Mercurial > hg > js-dsp-test
comparison fft/fftw/fftw-3.3.4/rdft/scalar/r2cb/hb_12.c @ 19:26056e866c29
Add FFTW to comparison table
author | Chris Cannam |
---|---|
date | Tue, 06 Oct 2015 13:08:39 +0100 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
18:8db794ca3e0b | 19:26056e866c29 |
---|---|
1 /* | |
2 * Copyright (c) 2003, 2007-14 Matteo Frigo | |
3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology | |
4 * | |
5 * This program is free software; you can redistribute it and/or modify | |
6 * it under the terms of the GNU General Public License as published by | |
7 * the Free Software Foundation; either version 2 of the License, or | |
8 * (at your option) any later version. | |
9 * | |
10 * This program is distributed in the hope that it will be useful, | |
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
13 * GNU General Public License for more details. | |
14 * | |
15 * You should have received a copy of the GNU General Public License | |
16 * along with this program; if not, write to the Free Software | |
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA | |
18 * | |
19 */ | |
20 | |
21 /* This file was automatically generated --- DO NOT EDIT */ | |
22 /* Generated on Tue Mar 4 13:50:26 EST 2014 */ | |
23 | |
24 #include "codelet-rdft.h" | |
25 | |
26 #ifdef HAVE_FMA | |
27 | |
28 /* Generated by: ../../../genfft/gen_hc2hc.native -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -sign 1 -n 12 -dif -name hb_12 -include hb.h */ | |
29 | |
30 /* | |
31 * This function contains 118 FP additions, 68 FP multiplications, | |
32 * (or, 72 additions, 22 multiplications, 46 fused multiply/add), | |
33 * 64 stack variables, 2 constants, and 48 memory accesses | |
34 */ | |
35 #include "hb.h" | |
36 | |
37 static void hb_12(R *cr, R *ci, const R *W, stride rs, INT mb, INT me, INT ms) | |
38 { | |
39 DK(KP866025403, +0.866025403784438646763723170752936183471402627); | |
40 DK(KP500000000, +0.500000000000000000000000000000000000000000000); | |
41 { | |
42 INT m; | |
43 for (m = mb, W = W + ((mb - 1) * 22); m < me; m = m + 1, cr = cr + ms, ci = ci - ms, W = W + 22, MAKE_VOLATILE_STRIDE(24, rs)) { | |
44 E T1U, T1X, T1W, T1Y, T1V; | |
45 { | |
46 E T18, T20, T2a, T1s, T21, T1b, T29, T1p, TO, T11, To, Tb, Tg, T23, T1f; | |
47 E Ty, Tl, Tt, T1z, T2d, T1i, T24, T1w, T2c; | |
48 { | |
49 E T5, TN, Ta, TI; | |
