comparison fft/fftw/fftw-3.3.4/rdft/scalar/r2cb/hb_10.c @ 19:26056e866c29

Add FFTW to comparison table
author Chris Cannam
date Tue, 06 Oct 2015 13:08:39 +0100
parents
children
comparison
equal deleted inserted replaced
18:8db794ca3e0b 19:26056e866c29
1 /*
2 * Copyright (c) 2003, 2007-14 Matteo Frigo
3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
18 *
19 */
20
21 /* This file was automatically generated --- DO NOT EDIT */
22 /* Generated on Tue Mar 4 13:50:26 EST 2014 */
23
24 #include "codelet-rdft.h"
25
26 #ifdef HAVE_FMA
27
28 /* Generated by: ../../../genfft/gen_hc2hc.native -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -sign 1 -n 10 -dif -name hb_10 -include hb.h */
29
30 /*
31 * This function contains 102 FP additions, 72 FP multiplications,
32 * (or, 48 additions, 18 multiplications, 54 fused multiply/add),
33 * 71 stack variables, 4 constants, and 40 memory accesses
34 */
35 #include "hb.h"
36
37 static void hb_10(R *cr, R *ci, const R *W, stride rs, INT mb, INT me, INT ms)
38 {
39 DK(KP951056516, +0.951056516295153572116439333379382143405698634);
40 DK(KP559016994, +0.559016994374947424102293417182819058860154590);
41 DK(KP250000000, +0.250000000000000000000000000000000000000000000);
42 DK(KP618033988, +0.618033988749894848204586834365638117720309180);
43 {
44 INT m;
45 for (m = mb, W = W + ((mb - 1) * 18); m < me; m = m + 1, cr = cr + ms, ci = ci - ms, W = W + 18, MAKE_VOLATILE_STRIDE(20, rs)) {
46 E T21, T1Y, T1X;
47 {
48 E T1B, TH, T1g, T3, T1V, T1x, T1G, T1E, TM, TK, T11, TB, T7, T1m, T1J;
49 E TO, Th, T1h, T6, T8, TF, TG, T1i, T9;
50 TF = ci[WS(rs, 9)];
51 TG = cr[WS(rs, 5)];
52 {
53 E T1u, Tp, Tu, T1s, Tz, T1v, Ts, Tv;
54 {
55 E Tx, Ty, Tn, To, Tq, Tr;
56 Tn = ci[WS(rs, 5)];
57 To = cr[WS(rs, 9)];
58 Tx = ci[WS(rs, 6)];
59 T1B = TF + TG;
60 TH = TF - TG;
61 T1u = Tn + To;
62 Tp = Tn - To;
63 Ty = cr[WS(rs, 8)];
64 Tq = ci[WS(rs, 8)];
65 Tr = cr[WS(rs, 6)];
66 Tu = ci[WS(rs, 7)];
67 T1s = Tx + Ty;
68 Tz = Tx - Ty;
69 T1v = Tq + Tr;
70 Ts = Tq - Tr;
71 Tv = cr[WS(rs, 7)];
72 }
73 {
74 E T1, T1w, T1D, TJ, Tt, T1r, Tw, T2;
75 T1 = cr[0];
76 T1w = T1u + T1v;
77 T1D = T1u - T1v;
78 TJ = Tp + Ts;
79 Tt = Tp - Ts;
80 T1r = Tu + Tv;
81 Tw = Tu - Tv;
82 T2 = ci[WS(rs, 4)];
83 {
84 E Tb, Tc, Te, Tf;
85 Tb = cr[WS(rs, 4)];
86 {
87 E T1t, T1C, TI, TA;
88 T1t = T1r + T1s;
89 T1C = T1r - T1s;
90 TI = Tw + Tz;
91 TA = Tw - Tz;
92 T1g = T1 - T2;
93 T3 = T1 + T2;
94 T1V = FNMS(KP618033988, T1t, T1w);
95 T1x = FMA(KP618033988, T1w, T1t);
