, T4A, T4r, T1A, T2s, T3l, T2t, T3s, T2o, T2q; | |
50 E T1w, T1y, TC, T29, T3E, T3C, T4n, T4l, TN, TL; | |
51 { | |
52 E T4, T2U, T3, T2V, T1s, T5, T1n, T1o; | |
53 { | |
54 E T1, T2, T1q, T1r; | |
55 T1 = cr[0]; | |
56 T2 = ci[WS(rs, 9)]; | |
57 T1q = ci[WS(rs, 14)]; | |
58 T1r = cr[WS(rs, 15)]; | |
59 T4 = cr[WS(rs, 5)]; | |
60 T2U = T1 - T2; | |
61 T3 = T1 + T2; | |
62 T2V = T1q + T1r; | |
63 T1s = T1q - T1r; | |
64 T5 = ci[WS(rs, 4)]; | |
65 T1n = ci[WS(rs, 19)]; | |
66 T1o = cr[WS(rs, 10)]; | |
67 } | |
68 { | |
69 E T3y, T6, T3x, T1p; | |
70 T2W = T2U + T2V; | |
71 T4e = T2U - T2V; | |
72 T3y = T4 - T5; | |
73 T6 = T4 + T5; | |
74 T3x = T1n + T1o; | |
75 T1p = T1n - T1o; | |
76 T7 = T3 + T6; | |
77 TE = T3 - T6; | |
78 T3z = T3x - T3y; | |
79 T4z = T3y + T3x; | |
80 T1t = T1p - T1s; | |
81 T2l = T1p + T1s; | |
82 } | |
83 } | |
84 { | |
85 E T2Z, T4f, Te, TF, T3o, T4p, T1a, T2b, TJ, TA, T4t, T3k, T4j, T39, T2f; | |
86 E T12, T32, T4g, Tl, TG, T3r, T4q, T1h, T2c, T36, T4i, Tt, TI, T3h, T4s; | |
87 E TV, T2e; | |
88 { | |
89 E Tb, T2X, Ta, T2Y, T19, Tc, T14, T15; | |
90 { | |
91 E T8, T9, T17, T18; | |
92 T8 = cr[WS(rs, 4)]; | |
93 T9 = ci[WS(rs, 5)]; | |
94 T17 = ci[WS(rs, 10)]; | |
95 T18 = cr[WS(rs, 19)]; | |
96 Tb = cr[WS(rs, 9)]; | |
97 T2X = T8 - T9; | |
98 Ta = T8 + T9; | |
99 T2Y = T17 + T18; | |
100 T19 = T17 - T18; | |
101 Tc = ci[0]; | |
102 T14 = ci[WS(rs, 15)]; | |
103 T15 = cr[WS(rs, 14)]; | |
104 } | |
105 { | |
106 E T3n, Td, T3m, T16; | |
107 T2Z = T2X + T2Y; | |
108 T4f = T2X - T2Y; | |
109 T3n = Tb - Tc; | |
110 Td = Tb + Tc; | |
111 T3m = T14 + T15; | |
112 T16 = T14 - T15; | |
113 Te = Ta + Td; | |
114 TF = Ta - Td; | |
115 T3o = T3m - T3n; | |
116 T4p = T3n + T3m; | |
117 T1a = T16 - T19; | |
118 T2b = T16 + T19; | |
119 } | |
120 } | |
121 { | |
122 E TW, T37, Tw, T3i, Tz, TX, TZ, T10; | |
123 { | |
124 E Tu, Tv, Tx, Ty; | |
125 Tu = ci[WS(rs, 7)]; | |
126 Tv = cr[WS(rs, 2)]; | |
127 Tx = ci[WS(rs, 2)]; | |
128 Ty = cr[WS(rs, 7)]; | |
129 TW = ci[WS(rs, 17)]; | |
130 T37 = Tu - Tv; | |
131 Tw = Tu + Tv; | |
132 T3i = Tx - Ty; | |
133 Tz = Tx + Ty; | |
134 TX = cr[WS(rs, 12)]; | |
135 TZ = ci[WS(rs, 12)]; | |
136 T10 = cr[WS(rs, 17)]; | |
137 } | |
138 { | |
139 E TY, T38, T11, T3j; | |
140 TJ = Tw - Tz; | |
141 TA = Tw + Tz; | |
142 T3j = TW + TX; | |
143 TY = TW - TX; | |
144 T38 = TZ + T10; | |
145 T11 = TZ - T10; | |
146 T4t = T3i - T3j; | |
147 T3k = T3i + T3j; | |
148 T4j = T37 + T38; | |
149 T39 = T37 - T38; | |
150 T2f = TY + T11; | |
151 T12 = TY - T11; | |
152 } | |
153 } | |
154 { | |
155 E Ti, T30, Th, T31, T1g, Tj, T1b, T1c; | |
156 { | |
157 E Tf, Tg, T1e, T1f; | |
158 Tf = ci[WS(rs, 3)]; | |
159 Tg = cr[WS(rs, 6)]; | |
160 T1e = ci[WS(rs, 18)]; | |
161 T1f = cr[WS(rs, 11)]; | |
162 Ti = cr[WS(rs, 1)]; | |
163 T30 = Tf - Tg; | |
164 Th = Tf + Tg; | |
165 T31 = T1e + T1f; | |
166 T1g = T1e - T1f; | |
167 Tj = ci[WS(rs, 8)]; | |
168 T1b = ci[WS(rs, 13)]; | |
169 T1c = cr[WS(rs, 16)]; | |
170 } | |
171 { | |
172 E T3p, Tk, T3q, T1d; | |
173 T32 = T30 + T31; | |
174 T4g = T30 - T31; | |
175 T3p = Ti - Tj; | |
176 Tk = Ti + Tj; | |
177 T3q = T1b + T1c; | |
178 T1d = T1b - T1c; | |
179 Tl = Th + Tk; | |
180 TG = Th - Tk; | |
181 T3r = T3p + T3q; | |
182 T4q = T3p - T3q; | |
183 T1h = T1d - T1g; | |
184 T2c = T1d + T1g; | |
185 } | |
186 } | |
187 { | |
188 E Tq, T34, Tp, T35, TU, Tr, TP, TQ; | |
189 { | |
190 E Tn, To, TS, TT; | |
191 Tn = cr[WS(rs, 8)]; | |
192 To = ci[WS(rs, 1)]; | |