50 { | |
51 E T1, TE, TM, T6, TJ, T1o, T4, T17, TH, TK, T7, T8; | |
52 T1 = cr[0]; | |
53 TE = ci[WS(rs, 11)]; | |
54 TM = cr[WS(rs, 6)]; | |
55 T6 = ci[WS(rs, 5)]; | |
56 { | |
57 E T2, T3, TF, TG; | |
58 T2 = cr[WS(rs, 4)]; | |
59 T3 = ci[WS(rs, 3)]; | |
60 TF = ci[WS(rs, 7)]; | |
61 TG = cr[WS(rs, 8)]; | |
62 TJ = ci[WS(rs, 9)]; | |
63 T1o = T2 - T3; | |
64 T4 = T2 + T3; | |
65 T17 = TF + TG; | |
66 TH = TF - TG; | |
67 TK = cr[WS(rs, 10)]; | |
68 T7 = ci[WS(rs, 1)]; | |
69 T8 = cr[WS(rs, 2)]; | |
70 } | |
71 { | |
72 E T1a, T1r, T1q, T19, TL, T9, T16, T1n; | |
73 T5 = T1 + T4; | |
74 T16 = FNMS(KP500000000, T4, T1); | |
75 T1a = TJ + TK; | |
76 TL = TJ - TK; | |
77 T1r = T7 - T8; | |
78 T9 = T7 + T8; | |
79 T18 = FNMS(KP866025403, T17, T16); | |
80 T20 = FMA(KP866025403, T17, T16); | |
81 T1q = FMA(KP500000000, TL, TM); | |
82 TN = TL - TM; | |
83 Ta = T6 + T9; | |
84 T19 = FNMS(KP500000000, T9, T6); | |
85 T1n = FNMS(KP500000000, TH, TE); | |
86 TI = TE + TH; | |
87 T2a = FMA(KP866025403, T1r, T1q); | |
88 T1s = FNMS(KP866025403, T1r, T1q); | |
89 T21 = FNMS(KP866025403, T1a, T19); | |
90 T1b = FMA(KP866025403, T1a, T19); | |
91 T29 = FNMS(KP866025403, T1o, T1n); | |
92 T1p = FMA(KP866025403, T1o, T1n); | |
93 } | |
94 } | |
95 { | |
96 E Tc, Tp, Tx, Th, Tu, Tf, T1v, Ts, T1e, Tv, Ti, Tj; | |
97 Tc = cr[WS(rs, 3)]; | |
98 TO = TI - TN; | |
99 T11 = TI + TN; | |
100 Tp = ci[WS(rs, 8)]; | |
101 To = T5 - Ta; | |
102 Tb = T5 + Ta; | |
103 Tx = cr[WS(rs, 9)]; | |
104 Th = ci[WS(rs, 2)]; | |
105 { | |
106 E Td, Te, Tq, Tr; | |
107 Td = ci[WS(rs, 4)]; | |
108 Te = ci[0]; | |
109 Tq = cr[WS(rs, 7)]; | |
110 Tr = cr[WS(rs, 11)]; | |
111 Tu = ci[WS(rs, 10)]; | |
112 Tf = Td + Te; | |
113 T1v = Td - Te; | |
114 Ts = Tq + Tr; | |
115 T1e = Tq - Tr; | |
116 Tv = ci[WS(rs, 6)]; | |
117 Ti = cr[WS(rs, 1)]; | |
118 Tj = cr[WS(rs, 5)]; | |
119 } | |
120 { | |
121 E T1h, T1y, T1x, T1g, Tw, Tk, T1d, T1u; | |
122 T1d = FNMS(KP500000000, Tf, Tc); | |
123 Tg = Tc + Tf; | |
124 Tw = Tu + Tv; | |
125 T1h = Tv - Tu; | |
126 Tk = Ti + Tj; | |
127 T1y = Ti - Tj; | |
128 T23 = FNMS(KP866025403, T1e, T1d); | |
129 T1f = FMA(KP866025403, T1e, T1d); | |
130 Ty = Tw - Tx; | |
131 T1x = FMA(KP500000000, Tw, Tx); | |
132 T1g = FNMS(KP500000000, Tk, Th); | |
133 Tl = Th + Tk; | |
134 Tt = Tp - Ts; | |
135 T1u = FMA(KP500000000, Ts, Tp); | |