96 T1G = T1C - T1D;
97 T1E = T1C + T1D;
98 TM = TI - TJ;
99 TK = TI + TJ;
100 T11 = FMA(KP618033988, Tt, TA);
101 TB = FNMS(KP618033988, TA, Tt);
102 Tc = ci[0];
103 }
104 Te = ci[WS(rs, 3)];
105 Tf = cr[WS(rs, 1)];
106 {
107 E T4, T1k, Td, T1l, Tg, T5;
108 T4 = cr[WS(rs, 2)];
109 T1k = Tb - Tc;
110 Td = Tb + Tc;
111 T1l = Te - Tf;
112 Tg = Te + Tf;
113 T5 = ci[WS(rs, 2)];
114 T7 = ci[WS(rs, 1)];
115 T1m = T1k + T1l;
116 T1J = T1k - T1l;
117 TO = Td - Tg;
118 Th = Td + Tg;
119 T1h = T4 - T5;
120 T6 = T4 + T5;
121 T8 = cr[WS(rs, 3)];
122 }
123 }
124 }
125 }
126 ci[0] = TH + TK;
127 T1i = T7 - T8;
128 T9 = T7 + T8;
129 {
130 E T2d, T1F, T29, T1I, TP, T2c, T1p, Tl, T1o, Tk, T2b, T2e, T17, T14, T13;
131 T2d = T1B + T1E;
132 T1F = FNMS(KP250000000, T1E, T1B);
133 {
134 E T1j, Ta, T1n, Ti, T2a;
135 T29 = W[8];
136 T1I = T1h - T1i;
137 T1j = T1h + T1i;
138 TP = T6 - T9;
139 Ta = T6 + T9;
140 T2c = W[9];
141 T1p = T1j - T1m;
142 T1n = T1j + T1m;
143 Tl = Ta - Th;
144 Ti = Ta + Th;
145 T1o = FNMS(KP250000000, T1n, T1g);
146 T2a = T1g + T1n;
147 cr[0] = T3 + Ti;
148 Tk = FNMS(KP250000000, Ti, T3);
149 T2b = T29 * T2a;
150 T2e = T2c * T2a;
151 }
152 {
153 E T16, TQ, T10, Tm, TL;
154 T16 = FMA(KP618033988, TO, TP);
155 TQ = FNMS(KP618033988, TP, TO);
156 cr[WS(rs, 5)] = FNMS(T2c, T2d, T2b);
157 ci[WS(rs, 5)] = FMA(T29, T2d, T2e);
158 T10 = FMA(KP559016994, Tl, Tk);
159 Tm = FNMS(KP559016994, Tl, Tk);
160 TL = FNMS(KP250000000, TK, TH);
161 {
162 E TE, TU, T12, TR, TX, T1d, T1c, T19, TD, T1e, T1b, TW, TT;
163 {
164 E TC, T15, T1a, TS, Tj, TN;
165 TE = W[3];
166 TC = FMA(KP951056516, TB, Tm);
167 TU = FNMS(KP951056516, TB, Tm);
168 TN = FNMS(KP559016994, TM, TL);
169 T15 = FMA(KP559016994, TM, TL);
170 T12 = FMA(KP951056516, T11, T10);
171 T1a = FNMS(KP951056516, T11, T10);
172 TS = TE * TC;
173 TR = FNMS(KP951056516, TQ, TN);
174 TX = FMA(KP951056516, TQ, TN);
175 Tj = W[2];
176 T1d = FMA(KP951056516, T16, T15);
177 T17 = FNMS(KP951056516, T16, T15);
178 T1c = W[11];
179 T19 = W[10];
180 ci[WS(rs, 2)] = FMA(Tj, TR, TS);
181 TD = Tj * TC;
182 T1e = T1c * T1a;
183 T1b = T19 * T1a;
184 }
185 cr[WS(rs, 2)] = FNMS(TE, TR, TD);
186 ci[WS(rs, 6)] = FMA(T19, T1d, T1e);
187 cr[WS(rs, 6)] = FNMS(T1c, T1d, T1b);
188 TW = W[15];
189 TT = W[14];
190 {
191 E TZ, T18, TY, TV;
192 T14 = W[7];
193 TY = TW * TU;
194 TV = TT * TU;
195 TZ = W[6];
196 T18 = T14 * T12;
197 ci[WS(rs, 8)] = FMA(TT, TX, TY);
198 cr[WS(rs, 8)] = FNMS(TW, TX, TV);
199 T13 = TZ * T12;
200 ci[WS(rs, 4)] = FMA(TZ, T17, T18);