193 TS = ci[WS(rs, 16)]; | |
194 TT = cr[WS(rs, 13)]; | |
195 Tq = ci[WS(rs, 6)]; | |
196 T34 = Tn - To; | |
197 Tp = Tn + To; | |
198 T35 = TS + TT; | |
199 TU = TS - TT; | |
200 Tr = cr[WS(rs, 3)]; | |
201 TP = ci[WS(rs, 11)]; | |
202 TQ = cr[WS(rs, 18)]; | |
203 } | |
204 { | |
205 E T3g, Ts, T3f, TR; | |
206 T36 = T34 - T35; | |
207 T4i = T34 + T35; | |
208 T3g = Tq - Tr; | |
209 Ts = Tq + Tr; | |
210 T3f = TP + TQ; | |
211 TR = TP - TQ; | |
212 Tt = Tp + Ts; | |
213 TI = Tp - Ts; | |
214 T3h = T3f - T3g; | |
215 T4s = T3g + T3f; | |
216 TV = TR - TU; | |
217 T2e = TR + TU; | |
218 } | |
219 } | |
220 { | |
221 E T1v, T1u, T2n, T4k, T4h, T2m, TH, TK; | |
222 T3a = T36 + T39; | |
223 T3G = T36 - T39; | |
224 T13 = TV - T12; | |
225 T1v = TV + T12; | |
226 T33 = T2Z + T32; | |
227 T3H = T2Z - T32; | |
228 T1i = T1a - T1h; | |
229 T1u = T1a + T1h; | |
230 T2n = T2e + T2f; | |
231 T2g = T2e - T2f; | |
232 T4H = T4i - T4j; | |
233 T4k = T4i + T4j; | |
234 T4h = T4f + T4g; | |
235 T4G = T4f - T4g; | |
236 T2d = T2b - T2c; | |
237 T2m = T2b + T2c; | |
238 TH = TF + TG; | |
239 T1B = TF - TG; | |
240 T4u = T4s - T4t; | |
241 T4B = T4s + T4t; | |
242 T4A = T4p + T4q; | |
243 T4r = T4p - T4q; | |
244 T1A = TI - TJ; | |
245 TK = TI + TJ; | |
246 { | |
247 E Tm, T3B, TB, T3A; | |
248 Tm = Te + Tl; | |
249 T2s = Te - Tl; | |
250 T3l = T3h + T3k; | |
251 T3B = T3h - T3k; | |
252 TB = Tt + TA; | |
253 T2t = Tt - TA; | |
254 T3s = T3o + T3r; | |
255 T3A = T3o - T3r; | |
256 T2o = T2m + T2n; | |
257 T2q = T2m - T2n; | |
258 T1w = T1u + T1v; | |
259 T1y = T1u - T1v; | |
260 TC = Tm + TB; | |
261 T29 = Tm - TB; | |
262 T3E = T3A - T3B; | |
263 T3C = T3A + T3B; | |
264 T4n = T4h - T4k; | |
265 T4l = T4h + T4k; | |
266 TN = TH - TK; | |
267 TL = TH + TK; | |
268 } | |
269 } | |
270 } | |
271 { | |
272 E T3d, T3b, T4E, T1x, TM, T4m, T58, T5b, T4D, T5a, T5c, T59, T4C; | |
273 cr[0] = T7 + TC; | |
274 T3d = T33 - T3a; | |
275 T3b = T33 + T3a; | |
276 T4E = T4A - T4B; | |
277 T4C = T4A + T4B; | |
278 ci[0] = T2l + T2o; | |
279 { | |
280 E T25, T22, T21, T24, T23, T26, T57; | |
281 T1x = FNMS(KP250000000, T1w, T1t); | |
282 T25 = T1t + T1w; | |
283 T22 = TE + TL; | |
284 TM = FNMS(KP250000000, TL, TE); | |
285 T21 = W[18]; | |
286 T24 = W[19]; | |
287 T4m = FNMS(KP250000000, T4l, T4e); | |
288 T58 = T4e + T4l; | |
289 T5b = T4z + T4C; | |
290 T4D = FNMS(KP250000000, T4C, T4z); | |
291 T23 = T21 * T22; | |
292 T26 = T24 * T22; | |
293 T57 = W[8]; | |
294 T5a = W[9]; | |
295 cr[WS(rs, 10)] = FNMS(T24, T25, T23); | |
296 ci[WS(rs, 10)] = FMA(T21, T25, T26); | |
297 T5c = T57 * T5b; | |
298 T59 = T57 * T58; | |
299 } | |
300 { | |
301 E T3U, T3Z, T3W, T40, T3V; | |
302 { | |
303 E T3c, T48, T4b, T3D, T47, T4a; | |
304 T3c = FNMS(KP250000000, T3b, T2W); | |
305 T48 = T2W + T3b; | |
306 T4b = T3z + T3C; | |
307 T3D = FNMS(KP250000000, T3C, T3z); | |
308 ci[WS(rs, 5)] = FMA(T5a, T58, T5c); | |
309 cr[WS(rs, 5)] = FNMS(T5a, T5b, T59); | |
310 T47 = W[28]; | |
311 T4a = W[29]; | |
312 { | |
313 E T3I, T3Y, T42, T3u, T3M, T3X, T3F; | |
314 { | |
315 E T3T, T3t, T4c, T49, T3e, T3S; | |
316 T3T = FMA(KP618033988, T3l, T3s); | |
317 T3t = FNMS(KP618033988, T3s, T3l); | |
318 T4c = T47 * T4b; | |
319 T49 = T47 * T48; | |
320 T3I = FNMS(KP618033988, T3H, T3G); | |
321 T3Y = FMA(KP618033988, T3G, T3H); | |
322 ci[WS(rs, 15)] = FMA(T4a, T48, T4c); | |
323 cr[WS(rs, 15)] = FNMS(T4a, T4b, T49); | |
324 T3e = FNMS(KP559016994, T3d, T3c); | |