136 T1z = FNMS(KP866025403, T1y, T1x); | |
137 T2d = FMA(KP866025403, T1y, T1x); | |
138 T1i = FMA(KP866025403, T1h, T1g); | |
139 T24 = FNMS(KP866025403, T1h, T1g); | |
140 T1w = FMA(KP866025403, T1v, T1u); | |
141 T2c = FNMS(KP866025403, T1v, T1u); | |
142 } | |
143 } | |
144 } | |
145 { | |
146 E TY, T13, TX, T10; | |
147 { | |
148 E Tn, T12, TC, Tm, TD, TS, TA, Tz; | |
149 Tn = W[16]; | |
150 T12 = Tt + Ty; | |
151 Tz = Tt - Ty; | |
152 TC = W[17]; | |
153 Tm = Tg + Tl; | |
154 TD = Tg - Tl; | |
155 TS = To + Tz; | |
156 TA = To - Tz; | |
157 { | |
158 E TV, TU, TW, TT; | |
159 { | |
160 E TQ, TR, TP, TB; | |
161 TV = TO - TD; | |
162 TP = TD + TO; | |
163 cr[0] = Tb + Tm; | |
164 TB = Tn * TA; | |
165 TQ = Tn * TP; | |
166 TR = W[4]; | |
167 cr[WS(rs, 9)] = FNMS(TC, TP, TB); | |
168 TU = W[5]; | |
169 ci[WS(rs, 9)] = FMA(TC, TA, TQ); | |
170 TW = TR * TV; | |
171 TT = TR * TS; | |
172 } | |
173 ci[WS(rs, 3)] = FMA(TU, TS, TW); | |
174 cr[WS(rs, 3)] = FNMS(TU, TV, TT); | |
175 TY = Tb - Tm; | |
176 T13 = T11 - T12; | |
177 TX = W[10]; | |
178 T10 = W[11]; | |
179 ci[0] = T11 + T12; | |
180 } | |
181 } | |
182 { | |
183 E T1K, T1Q, T1P, T1L, T2o, T2u, T2t, T2p; | |
184 { | |
185 E T1E, T1D, T1H, T1F, T1G, T1t, T1k, T1A; | |
186 { | |
187 E T1c, TZ, T14, T1j; | |
188 T1K = T18 - T1b; | |
189 T1c = T18 + T1b; | |
190 TZ = TX * TY; | |
191 T14 = T10 * TY; | |
192 T1j = T1f + T1i; | |
193 T1Q = T1f - T1i; | |
194 T1P = T1p + T1s; | |
195 T1t = T1p - T1s; | |
196 cr[WS(rs, 6)] = FNMS(T10, T13, TZ); | |
197 ci[WS(rs, 6)] = FMA(TX, T13, T14); | |
198 T1E = T1c + T1j; | |
199 T1k = T1c - T1j; | |
200 T1A = T1w - T1z; | |
201 T1L = T1w + T1z; | |
202 } | |
203 { | |
204 E T15, T1m, T1B, T1l, T1C; | |
205 T15 = W[18]; | |
206 T1m = W[19]; | |
207 T1D = W[6]; | |
208 T1H = T1t + T1A; | |
209 T1B = T1t - T1A; | |
210 T1l = T15 * T1k; | |
211 T1C = T1m * T1k; | |
212 T1F = T1D * T1E; | |
213 T1G = W[7]; | |
214 cr[WS(rs, 10)] = FNMS(T1m, T1B, T1l); | |
215 ci[WS(rs, 10)] = FMA(T15, T1B, T1C); | |
216 } | |
217 { | |
218 E T26, T2i, T2l, T2f, T1Z, T28; | |
219 { | |
220 E T22, T1I, T25, T2b, T2e; | |
221 T22 = T20 + T21; | |
222 T2o = T20 - T21; | |
223 cr[WS(rs, 4)] = FNMS(T1G, T1H, T1F); | |
224 T1I = T1G * T1E; | |
225 T2u = T23 - T24; | |
226 T25 = T23 + T24; | |
227 T2b = T29 - T2a; | |
228 T2t = T29 + T2a; | |
229 T2p = T2c + T2d; | |