201 }
202 }
203 }
204 {
205 E T20, T1K, T1q, T1U;
206 T20 = FNMS(KP618033988, T1I, T1J);
207 T1K = FMA(KP618033988, T1J, T1I);
208 cr[WS(rs, 4)] = FNMS(T14, T17, T13);
209 T1q = FMA(KP559016994, T1p, T1o);
210 T1U = FNMS(KP559016994, T1p, T1o);
211 {
212 E T1A, T1O, T1W, T1R, T1L, T27, T26, T23, T1z, T28, T25, T1Q, T1N;
213 {
214 E T1y, T1Z, T24, T1M, T1f, T1H;
215 T1A = W[1];
216 T1O = FMA(KP951056516, T1x, T1q);
217 T1y = FNMS(KP951056516, T1x, T1q);
218 T1Z = FNMS(KP559016994, T1G, T1F);
219 T1H = FMA(KP559016994, T1G, T1F);
220 T24 = FMA(KP951056516, T1V, T1U);
221 T1W = FNMS(KP951056516, T1V, T1U);
222 T1M = T1A * T1y;
223 T1R = FNMS(KP951056516, T1K, T1H);
224 T1L = FMA(KP951056516, T1K, T1H);
225 T1f = W[0];
226 T21 = FMA(KP951056516, T20, T1Z);
227 T27 = FNMS(KP951056516, T20, T1Z);
228 T26 = W[13];
229 T23 = W[12];
230 ci[WS(rs, 1)] = FMA(T1f, T1L, T1M);
231 T1z = T1f * T1y;
232 T28 = T26 * T24;
233 T25 = T23 * T24;
234 }
235 cr[WS(rs, 1)] = FNMS(T1A, T1L, T1z);
236 ci[WS(rs, 7)] = FMA(T23, T27, T28);
237 cr[WS(rs, 7)] = FNMS(T26, T27, T25);
238 T1Q = W[17];
239 T1N = W[16];
240 {
241 E T1T, T22, T1S, T1P;
242 T1Y = W[5];
243 T1S = T1Q * T1O;
244 T1P = T1N * T1O;
245 T1T = W[4];
246 T22 = T1Y * T1W;
247 ci[WS(rs, 9)] = FMA(T1N, T1R, T1S);
248 cr[WS(rs, 9)] = FNMS(T1Q, T1R, T1P);
249 T1X = T1T * T1W;
250 ci[WS(rs, 3)] = FMA(T1T, T21, T22);
251 }
252 }
253 }
254 }
255 }
256 cr[WS(rs, 3)] = FNMS(T1Y, T21, T1X);
257 }
258 }
259 }
260
261 static const tw_instr twinstr[] = {
262 {TW_FULL, 1, 10},
263 {TW_NEXT, 1, 0}
264 };
265
266 static const hc2hc_desc desc = { 10, "hb_10", twinstr, &GENUS, {48, 18, 54, 0} };
267
268 void X(codelet_hb_10) (planner *p) {
269 X(khc2hc_register) (p, hb_10, &desc);
270 }
271 #else /* HAVE_FMA */
272
273 /* Generated by: ../../../genfft/gen_hc2hc.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 10 -dif -name hb_10 -include hb.h */
274
275 /*
276 * This function contains 102 FP additions, 60 FP multiplications,
277 * (or, 72 additions, 30 multiplications, 30 fused multiply/add),
278 * 41 stack variables, 4 constants, and 40 memory accesses
279 */
280 #include "hb.h"
281
282 static void hb_10(R *cr, R *ci, const R *W, stride rs, INT mb, INT me, INT ms)
283 {
284 DK(KP250000000, +0.250000000000000000000000000000000000000000000);
285 DK(KP951056516, +0.951056516295153572116439333379382143405698634);
286 DK(KP587785252, +0.587785252292473129168705954639072768597652438);
287 DK(KP559016994, +0.559016994374947424102293417182819058860154590);