325 T3S = FMA(KP559016994, T3d, T3c); | |
326 T42 = FMA(KP951056516, T3T, T3S); | |
327 T3U = FNMS(KP951056516, T3T, T3S); | |
328 T3u = FNMS(KP951056516, T3t, T3e); | |
329 T3M = FMA(KP951056516, T3t, T3e); | |
330 T3X = FMA(KP559016994, T3E, T3D); | |
331 T3F = FNMS(KP559016994, T3E, T3D); | |
332 } | |
333 { | |
334 E T3P, T45, T44, T46, T43; | |
335 { | |
336 E T3w, T3J, T3v, T3K, T2T, T41; | |
337 T2T = W[4]; | |
338 T3w = W[5]; | |
339 T3J = FMA(KP951056516, T3I, T3F); | |
340 T3P = FNMS(KP951056516, T3I, T3F); | |
341 T45 = FNMS(KP951056516, T3Y, T3X); | |
342 T3Z = FMA(KP951056516, T3Y, T3X); | |
343 T3v = T2T * T3u; | |
344 T3K = T2T * T3J; | |
345 T41 = W[36]; | |
346 T44 = W[37]; | |
347 cr[WS(rs, 3)] = FNMS(T3w, T3J, T3v); | |
348 ci[WS(rs, 3)] = FMA(T3w, T3u, T3K); | |
349 T46 = T41 * T45; | |
350 T43 = T41 * T42; | |
351 } | |
352 { | |
353 E T3O, T3Q, T3N, T3L, T3R; | |
354 T3L = W[12]; | |
355 T3O = W[13]; | |
356 ci[WS(rs, 19)] = FMA(T44, T42, T46); | |
357 cr[WS(rs, 19)] = FNMS(T44, T45, T43); | |
358 T3Q = T3L * T3P; | |
359 T3N = T3L * T3M; | |
360 T3R = W[20]; | |
361 T3W = W[21]; | |
362 ci[WS(rs, 7)] = FMA(T3O, T3M, T3Q); | |
363 cr[WS(rs, 7)] = FNMS(T3O, T3P, T3N); | |
364 T40 = T3R * T3Z; | |
365 T3V = T3R * T3U; | |
366 } | |
367 } | |
368 } | |
369 } | |
370 { | |
371 E T4U, T4Z, T4W, T50, T4V, T2L, T2I, T2H; | |
372 { | |
373 E T4T, T4v, T4I, T4Y, T4o, T4S; | |
374 T4T = FNMS(KP618033988, T4r, T4u); | |
375 T4v = FMA(KP618033988, T4u, T4r); | |
376 ci[WS(rs, 11)] = FMA(T3W, T3U, T40); | |
377 cr[WS(rs, 11)] = FNMS(T3W, T3Z, T3V); | |
378 T4I = FMA(KP618033988, T4H, T4G); | |
379 T4Y = FNMS(KP618033988, T4G, T4H); | |
380 T4o = FMA(KP559016994, T4n, T4m); | |
381 T4S = FNMS(KP559016994, T4n, T4m); | |
382 { | |
383 E T52, T4M, T55, T4P, T54, T56, T53; | |
384 { | |
385 E T4d, T4w, T4J, T4x, T4y, T4X, T4F, T51, T4K; | |
386 T4d = W[0]; | |
387 T4X = FNMS(KP559016994, T4E, T4D); | |
388 T4F = FMA(KP559016994, T4E, T4D); | |
389 T4U = FNMS(KP951056516, T4T, T4S); | |
390 T52 = FMA(KP951056516, T4T, T4S); | |
391 T4M = FMA(KP951056516, T4v, T4o); | |
392 T4w = FNMS(KP951056516, T4v, T4o); | |
393 T4Z = FMA(KP951056516, T4Y, T4X); | |
394 T55 = FNMS(KP951056516, T4Y, T4X); | |
395 T4P = FNMS(KP951056516, T4I, T4F); | |
396 T4J = FMA(KP951056516, T4I, T4F); | |
397 T4x = T4d * T4w; | |
398 T4y = W[1]; | |
399 T51 = W[32]; | |
400 T4K = T4d * T4J; | |
401 T54 = W[33]; | |
402 cr[WS(rs, 1)] = FNMS(T4y, T4J, T4x); | |
403 T56 = T51 * T55; | |
404 T53 = T51 * T52; | |
405 ci[WS(rs, 1)] = FMA(T4y, T4w, T4K); | |
406 } | |
407 { | |
408 E T4O, T4Q, T4N, T4L, T4R; | |
409 T4L = W[16]; | |
410 ci[WS(rs, 17)] = FMA(T54, T52, T56); | |
411 cr[WS(rs, 17)] = FNMS(T54, T55, T53); | |
412 T4O = W[17]; | |
413 T4Q = T4L * T4P; | |
414 T4N = T4L * T4M; | |
415 T4R = W[24]; | |
416 T4W = W[25]; | |
417 ci[WS(rs, 9)] = FMA(T4O, T4M, T4Q); | |
418 cr[WS(rs, 9)] = FNMS(T4O, T4P, T4N); | |
419 T50 = T4R * T4Z; | |
420 T4V = T4R * T4U; | |
421 } | |
422 } | |
423 } | |
424 { | |
425 E T2K, T2u, T2F, T2h, T28, T2J, T2r, T2p; | |
426 T2K = FNMS(KP618033988, T2s, T2t); | |
427 T2u = FMA(KP618033988, T2t, T2s); | |
428 ci[WS(rs, 13)] = FMA(T4W, T4U, T50); | |
429 cr[WS(rs, 13)] = FNMS(T4W, T4Z, T4V); | |
430 T2p = FNMS(KP250000000, T2o, T2l); | |
431 T2F = FNMS(KP618033988, T2d, T2g); | |
432 T2h = FMA(KP618033988, T2g, T2d); | |
433 T28 = FNMS(KP250000000, TC, T7); | |
434 T2J = FNMS(KP559016994, T2q, T2p); | |