230 T2e = T2c - T2d; | |
231 ci[WS(rs, 4)] = FMA(T1D, T1H, T1I); | |
232 T26 = T22 - T25; | |
233 T2i = T22 + T25; | |
234 T2l = T2b + T2e; | |
235 T2f = T2b - T2e; | |
236 } | |
237 T1Z = W[2]; | |
238 T28 = W[3]; | |
239 { | |
240 E T2h, T2k, T27, T2g, T2j, T2m; | |
241 T2h = W[14]; | |
242 T2k = W[15]; | |
243 T27 = T1Z * T26; | |
244 T2g = T28 * T26; | |
245 T2j = T2h * T2i; | |
246 T2m = T2k * T2i; | |
247 cr[WS(rs, 2)] = FNMS(T28, T2f, T27); | |
248 ci[WS(rs, 2)] = FMA(T1Z, T2f, T2g); | |
249 cr[WS(rs, 8)] = FNMS(T2k, T2l, T2j); | |
250 ci[WS(rs, 8)] = FMA(T2h, T2l, T2m); | |
251 } | |
252 } | |
253 } | |
254 { | |
255 E T2y, T2B, T2A, T2C, T2z; | |
256 { | |
257 E T2n, T2q, T2v, T2s, T2r, T2x, T2w; | |
258 T2n = W[8]; | |
259 T2y = T2o + T2p; | |
260 T2q = T2o - T2p; | |
261 T2B = T2t - T2u; | |
262 T2v = T2t + T2u; | |
263 T2s = W[9]; | |
264 T2r = T2n * T2q; | |
265 T2x = W[20]; | |
266 T2w = T2n * T2v; | |
267 T2A = W[21]; | |
268 cr[WS(rs, 5)] = FNMS(T2s, T2v, T2r); | |
269 T2C = T2x * T2B; | |
270 T2z = T2x * T2y; | |
271 ci[WS(rs, 5)] = FMA(T2s, T2q, T2w); | |
272 } | |
273 ci[WS(rs, 11)] = FMA(T2A, T2y, T2C); | |
274 cr[WS(rs, 11)] = FNMS(T2A, T2B, T2z); | |
275 { | |
276 E T1J, T1M, T1R, T1O, T1N, T1T, T1S; | |
277 T1J = W[0]; | |
278 T1U = T1K + T1L; | |
279 T1M = T1K - T1L; | |
280 T1X = T1P - T1Q; | |
281 T1R = T1P + T1Q; | |
282 T1O = W[1]; | |
283 T1N = T1J * T1M; | |
284 T1T = W[12]; | |
285 T1S = T1J * T1R; | |
286 T1W = W[13]; | |
287 cr[WS(rs, 1)] = FNMS(T1O, T1R, T1N); | |
288 T1Y = T1T * T1X; | |
289 T1V = T1T * T1U; | |
290 ci[WS(rs, 1)] = FMA(T1O, T1M, T1S); | |
291 } | |
292 } | |
293 } | |
294 } | |
295 } | |
296 ci[WS(rs, 7)] = FMA(T1W, T1U, T1Y); | |
297 cr[WS(rs, 7)] = FNMS(T1W, T1X, T1V); | |
298 } | |
299 } | |
300 } | |
301 | |
302 static const tw_instr twinstr[] = { | |
303 {TW_FULL, 1, 12}, | |
304 {TW_NEXT, 1, 0} | |
305 }; | |
306 | |
307 static const hc2hc_desc desc = { 12, "hb_12", twinstr, &GENUS, {72, 22, 46, 0} }; | |
308 | |
309 void X(codelet_hb_12) (planner *p) { | |
310 X(khc2hc_register) (p, hb_12, &desc); | |
311 } | |
312 #else /* HAVE_FMA */ | |
313 | |
314 /* Generated by: ../../../genfft/gen_hc2hc.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 12 -dif -name hb_12 -include hb.h */ | |
315 | |
316 /* | |
317 * This function contains 118 FP additions, 60 FP multiplications, | |