288 {
289 INT m;
290 for (m = mb, W = W + ((mb - 1) * 18); m < me; m = m + 1, cr = cr + ms, ci = ci - ms, W = W + 18, MAKE_VOLATILE_STRIDE(20, rs)) {
291 E T3, T18, TE, TF, T1B, T1A, T1f, T1t, Ti, Tl, TJ, T1i, Tt, TA, T1w;
292 E T1v, T1p, T1E, TM, TO;
293 {
294 E T1, T2, TH, TI;
295 T1 = cr[0];
296 T2 = ci[WS(rs, 4)];
297 T3 = T1 + T2;
298 T18 = T1 - T2;
299 {
300 E T6, T19, Tg, T1d, T9, T1a, Td, T1c;
301 {
302 E T4, T5, Te, Tf;
303 T4 = cr[WS(rs, 2)];
304 T5 = ci[WS(rs, 2)];
305 T6 = T4 + T5;
306 T19 = T4 - T5;
307 Te = ci[WS(rs, 3)];
308 Tf = cr[WS(rs, 1)];
309 Tg = Te + Tf;
310 T1d = Te - Tf;
311 }
312 {
313 E T7, T8, Tb, Tc;
314 T7 = ci[WS(rs, 1)];
315 T8 = cr[WS(rs, 3)];
316 T9 = T7 + T8;
317 T1a = T7 - T8;
318 Tb = cr[WS(rs, 4)];
319 Tc = ci[0];
320 Td = Tb + Tc;
321 T1c = Tb - Tc;
322 }
323 TE = T6 - T9;
324 TF = Td - Tg;
325 T1B = T1c - T1d;
326 T1A = T19 - T1a;
327 {
328 E T1b, T1e, Ta, Th;
329 T1b = T19 + T1a;
330 T1e = T1c + T1d;
331 T1f = T1b + T1e;
332 T1t = KP559016994 * (T1b - T1e);
333 Ta = T6 + T9;
334 Th = Td + Tg;
335 Ti = Ta + Th;
336 Tl = KP559016994 * (Ta - Th);
337 }
338 }
339 TH = ci[WS(rs, 9)];
340 TI = cr[WS(rs, 5)];
341 TJ = TH - TI;
342 T1i = TH + TI;
343 {
344 E Tp, T1j, Tz, T1n, Ts, T1k, Tw, T1m;
345 {
346 E Tn, To, Tx, Ty;
347 Tn = ci[WS(rs, 7)];
348 To = cr[WS(rs, 7)];
349 Tp = Tn - To;
350 T1j = Tn + To;
351 Tx = ci[WS(rs, 8)];
352 Ty = cr[WS(rs, 6)];
353 Tz = Tx - Ty;
354 T1n = Tx + Ty;
355 }
356 {
357 E Tq, Tr, Tu, Tv;
358 Tq = ci[WS(rs, 6)];
359 Tr = cr[WS(rs, 8)];
360 Ts = Tq - Tr;
361 T1k = Tq + Tr;
362 Tu = ci[WS(rs, 5)];
363 Tv = cr[WS(rs, 9)];
364 Tw = Tu - Tv;
365 T1m = Tu + Tv;
366 }
367 Tt = Tp - Ts;
368 TA = Tw - Tz;
369 T1w = T1m + T1n;
370 T1v = T1j + T1k;
371 {
372 E T1l, T1o, TK, TL;
373 T1l = T1j - T1k;
374 T1o = T1m - T1n;
375 T1p = T1l + T1o;
376 T1E = KP559016994 * (T1l - T1o);
377 TK = Tp + Ts;
378 TL = Tw + Tz;
379 TM = TK + TL;
380 TO = KP559016994 * (TK - TL);
381 }
382 }
383 }
384 cr[0] = T3 + Ti;
385 ci[0] = TJ + TM;
386 {
387 E T1g, T1q, T17, T1h;
388 T1g = T18 + T1f;
389 T1q = T1i + T1p;
390 T17 = W[8];
391 T1h = W[9];
392 cr[WS(rs, 5)] = FNMS(T1h, T1q, T17 * T1g);
393 ci[WS(rs, 5)] = FMA(T1h, T1g, T17 * T1q);
394 }
395 {
396 E TB, TG, T11, TX, TP, T10, Tm, TW, TN, Tk;
397 TB = FNMS(KP951056516, TA, KP587785252 * Tt);
398 TG = FNMS(KP951056516, TF, KP587785252 * TE);
399 T11 = FMA(KP951056516, TE, KP587785252 * TF);
400 TX = FMA(KP951056516, Tt, KP587785252 * TA);