435 T2r = FMA(KP559016994, T2q, T2p); | |
436 { | |
437 E T2B, T2G, T2y, T2R, T2Q, T2P, T2A, T2x; | |
438 { | |
439 E T2k, T2v, T27, T2O, T2i, T2a, T2E; | |
440 T2k = W[7]; | |
441 T2a = FMA(KP559016994, T29, T28); | |
442 T2E = FNMS(KP559016994, T29, T28); | |
443 T2B = FMA(KP951056516, T2u, T2r); | |
444 T2v = FNMS(KP951056516, T2u, T2r); | |
445 T27 = W[6]; | |
446 T2O = FMA(KP951056516, T2F, T2E); | |
447 T2G = FNMS(KP951056516, T2F, T2E); | |
448 T2i = FMA(KP951056516, T2h, T2a); | |
449 T2y = FNMS(KP951056516, T2h, T2a); | |
450 { | |
451 E T2N, T2j, T2w, T2S; | |
452 T2L = FMA(KP951056516, T2K, T2J); | |
453 T2R = FNMS(KP951056516, T2K, T2J); | |
454 T2Q = W[23]; | |
455 T2N = W[22]; | |
456 T2j = T27 * T2i; | |
457 T2w = T2k * T2i; | |
458 T2S = T2Q * T2O; | |
459 T2P = T2N * T2O; | |
460 cr[WS(rs, 4)] = FNMS(T2k, T2v, T2j); | |
461 ci[WS(rs, 4)] = FMA(T27, T2v, T2w); | |
462 ci[WS(rs, 12)] = FMA(T2N, T2R, T2S); | |
463 } | |
464 } | |
465 cr[WS(rs, 12)] = FNMS(T2Q, T2R, T2P); | |
466 T2A = W[31]; | |
467 T2x = W[30]; | |
468 { | |
469 E T2D, T2M, T2C, T2z; | |
470 T2I = W[15]; | |
471 T2C = T2A * T2y; | |
472 T2z = T2x * T2y; | |
473 T2D = W[14]; | |
474 T2M = T2I * T2G; | |
475 ci[WS(rs, 16)] = FMA(T2x, T2B, T2C); | |
476 cr[WS(rs, 16)] = FNMS(T2A, T2B, T2z); | |
477 T2H = T2D * T2G; | |
478 ci[WS(rs, 8)] = FMA(T2D, T2L, T2M); | |
479 } | |
480 } | |
481 } | |
482 { | |
483 E T1S, T1C, T1j, T1N, T1z, T1R; | |
484 T1S = FMA(KP618033988, T1A, T1B); | |
485 T1C = FNMS(KP618033988, T1B, T1A); | |
486 cr[WS(rs, 8)] = FNMS(T2I, T2L, T2H); | |
487 T1j = FNMS(KP618033988, T1i, T13); | |
488 T1N = FMA(KP618033988, T13, T1i); | |
489 T1z = FNMS(KP559016994, T1y, T1x); | |
490 T1R = FMA(KP559016994, T1y, T1x); | |
491 { | |
492 E T1J, T1O, T1G, T1Z, T1Y, T1X, T1I, T1F; | |
493 { | |
494 E T1m, T1D, TD, T1W, T1k, T1M, TO; | |
495 T1m = W[3]; | |
496 T1M = FMA(KP559016994, TN, TM); | |
497 TO = FNMS(KP559016994, TN, TM); | |
498 T1D = FNMS(KP951056516, T1C, T1z); | |
499 T1J = FMA(KP951056516, T1C, T1z); | |
500 TD = W[2]; | |
501 T1O = FNMS(KP951056516, T1N, T1M); | |
502 T1W = FMA(KP951056516, T1N, T1M); | |
503 T1G = FNMS(KP951056516, T1j, TO); | |
504 T1k = FMA(KP951056516, T1j, TO); | |
505 { | |
506 E T1V, T1l, T1E, T20; | |
507 T1Z = FNMS(KP951056516, T1S, T1R); | |
508 T1T = FMA(KP951056516, T1S, T1R); | |
509 T1Y = W[27]; | |
510 T1V = W[26]; | |
511 T1l = TD * T1k; | |
512 T1E = T1m * T1k; | |
513 T20 = T1Y * T1W; | |
514 T1X = T1V * T1W; | |
515 cr[WS(rs, 2)] = FNMS(T1m, T1D, T1l); | |
516 ci[WS(rs, 2)] = FMA(TD, T1D, T1E); | |
517 ci[WS(rs, 14)] = FMA(T1V, T1Z, T20); | |
518 } | |
519 } | |
520 cr[WS(rs, 14)] = FNMS(T1Y, T1Z, T1X); | |
521 T1I = W[35]; | |
522 T1F = W[34]; | |
523 { | |
524 E T1L, T1U, T1K, T1H; | |
525 T1Q = W[11]; | |
526 T1K = T1I * T1G; | |
527 T1H = T1F * T1G; | |
528 T1L = W[10]; | |
529 T1U = T1Q * T1O; | |
530 ci[WS(rs, 18)] = FMA(T1F, T1J, T1K); | |
531 cr[WS(rs, 18)] = FNMS(T1I, T1J, T1H); | |
532 T1P = T1L * T1O; | |
533 ci[WS(rs, 6)] = FMA(T1L, T1T, T1U); | |
534 } | |
535 } | |
536 } | |
537 } | |
538 } | |
539 } | |
540 } | |
541 cr[WS(rs, 6)] = FNMS(T1Q, T1T, T1P); | |
542 } | |
543 } | |
544 } | |
545 | |
546 static const tw_instr twinstr[] = { | |
547 {TW_FULL, 1, 20}, | |
548 {TW_NEXT, 1, 0} | |
549 }; | |
550 | |
551 static const hc2hc_desc desc = { 20, "hb_20", twinstr, &GENUS, {136, 38, 110, 0} }; | |
552 | |
553 void X(codelet_hb_20) (planner *p) { | |