318 * (or, 88 additions, 30 multiplications, 30 fused multiply/add), | |
319 * 39 stack variables, 2 constants, and 48 memory accesses | |
320 */ | |
321 #include "hb.h" | |
322 | |
323 static void hb_12(R *cr, R *ci, const R *W, stride rs, INT mb, INT me, INT ms) | |
324 { | |
325 DK(KP500000000, +0.500000000000000000000000000000000000000000000); | |
326 DK(KP866025403, +0.866025403784438646763723170752936183471402627); | |
327 { | |
328 INT m; | |
329 for (m = mb, W = W + ((mb - 1) * 22); m < me; m = m + 1, cr = cr + ms, ci = ci - ms, W = W + 22, MAKE_VOLATILE_STRIDE(24, rs)) { | |
330 E T5, TH, T12, T1M, T1i, T1U, Tg, Tt, T19, T1X, T1p, T1P, Ta, TM, T15; | |
331 E T1N, T1l, T1V, Tl, Ty, T1c, T1Y, T1s, T1Q; | |
332 { | |
333 E T1, TD, T4, T1g, TG, T11, T10, T1h; | |
334 T1 = cr[0]; | |
335 TD = ci[WS(rs, 11)]; | |
336 { | |
337 E T2, T3, TE, TF; | |
338 T2 = cr[WS(rs, 4)]; | |
339 T3 = ci[WS(rs, 3)]; | |
340 T4 = T2 + T3; | |
341 T1g = KP866025403 * (T2 - T3); | |
342 TE = ci[WS(rs, 7)]; | |
343 TF = cr[WS(rs, 8)]; | |
344 TG = TE - TF; | |
345 T11 = KP866025403 * (TE + TF); | |
346 } | |
347 T5 = T1 + T4; | |
348 TH = TD + TG; | |
349 T10 = FNMS(KP500000000, T4, T1); | |
350 T12 = T10 - T11; | |
351 T1M = T10 + T11; | |
352 T1h = FNMS(KP500000000, TG, TD); | |
353 T1i = T1g + T1h; | |
354 T1U = T1h - T1g; | |
355 } | |
356 { | |
357 E Tc, Tp, Tf, T17, Ts, T1o, T18, T1n; | |
358 Tc = cr[WS(rs, 3)]; | |
359 Tp = ci[WS(rs, 8)]; | |
360 { | |
361 E Td, Te, Tq, Tr; | |
362 Td = ci[WS(rs, 4)]; | |
363 Te = ci[0]; | |
364 Tf = Td + Te; | |
365 T17 = KP866025403 * (Td - Te); | |
366 Tq = cr[WS(rs, 7)]; | |
367 Tr = cr[WS(rs, 11)]; | |
368 Ts = Tq + Tr; | |
369 T1o = KP866025403 * (Tq - Tr); | |
370 } | |
371 Tg = Tc + Tf; | |
372 Tt = Tp - Ts; | |
373 T18 = FMA(KP500000000, Ts, Tp); | |
374 T19 = T17 + T18; | |
375 T1X = T18 - T17; | |
376 T1n = FNMS(KP500000000, Tf, Tc); | |
377 T1p = T1n + T1o; | |
378 T1P = T1n - T1o; | |
379 } | |
380 { | |
381 E T6, TL, T9, T1j, TK, T14, T13, T1k; | |
382 T6 = ci[WS(rs, 5)]; | |
383 TL = cr[WS(rs, 6)]; | |
384 { | |
385 E T7, T8, TI, TJ; | |
386 T7 = ci[WS(rs, 1)]; | |
387 T8 = cr[WS(rs, 2)]; | |
388 T9 = T7 + T8; | |
389 T1j = KP866025403 * (T7 - T8); | |
390 TI = ci[WS(rs, 9)]; | |
391 TJ = cr[WS(rs, 10)]; | |
392 TK = TI - TJ; | |
393 T14 = KP866025403 * (TI + TJ); | |
394 } | |