401 TN = FNMS(KP250000000, TM, TJ);
402 TP = TN - TO;
403 T10 = TO + TN;
404 Tk = FNMS(KP250000000, Ti, T3);
405 Tm = Tk - Tl;
406 TW = Tl + Tk;
407 {
408 E TC, TQ, Tj, TD;
409 TC = Tm - TB;
410 TQ = TG + TP;
411 Tj = W[2];
412 TD = W[3];
413 cr[WS(rs, 2)] = FNMS(TD, TQ, Tj * TC);
414 ci[WS(rs, 2)] = FMA(TD, TC, Tj * TQ);
415 }
416 {
417 E T14, T16, T13, T15;
418 T14 = TW - TX;
419 T16 = T11 + T10;
420 T13 = W[10];
421 T15 = W[11];
422 cr[WS(rs, 6)] = FNMS(T15, T16, T13 * T14);
423 ci[WS(rs, 6)] = FMA(T15, T14, T13 * T16);
424 }
425 {
426 E TS, TU, TR, TT;
427 TS = Tm + TB;
428 TU = TP - TG;
429 TR = W[14];
430 TT = W[15];
431 cr[WS(rs, 8)] = FNMS(TT, TU, TR * TS);
432 ci[WS(rs, 8)] = FMA(TT, TS, TR * TU);
433 }
434 {
435 E TY, T12, TV, TZ;
436 TY = TW + TX;
437 T12 = T10 - T11;
438 TV = W[6];
439 TZ = W[7];
440 cr[WS(rs, 4)] = FNMS(TZ, T12, TV * TY);
441 ci[WS(rs, 4)] = FMA(TZ, TY, TV * T12);
442 }
443 }
444 {
445 E T1x, T1C, T1Q, T1N, T1F, T1R, T1u, T1M, T1D, T1s;
446 T1x = FNMS(KP951056516, T1w, KP587785252 * T1v);
447 T1C = FNMS(KP951056516, T1B, KP587785252 * T1A);
448 T1Q = FMA(KP951056516, T1A, KP587785252 * T1B);
449 T1N = FMA(KP951056516, T1v, KP587785252 * T1w);
450 T1D = FNMS(KP250000000, T1p, T1i);
451 T1F = T1D - T1E;
452 T1R = T1E + T1D;
453 T1s = FNMS(KP250000000, T1f, T18);
454 T1u = T1s - T1t;
455 T1M = T1t + T1s;
456 {
457 E T1y, T1G, T1r, T1z;
458 T1y = T1u - T1x;
459 T1G = T1C + T1F;
460 T1r = W[12];
461 T1z = W[13];
462 cr[WS(rs, 7)] = FNMS(T1z, T1G, T1r * T1y);
463 ci[WS(rs, 7)] = FMA(T1r, T1G, T1z * T1y);
464 }
465 {
466 E T1U, T1W, T1T, T1V;
467 T1U = T1M + T1N;
468 T1W = T1R - T1Q;
469 T1T = W[16];
470 T1V = W[17];
471 cr[WS(rs, 9)] = FNMS(T1V, T1W, T1T * T1U);
472 ci[WS(rs, 9)] = FMA(T1T, T1W, T1V * T1U);
473 }
474 {
475 E T1I, T1K, T1H, T1J;
476 T1I = T1u + T1x;
477 T1K = T1F - T1C;
478 T1H = W[4];
479 T1J = W[5];
480 cr[WS(rs, 3)] = FNMS(T1J, T1K, T1H * T1I);
481 ci[WS(rs, 3)] = FMA(T1H, T1K, T1J * T1I);
482 }
483 {
484 E T1O, T1S, T1L, T1P;
485 T1O = T1M - T1N;
486 T1S = T1Q + T1R;
487 T1L = W[0];
488 T1P = W[1];
489 cr[WS(rs, 1)] = FNMS(T1P, T1S, T1L * T1O);
490 ci[WS(rs, 1)] = FMA(T1L, T1S, T1P * T1O);
491 }
492 }
493 }
494 }
495 }
496
497 static const tw_instr twinstr[] = {
498 {TW_FULL, 1, 10},
499 {TW_NEXT, 1, 0}
500 };
501
502 static const hc2hc_desc desc = { 10, "hb_10", twinstr, &GENUS, {72, 30, 30, 0} };
503
504 void X(codelet_hb_10) (planner *p) {
505 X(khc2hc_register) (p, hb_10, &desc);
506 }
507 #endif /* HAVE_FMA */