554 X(khc2hc_register) (p, hb_20, &desc); | |
555 } | |
556 #else /* HAVE_FMA */ | |
557 | |
558 /* Generated by: ../../../genfft/gen_hc2hc.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 20 -dif -name hb_20 -include hb.h */ | |
559 | |
560 /* | |
561 * This function contains 246 FP additions, 124 FP multiplications, | |
562 * (or, 184 additions, 62 multiplications, 62 fused multiply/add), | |
563 * 97 stack variables, 4 constants, and 80 memory accesses | |
564 */ | |
565 #include "hb.h" | |
566 | |
567 static void hb_20(R *cr, R *ci, const R *W, stride rs, INT mb, INT me, INT ms) | |
568 { | |
569 DK(KP250000000, +0.250000000000000000000000000000000000000000000); | |
570 DK(KP559016994, +0.559016994374947424102293417182819058860154590); | |
571 DK(KP587785252, +0.587785252292473129168705954639072768597652438); | |
572 DK(KP951056516, +0.951056516295153572116439333379382143405698634); | |
573 { | |
574 INT m; | |
575 for (m = mb, W = W + ((mb - 1) * 38); m < me; m = m + 1, cr = cr + ms, ci = ci - ms, W = W + 38, MAKE_VOLATILE_STRIDE(40, rs)) { | |
576 E T7, T3T, T49, TE, T1v, T2T, T3g, T2d, T13, T3n, T3o, T1i, T26, T4e, T4d; | |
577 E T23, T1n, T42, T3Z, T1m, T2h, T2I, T2i, T2P, T30, T37, T38, Tm, TB, TC; | |
578 E T46, T47, T4a, T2a, T2b, T2e, T1w, T1x, T1y, T3O, T3R, T3U, T3h, T3i, T3j; | |
579 E TH, TK, TL; | |
580 { | |
581 E T3, T2R, T1u, T2S, T6, T3f, T1r, T3e; | |
582 { | |
583 E T1, T2, T1s, T1t; | |
584 T1 = cr[0]; | |
585 T2 = ci[WS(rs, 9)]; | |
586 T3 = T1 + T2; | |
587 T2R = T1 - T2; | |
588 T1s = ci[WS(rs, 14)]; | |
589 T1t = cr[WS(rs, 15)]; | |
590 T1u = T1s - T1t; | |
591 T2S = T1s + T1t; | |
592 } | |
593 { | |
594 E T4, T5, T1p, T1q; | |
595 T4 = cr[WS(rs, 5)]; | |
596 T5 = ci[WS(rs, 4)]; | |
597 T6 = T4 + T5; | |
598 T3f = T4 - T5; | |
599 T1p = ci[WS(rs, 19)]; | |
600 T1q = cr[WS(rs, 10)]; | |
601 T1r = T1p - T1q; | |
602 T3e = T1p + T1q; | |
603 } | |
604 T7 = T3 + T6; | |
605 T3T = T2R - T2S; | |
606 T49 = T3f + T3e; | |
607 TE = T3 - T6; | |
608 T1v = T1r - T1u; | |
609 T2T = T2R + T2S; | |
610 T3g = T3e - T3f; | |
611 T2d = T1r + T1u; | |
612 } | |
613 { | |
614 E Te, T3M, T3X, TF, TV, T2E, T2W, T21, TA, T3Q, T41, TJ, T1h, T2O, T36; | |
615 E T25, Tl, T3N, T3Y, TG, T12, T2H, T2Z, T22, Tt, T3P, T40, TI, T1a, T2L; | |
616 E T33, T24; | |
617 { | |
618 E Ta, T2U, TU, T2V, Td, T2D, TR, T2C; | |
619 { | |
620 E T8, T9, TS, TT; | |
621 T8 = cr[WS(rs, 4)]; | |
622 T9 = ci[WS(rs, 5)]; | |
623 Ta = T8 + T9; | |
624 T2U = T8 - T9; | |
625 TS = ci[WS(rs, 10)]; | |
626 TT = cr[WS(rs, 19)]; | |
627 TU = TS - TT; | |
628 T2V = TS + TT; | |
629 } | |
630 { | |
631 E Tb, Tc, TP, TQ; | |
632 Tb = cr[WS(rs, 9)]; | |
633 Tc = ci[0]; | |
634 Td = Tb + Tc; | |
635 T2D = Tb - Tc; | |
636 TP = ci[WS(rs, 15)]; | |
637 TQ = cr[WS(rs, 14)]; | |
638 TR = TP - TQ; | |
639 T2C = TP + TQ; | |
640 } | |
641 Te = Ta + Td; | |
642 T3M = T2U - T2V; | |
643 T3X = T2D + T2C; | |
644 TF = Ta - Td; | |
645 TV = TR - TU; | |
646 T2E = T2C - T2D; | |
647 T2W = T2U + T2V; | |
648 T21 = TR + TU; | |
649 } | |
650 { | |
651 E Tw, T34, Tz, T2M, T1d, T2N, T1g, T35; | |
652 { | |
653 E Tu, Tv, Tx, Ty; | |
654 Tu = ci[WS(rs, 7)]; | |
655 Tv = cr[WS(rs, 2)]; | |
656 Tw = Tu + Tv; | |
657 T34 = Tu - Tv; | |
658 Tx = ci[WS(rs, 2)]; | |
659 Ty = cr[WS(rs, 7)]; | |
660 Tz = Tx + Ty; | |
661 T2M = Tx - Ty; | |
662 } | |
663 { | |
664 E T1b, T1c, T1e, T1f; | |
665 T1b = ci[WS(rs, 17)]; | |
666 T1c = cr[WS(rs, 12)]; | |
667 T1d = T1b - T1c; | |