395 Ta = T6 + T9; | |
396 TM = TK - TL; | |
397 T13 = FNMS(KP500000000, T9, T6); | |
398 T15 = T13 + T14; | |
399 T1N = T13 - T14; | |
400 T1k = FMA(KP500000000, TK, TL); | |
401 T1l = T1j - T1k; | |
402 T1V = T1j + T1k; | |
403 } | |
404 { | |
405 E Th, Tx, Tk, T1a, Tw, T1r, T1b, T1q; | |
406 Th = ci[WS(rs, 2)]; | |
407 Tx = cr[WS(rs, 9)]; | |
408 { | |
409 E Ti, Tj, Tu, Tv; | |
410 Ti = cr[WS(rs, 1)]; | |
411 Tj = cr[WS(rs, 5)]; | |
412 Tk = Ti + Tj; | |
413 T1a = KP866025403 * (Ti - Tj); | |
414 Tu = ci[WS(rs, 10)]; | |
415 Tv = ci[WS(rs, 6)]; | |
416 Tw = Tu + Tv; | |
417 T1r = KP866025403 * (Tv - Tu); | |
418 } | |
419 Tl = Th + Tk; | |
420 Ty = Tw - Tx; | |
421 T1b = FMA(KP500000000, Tw, Tx); | |
422 T1c = T1a - T1b; | |
423 T1Y = T1a + T1b; | |
424 T1q = FNMS(KP500000000, Tk, Th); | |
425 T1s = T1q + T1r; | |
426 T1Q = T1q - T1r; | |
427 } | |
428 { | |
429 E Tb, Tm, TU, TW, TX, TY, TT, TV; | |
430 Tb = T5 + Ta; | |
431 Tm = Tg + Tl; | |
432 TU = Tb - Tm; | |
433 TW = TH + TM; | |
434 TX = Tt + Ty; | |
435 TY = TW - TX; | |
436 cr[0] = Tb + Tm; | |
437 ci[0] = TW + TX; | |
438 TT = W[10]; | |
439 TV = W[11]; | |
440 cr[WS(rs, 6)] = FNMS(TV, TY, TT * TU); | |
441 ci[WS(rs, 6)] = FMA(TV, TU, TT * TY); | |
442 } | |
443 { | |
444 E TA, TQ, TO, TS; | |
445 { | |
446 E To, Tz, TC, TN; | |
447 To = T5 - Ta; | |
448 Tz = Tt - Ty; | |
449 TA = To - Tz; | |
450 TQ = To + Tz; | |
451 TC = Tg - Tl; | |
452 TN = TH - TM; | |
453 TO = TC + TN; | |
454 TS = TN - TC; | |
455 } | |
456 { | |
457 E Tn, TB, TP, TR; | |
458 Tn = W[16]; | |
459 TB = W[17]; | |
460 cr[WS(rs, 9)] = FNMS(TB, TO, Tn * TA); | |
461 ci[WS(rs, 9)] = FMA(Tn, TO, TB * TA); | |
462 TP = W[4]; | |
463 TR = W[5]; | |
464 cr[WS(rs, 3)] = FNMS(TR, TS, TP * TQ); | |
465 ci[WS(rs, 3)] = FMA(TP, TS, TR * TQ); | |
466 } | |
467 } | |
468 { | |
469 E T28, T2e, T2c, T2g; | |
470 { | |
471 E T26, T27, T2a, T2b; | |
472 T26 = T1M - T1N; | |
473 T27 = T1X + T1Y; | |
474 T28 = T26 - T27; | |
475 T2e = T26 + T27; | |
476 T2a = T1U + T1V; | |
477 T2b = T1P - T1Q; | |
478 T2c = T2a + T2b; | |
479 T2g = T2a - T2b; | |
480 } | |
481 { | |
482 E T25, T29, T2d, T2f; | |
483 T25 = W[8]; | |
484 T29 = W[9]; | |
485 cr[WS(rs, 5)] = FNMS(T29, T2c, T25 * T28); | |
486 ci[WS(rs, 5)] = FMA(T25, T2c, T29 * T28); | |
487 T2d = W[20]; | |
488 T2f = W[21]; | |
489 cr[WS(rs, 11)] = FNMS(T2f, T2g, T2d * T2e); | |