668 T2N = T1b + T1c; | |
669 T1e = ci[WS(rs, 12)]; | |
670 T1f = cr[WS(rs, 17)]; | |
671 T1g = T1e - T1f; | |
672 T35 = T1e + T1f; | |
673 } | |
674 TA = Tw + Tz; | |
675 T3Q = T34 + T35; | |
676 T41 = T2M - T2N; | |
677 TJ = Tw - Tz; | |
678 T1h = T1d - T1g; | |
679 T2O = T2M + T2N; | |
680 T36 = T34 - T35; | |
681 T25 = T1d + T1g; | |
682 } | |
683 { | |
684 E Th, T2X, T11, T2Y, Tk, T2F, TY, T2G; | |
685 { | |
686 E Tf, Tg, TZ, T10; | |
687 Tf = ci[WS(rs, 3)]; | |
688 Tg = cr[WS(rs, 6)]; | |
689 Th = Tf + Tg; | |
690 T2X = Tf - Tg; | |
691 TZ = ci[WS(rs, 18)]; | |
692 T10 = cr[WS(rs, 11)]; | |
693 T11 = TZ - T10; | |
694 T2Y = TZ + T10; | |
695 } | |
696 { | |
697 E Ti, Tj, TW, TX; | |
698 Ti = cr[WS(rs, 1)]; | |
699 Tj = ci[WS(rs, 8)]; | |
700 Tk = Ti + Tj; | |
701 T2F = Ti - Tj; | |
702 TW = ci[WS(rs, 13)]; | |
703 TX = cr[WS(rs, 16)]; | |
704 TY = TW - TX; | |
705 T2G = TW + TX; | |
706 } | |
707 Tl = Th + Tk; | |
708 T3N = T2X - T2Y; | |
709 T3Y = T2F - T2G; | |
710 TG = Th - Tk; | |
711 T12 = TY - T11; | |
712 T2H = T2F + T2G; | |
713 T2Z = T2X + T2Y; | |
714 T22 = TY + T11; | |
715 } | |
716 { | |
717 E Tp, T31, T19, T32, Ts, T2K, T16, T2J; | |
718 { | |
719 E Tn, To, T17, T18; | |
720 Tn = cr[WS(rs, 8)]; | |
721 To = ci[WS(rs, 1)]; | |
722 Tp = Tn + To; | |
723 T31 = Tn - To; | |
724 T17 = ci[WS(rs, 16)]; | |
725 T18 = cr[WS(rs, 13)]; | |
726 T19 = T17 - T18; | |
727 T32 = T17 + T18; | |
728 } | |
729 { | |
730 E Tq, Tr, T14, T15; | |
731 Tq = ci[WS(rs, 6)]; | |
732 Tr = cr[WS(rs, 3)]; | |
733 Ts = Tq + Tr; | |
734 T2K = Tq - Tr; | |
735 T14 = ci[WS(rs, 11)]; | |
736 T15 = cr[WS(rs, 18)]; | |
737 T16 = T14 - T15; | |
738 T2J = T14 + T15; | |
739 } | |
740 Tt = Tp + Ts; | |
741 T3P = T31 + T32; | |
742 T40 = T2K + T2J; | |
743 TI = Tp - Ts; | |
744 T1a = T16 - T19; | |
745 T2L = T2J - T2K; | |
746 T33 = T31 - T32; | |
747 T24 = T16 + T19; | |
748 } | |
749 T13 = TV - T12; | |
750 T3n = T2W - T2Z; | |
751 T3o = T33 - T36; | |
752 T1i = T1a - T1h; | |
753 T26 = T24 - T25; | |
754 T4e = T3P - T3Q; | |
755 T4d = T3M - T3N; | |
756 T23 = T21 - T22; | |
757 T1n = TI - TJ; | |
758 T42 = T40 - T41; | |
759 T3Z = T3X - T3Y; | |
760 T1m = TF - TG; | |
761 T2h = Te - Tl; | |
762 T2I = T2E + T2H; | |
763 T2i = Tt - TA; | |
764 T2P = T2L + T2O; | |
765 T30 = T2W + T2Z; | |
766 T37 = T33 + T36; | |
767 T38 = T30 + T37; | |
768 Tm = Te + Tl; | |
769 TB = Tt + TA; | |
770 TC = Tm + TB; | |
771 T46 = T3X + T3Y; | |
772 T47 = T40 + T41; | |
773 T4a = T46 + T47; | |
774 T2a = T21 + T22; | |
775 T2b = T24 + T25; | |
776 T2e = T2a + T2b; | |
777 T1w = TV + T12; | |
778 T1x = T1a + T1h; | |
779 T1y = T1w + T1x; | |
780 T3O = T3M + T3N; | |
781 T3R = T3P + T3Q; | |
782 T3U = T3O + T3R; | |
783 T3h = T2E - T2H; | |
784 T3i = T2L - T2O; | |
785 T3j = T3h + T3i; | |
786 TH = TF + TG; | |
787 TK = TI + TJ; | |
788 TL = TH + TK; | |
789 } | |
790 cr[0] = T7 + TC; | |
791 ci[0] = T2d + T2e; | |
792 { | |
793 E T1U, T1W, T1T, T1V; | |
794 T1U = TE + TL; | |
795 T1W = T1v + T1y; | |
796 T1T = W[18]; | |
797 T1V = W[19]; | |
798 cr[WS(rs, 10)] = FNMS(T1V, T1W, T1T * T1U); | |
799 ci[WS(rs, 10)] = FMA(T1V, T1U, T1T * T1W); | |
800 } | |
801 { | |
802 E T4y, T4A, T4x, T4z; | |
803 T4y = T3T + T3U; | |
804 T4A = T49 + T4a; | |
805 T4x = W[8]; | |
806 T4z = W[9]; | |
807 cr[WS(rs, 5)] = FNMS(T4z, T4A, T4x * T4y); | |
808 ci[WS(rs, 5)] = FMA(T4x, T4A, T4z * T4y); | |
809 } | |
810 { | |
811 E T3I, T3K, T3H, T3J; | |
812 T3I = T2T + T38; | |
813 T3K = T3g + T3j; | |
814 T3H = W[28]; | |
815 T3J = W[29]; | |
816 cr[WS(rs, 15)] = FNMS(T3J, T3K, T3H * T3I); | |
817 ci[WS(rs, 15)] = FMA(T3H, T3K, T3J * T3I); | |
818 } | |
819 { | |
820 E T27, T2j, T2v, T2r, T2g, T2u, T20, T2q; | |
821 T27 = FMA(KP951056516, T23, KP587785252 * T26); | |
822 T2j = FMA(KP951056516, T2h, KP587785252 * T2i); | |
823 T2v = FNMS(KP951056516, T2i, KP587785252 * T2h); | |
824 T2r = FNMS(KP951056516, T26, KP587785252 * T23); | |
825 { | |
826 E T2c, T2f, T1Y, T1Z; | |
827 T2c = KP559016994 * (T2a - T2b); | |
828 T2f = FNMS(KP250000000, T2e, T2d); | |
829 T2g = T2c + T2f; | |
830 T2u = T2f - T2c; | |
831 T1Y = KP559016994 * (Tm - TB); | |
832 T1Z = FNMS(KP250000000, TC, T7); | |
833 T20 = T1Y + T1Z; | |
834 T2q = T1Z - T1Y; | |
835 } | |
836 { | |
837 E T28, T2k, T1X, T29; | |
838 T28 = T20 + T27; | |
839 T2k = T2g - T2j; | |
840 T1X = W[6]; | |
841 T29 = W[7]; | |
842 cr[WS(rs, 4)] = FNMS(T29, T2k, T1X * T28); | |
843 ci[WS(rs, 4)] = FMA(T29, T28, T1X * T2k); | |
844 } | |
845 { | |
846 E T2y, T2A, T2x, T2z; | |
847 T2y = T2q - T2r; | |
848 T2A = T2v + T2u; | |
849 T2x = W[22]; | |
850 T2z = W[23]; | |
851 cr[WS(rs, 12)] = FNMS(T2z, T2A, T2x * T2y); | |
852 ci[WS(rs, 12)] = FMA(T2z, T2y, T2x * T2A); | |
853 } | |
854 { | |
855 E T2m, T2o, T2l, T2n; | |
856 T2m = T20 - T27; | |
857 T2o = T2j + T2g; | |
858 T2l = W[30]; | |
859 T2n = W[31]; | |
860 cr[WS(rs, 16)] = FNMS(T2n, T2o, T2l * T2m); | |
861 ci[WS(rs, 16)] = FMA(T2n, T2m, T2l * T2o); | |
862 } | |
863 { | |
864 E T2s, T2w, T2p, T2t; | |
865 T2s = T2q + T2r; | |
866 T2w = T2u - T2v; | |
867 T2p = W[14]; | |
868 T2t = W[15]; | |
869 cr[WS(rs, 8)] = FNMS(T2t, T2w, T2p * T2s); | |
870 ci[WS(rs, 8)] = FMA(T2t, T2s, T2p * T2w); | |
871 } | |
872 } | |
873 { | |
874 E T43, T4f, T4r, T4m, T4c, T4q, T3W, T4n; | |
875 T43 = FMA(KP951056516, T3Z, KP587785252 * T42); | |
876 T4f = FMA(KP951056516, T4d, KP587785252 * T4e); | |
877 T4r = FNMS(KP951056516, T4e, KP587785252 * T4d); | |
878 T4m = FNMS(KP951056516, T42, KP587785252 * T3Z); | |
879 { | |
880 E T48, T4b, T3S, T3V; | |
881 T48 = KP559016994 * (T46 - T47); | |
882 T4b = FNMS(KP250000000, T4a, T49); | |
883 T4c = T48 + T4b; | |
884 T4q = T4b - T48; | |
885 T3S = KP559016994 * (T3O - T3R); | |
886 T3V = FNMS(KP250000000, T3U, T3T); | |
887 T3W = T3S + T3V; | |
888 T4n = T3V - T3S; | |
889 } | |
890 { | |
891 E T44, T4g, T3L, T45; | |
892 T44 = T3W - T43; | |
893 T4g = T4c + T4f; | |
894 T3L = W[0]; | |
895 T45 = W[1]; | |
896 cr[WS(rs, 1)] = FNMS(T45, T4g, T3L * T44); | |
897 ci[WS(rs, 1)] = FMA(T3L, T4g, T45 * T44); | |
898 } | |
899 { | |
900 E T4u, T4w, T4t, T4v; | |
901 T4u = T4n - T4m; | |
902 T4w = T4q + T4r; | |
903 T4t = W[32]; | |
904 T4v = W[33]; | |
905 cr[WS(rs, 17)] = FNMS(T4v, T4w, T4t * T4u); | |
906 ci[WS(rs, 17)] = FMA(T4t, T4w, T4v * T4u); | |
907 } | |
908 { | |
909 E T4i, T4k, T4h, T4j; | |
910 T4i = T43 + T3W; | |
911 T4k = T4c - T4f; | |
912 T4h = W[16]; | |
913 T4j = W[17]; | |
914 cr[WS(rs, 9)] = FNMS(T4j, T4k, T4h * T4i); | |
915 ci[WS(rs, 9)] = FMA(T4h, T4k, T4j * T4i); | |
916 } | |
917 { | |
918 E T4o, T4s, T4l, T4p; | |
919 T4o = T4m + T4n; | |
920 T4s = T4q - T4r; | |
921 T4l = W[24]; | |
922 T4p = W[25]; | |
923 cr[WS(rs, 13)] = FNMS(T4p, T4s, T4l * T4o); | |
924 ci[WS(rs, 13)] = FMA(T4l, T4s, T4p * T4o); | |
925 } | |
926 } | |
927 { | |
928 E T1j, T1o, T1M, T1J, T1B, T1N, TO, T1I; | |
929 T1j = FNMS(KP951056516, T1i, KP587785252 * T13); | |