490 ci[WS(rs, 11)] = FMA(T2d, T2g, T2f * T2e); | |
491 } | |
492 } | |
493 { | |
494 E T1S, T22, T20, T24; | |
495 { | |
496 E T1O, T1R, T1W, T1Z; | |
497 T1O = T1M + T1N; | |
498 T1R = T1P + T1Q; | |
499 T1S = T1O - T1R; | |
500 T22 = T1O + T1R; | |
501 T1W = T1U - T1V; | |
502 T1Z = T1X - T1Y; | |
503 T20 = T1W - T1Z; | |
504 T24 = T1W + T1Z; | |
505 } | |
506 { | |
507 E T1L, T1T, T21, T23; | |
508 T1L = W[2]; | |
509 T1T = W[3]; | |
510 cr[WS(rs, 2)] = FNMS(T1T, T20, T1L * T1S); | |
511 ci[WS(rs, 2)] = FMA(T1T, T1S, T1L * T20); | |
512 T21 = W[14]; | |
513 T23 = W[15]; | |
514 cr[WS(rs, 8)] = FNMS(T23, T24, T21 * T22); | |
515 ci[WS(rs, 8)] = FMA(T23, T22, T21 * T24); | |
516 } | |
517 } | |
518 { | |
519 E T1C, T1I, T1G, T1K; | |
520 { | |
521 E T1A, T1B, T1E, T1F; | |
522 T1A = T12 + T15; | |
523 T1B = T1p + T1s; | |
524 T1C = T1A - T1B; | |
525 T1I = T1A + T1B; | |
526 T1E = T1i + T1l; | |
527 T1F = T19 + T1c; | |
528 T1G = T1E - T1F; | |
529 T1K = T1E + T1F; | |
530 } | |
531 { | |
532 E T1z, T1D, T1H, T1J; | |
533 T1z = W[18]; | |
534 T1D = W[19]; | |
535 cr[WS(rs, 10)] = FNMS(T1D, T1G, T1z * T1C); | |
536 ci[WS(rs, 10)] = FMA(T1D, T1C, T1z * T1G); | |
537 T1H = W[6]; | |
538 T1J = W[7]; | |
539 cr[WS(rs, 4)] = FNMS(T1J, T1K, T1H * T1I); | |
540 ci[WS(rs, 4)] = FMA(T1J, T1I, T1H * T1K); | |
541 } | |
542 } | |
543 { | |
544 E T1e, T1w, T1u, T1y; | |
545 { | |
546 E T16, T1d, T1m, T1t; | |
547 T16 = T12 - T15; | |
548 T1d = T19 - T1c; | |
549 T1e = T16 - T1d; | |
550 T1w = T16 + T1d; | |
551 T1m = T1i - T1l; | |
552 T1t = T1p - T1s; | |
553 T1u = T1m + T1t; | |
554 T1y = T1m - T1t; | |
555 } | |
556 { | |
557 E TZ, T1f, T1v, T1x; | |
558 TZ = W[0]; | |
559 T1f = W[1]; | |
560 cr[WS(rs, 1)] = FNMS(T1f, T1u, TZ * T1e); | |
561 ci[WS(rs, 1)] = FMA(TZ, T1u, T1f * T1e); | |
562 T1v = W[12]; | |
563 T1x = W[13]; | |
564 cr[WS(rs, 7)] = FNMS(T1x, T1y, T1v * T1w); | |
565 ci[WS(rs, 7)] = FMA(T1v, T1y, T1x * T1w); | |
566 } | |
567 } | |
568 } | |
569 } | |
570 } | |
571 | |
572 static const tw_instr twinstr[] = { | |
573 {TW_FULL, 1, 12}, | |
574 {TW_NEXT, 1, 0} | |
575 }; | |
576 | |
577 static const hc2hc_desc desc = { 12, "hb_12", twinstr, &GENUS, {88, 30, 30, 0} }; | |
578 | |
579 void X(codelet_hb_12) (planner *p) { | |
580 X(khc2hc_register) (p, hb_12, &desc); | |
581 } | |
582 #endif /* HAVE_FMA */ |