930 T1o = FNMS(KP951056516, T1n, KP587785252 * T1m); | |
931 T1M = FMA(KP951056516, T1m, KP587785252 * T1n); | |
932 T1J = FMA(KP951056516, T13, KP587785252 * T1i); | |
933 { | |
934 E T1z, T1A, TM, TN; | |
935 T1z = FNMS(KP250000000, T1y, T1v); | |
936 T1A = KP559016994 * (T1w - T1x); | |
937 T1B = T1z - T1A; | |
938 T1N = T1A + T1z; | |
939 TM = FNMS(KP250000000, TL, TE); | |
940 TN = KP559016994 * (TH - TK); | |
941 TO = TM - TN; | |
942 T1I = TN + TM; | |
943 } | |
944 { | |
945 E T1k, T1C, TD, T1l; | |
946 T1k = TO - T1j; | |
947 T1C = T1o + T1B; | |
948 TD = W[2]; | |
949 T1l = W[3]; | |
950 cr[WS(rs, 2)] = FNMS(T1l, T1C, TD * T1k); | |
951 ci[WS(rs, 2)] = FMA(T1l, T1k, TD * T1C); | |
952 } | |
953 { | |
954 E T1Q, T1S, T1P, T1R; | |
955 T1Q = T1I + T1J; | |
956 T1S = T1N - T1M; | |
957 T1P = W[26]; | |
958 T1R = W[27]; | |
959 cr[WS(rs, 14)] = FNMS(T1R, T1S, T1P * T1Q); | |
960 ci[WS(rs, 14)] = FMA(T1R, T1Q, T1P * T1S); | |
961 } | |
962 { | |
963 E T1E, T1G, T1D, T1F; | |
964 T1E = TO + T1j; | |
965 T1G = T1B - T1o; | |
966 T1D = W[34]; | |
967 T1F = W[35]; | |
968 cr[WS(rs, 18)] = FNMS(T1F, T1G, T1D * T1E); | |
969 ci[WS(rs, 18)] = FMA(T1F, T1E, T1D * T1G); | |
970 } | |
971 { | |
972 E T1K, T1O, T1H, T1L; | |
973 T1K = T1I - T1J; | |
974 T1O = T1M + T1N; | |
975 T1H = W[10]; | |
976 T1L = W[11]; | |
977 cr[WS(rs, 6)] = FNMS(T1L, T1O, T1H * T1K); | |
978 ci[WS(rs, 6)] = FMA(T1L, T1K, T1H * T1O); | |
979 } | |
980 } | |
981 { | |
982 E T2Q, T3p, T3B, T3x, T3m, T3A, T3b, T3w; | |
983 T2Q = FNMS(KP951056516, T2P, KP587785252 * T2I); | |
984 T3p = FNMS(KP951056516, T3o, KP587785252 * T3n); | |
985 T3B = FMA(KP951056516, T3n, KP587785252 * T3o); | |
986 T3x = FMA(KP951056516, T2I, KP587785252 * T2P); | |
987 { | |
988 E T3k, T3l, T39, T3a; | |
989 T3k = FNMS(KP250000000, T3j, T3g); | |
990 T3l = KP559016994 * (T3h - T3i); | |
991 T3m = T3k - T3l; | |
992 T3A = T3l + T3k; | |
993 T39 = FNMS(KP250000000, T38, T2T); | |
994 T3a = KP559016994 * (T30 - T37); | |
995 T3b = T39 - T3a; | |
996 T3w = T3a + T39; | |
997 } | |
998 { | |
999 E T3c, T3q, T2B, T3d; | |
1000 T3c = T2Q + T3b; | |
1001 T3q = T3m - T3p; | |
1002 T2B = W[4]; | |
1003 T3d = W[5]; | |
1004 cr[WS(rs, 3)] = FNMS(T3d, T3q, T2B * T3c); | |
1005 ci[WS(rs, 3)] = FMA(T2B, T3q, T3d * T3c); | |
1006 } | |
1007 { | |
1008 E T3E, T3G, T3D, T3F; | |
1009 T3E = T3x + T3w; | |
1010 T3G = T3A - T3B; | |
1011 T3D = W[36]; | |
1012 T3F = W[37]; | |
1013 cr[WS(rs, 19)] = FNMS(T3F, T3G, T3D * T3E); | |
1014 ci[WS(rs, 19)] = FMA(T3D, T3G, T3F * T3E); | |
1015 } | |
1016 { | |
1017 E T3s, T3u, T3r, T3t; | |
1018 T3s = T3b - T2Q; | |
1019 T3u = T3m + T3p; | |
1020 T3r = W[12]; | |
1021 T3t = W[13]; | |
1022 cr[WS(rs, 7)] = FNMS(T3t, T3u, T3r * T3s); | |
1023 ci[WS(rs, 7)] = FMA(T3r, T3u, T3t * T3s); | |
1024 } | |
1025 { | |
1026 E T3y, T3C, T3v, T3z; | |
1027 T3y = T3w - T3x; | |
1028 T3C = T3A + T3B; | |
1029 T3v = W[20]; | |
1030 T3z = W[21]; | |
1031 cr[WS(rs, 11)] = FNMS(T3z, T3C, T3v * T3y); | |
1032 ci[WS(rs, 11)] = FMA(T3v, T3C, T3z * T3y); | |
1033 } | |
1034 } | |
1035 } | |
1036 } | |
1037 } | |
1038 | |
1039 static const tw_instr twinstr[] = { | |
1040 {TW_FULL, 1, 20}, | |
1041 {TW_NEXT, 1, 0} | |
1042 }; | |
1043 | |
1044 static const hc2hc_desc desc = { 20, "hb_20", twinstr, &GENUS, {184, 62, 62, 0} }; | |
1045 | |
1046 void X(codelet_hb_20) (planner *p) { | |
1047 X(khc2hc_register) (p, hb_20, &desc); | |
1048 } | |
1049 #endif /* HAVE_FMA */ |