Mercurial > hg > js-dsp-test
comparison fft/fftw/fftw-3.3.4/rdft/scalar/r2cb/hb_10.c @ 19:26056e866c29
Add FFTW to comparison table
author | Chris Cannam |
---|---|
date | Tue, 06 Oct 2015 13:08:39 +0100 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
18:8db794ca3e0b | 19:26056e866c29 |
---|---|
1 /* | |
2 * Copyright (c) 2003, 2007-14 Matteo Frigo | |
3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology | |
4 * | |
5 * This program is free software; you can redistribute it and/or modify | |
6 * it under the terms of the GNU General Public License as published by | |
7 * the Free Software Foundation; either version 2 of the License, or | |
8 * (at your option) any later version. | |
9 * | |
10 * This program is distributed in the hope that it will be useful, | |
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
13 * GNU General Public License for more details. | |
14 * | |
15 * You should have received a copy of the GNU General Public License | |
16 * along with this program; if not, write to the Free Software | |
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA | |
18 * | |
19 */ | |
20 | |
21 /* This file was automatically generated --- DO NOT EDIT */ | |
22 /* Generated on Tue Mar 4 13:50:26 EST 2014 */ | |
23 | |
24 #include "codelet-rdft.h" | |
25 | |
26 #ifdef HAVE_FMA | |
27 | |
28 /* Generated by: ../../../genfft/gen_hc2hc.native -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -sign 1 -n 10 -dif -name hb_10 -include hb.h */ | |
29 | |
30 /* | |
31 * This function contains 102 FP additions, 72 FP multiplications, | |
32 * (or, 48 additions, 18 multiplications, 54 fused multiply/add), | |
33 * 71 stack variables, 4 constants, and 40 memory accesses | |
34 */ | |
35 #include "hb.h" | |
36 | |
37 static void hb_10(R *cr, R *ci, const R *W, stride rs, INT mb, INT me, INT ms) | |
38 { | |
39 DK(KP951056516, +0.951056516295153572116439333379382143405698634); | |
40 DK(KP559016994, +0.559016994374947424102293417182819058860154590); | |
41 DK(KP250000000, +0.250000000000000000000000000000000000000000000); | |
42 DK(KP618033988, +0.618033988749894848204586834365638117720309180); | |
43 { | |
44 INT m; | |
45 for (m = mb, W = W + ((mb - 1) * 18); m < me; m = m + 1, cr = cr + ms, ci = ci - ms, W = W + 18, MAKE_VOLATILE_STRIDE(20, rs)) { | |
46 E T21, T1Y, T1X; | |
47 { | |
48 E T1B, TH, T1g, T3, T1V, T1x, T1G, T1E, TM, TK, T11, TB, T7, T1m, T1J; | |
49 E TO, Th, T1h, T6, T8, TF, TG, T1i, T9; | |
50 TF = ci[WS(rs, 9)]; | |
51 TG = cr[WS(rs, 5)]; | |
52 { | |
53 E T1u, Tp, Tu, T1s, Tz, T1v, Ts, Tv; | |
54 { | |
55 E Tx, Ty, Tn, To, Tq, Tr; | |
56 Tn = ci[WS(rs, 5)]; | |
57 To = cr[WS(rs, 9)]; | |
58 Tx = ci[WS(rs, 6)]; | |
59 T1B = TF + TG; | |
60 TH = TF - TG; | |
61 T1u = Tn + To; | |
62 Tp = Tn - To; | |
63 Ty = cr[WS(rs, 8)]; | |
64 Tq = ci[WS(rs, 8)]; | |
65 Tr = cr[WS(rs, 6)]; | |
66 Tu = ci[WS(rs, 7)]; | |
67 T1s = Tx + Ty; | |
68 Tz = Tx - Ty; | |
69 T1v = Tq + Tr; | |
70 Ts = Tq - Tr; | |
71 Tv = cr[WS(rs, 7)]; | |
72 } | |
73 { | |
74 E T1, T1w, T1D, TJ, Tt, T1r, Tw, T2; | |
75 T1 = cr[0]; | |
76 T1w = T1u + T1v; | |
77 T1D = T1u - T1v; | |
78 TJ = Tp + Ts; | |
79 Tt = Tp - Ts; | |
80 T1r = Tu + Tv; | |
81 Tw = Tu - Tv; | |
82 T2 = ci[WS(rs, 4)]; | |
83 { | |
84 E Tb, Tc, Te, Tf; | |
85 Tb = cr[WS(rs, 4)]; | |
86 { | |
87 E T1t, T1C, TI, TA; | |
88 T1t = T1r + T1s; | |
89 T1C = T1r - T1s; | |
90 TI = Tw + Tz; | |
91 TA = Tw - Tz; | |
92 T1g = T1 - T2; | |
93 T3 = T1 + T2; | |
94 T1V = FNMS(KP618033988, T1t, T1w); | |
95 T1x = FMA(KP618033988, T1w, T1t); | |
96 T1G = T1C - T1D; | |
97 T1E = T1C + T1D; | |
98 TM = TI - TJ; | |
99 TK = TI + TJ; | |
100 T11 = FMA(KP618033988, Tt, TA); | |
101 TB = FNMS(KP618033988, TA, Tt); | |
102 Tc = ci[0]; | |
103 } | |
104 Te = ci[WS(rs, 3)]; | |
105 Tf = cr[WS(rs, 1)]; | |
106 { | |
107 E T4, T1k, Td, T1l, Tg, T5; | |
108 T4 = cr[WS(rs, 2)]; | |
109 T1k = Tb - Tc; | |
110 Td = Tb + Tc; | |
111 T1l = Te - Tf; | |
112 Tg = Te + Tf; | |
113 T5 = ci[WS(rs, 2)]; | |
114 T7 = ci[WS(rs, 1)]; | |
115 T1m = T1k + T1l; | |
116 T1J = T1k - T1l; | |
117 TO = Td - Tg; | |
118 Th = Td + Tg; | |
119 T1h = T4 - T5; | |
120 T6 = T4 + T5; | |
121 T8 = cr[WS(rs, 3)]; | |
122 } | |
123 } | |
124 } | |
125 } | |
126 ci[0] = TH + TK; | |
127 T1i = T7 - T8; | |
128 T9 = T7 + T8; | |
129 { | |
130 E T2d, T1F, T29, T1I, TP, T2c, T1p, Tl, T1o, Tk, T2b, T2e, T17, T14, T13; | |
131 T2d = T1B + T1E; | |
132 T1F = FNMS(KP250000000, T1E, T1B); | |
133 { | |
134 E T1j, Ta, T1n, Ti, T2a; | |
135 T29 = W[8]; | |
136 T1I = T1h - T1i; | |
137 T1j = T1h + T1i; | |
138 TP = T6 - T9; | |
139 Ta = T6 + T9; | |
140 T2c = W[9]; | |
141 T1p = T1j - T1m; | |
142 T1n = T1j + T1m; | |
143 Tl = Ta - Th; | |
144 Ti = Ta + Th; | |
145 T1o = FNMS(KP250000000, T1n, T1g); | |
146 T2a = T1g + T1n; | |
147 cr[0] = T3 + Ti; | |
148 Tk = FNMS(KP250000000, Ti, T3); | |
149 T2b = T29 * T2a; | |
150 T2e = T2c * T2a; | |
151 } | |
152 { | |
153 E T16, TQ, T10, Tm, TL; | |
154 T16 = FMA(KP618033988, TO, TP); | |
155 TQ = FNMS(KP618033988, TP, TO); | |
156 cr[WS(rs, 5)] = FNMS(T2c, T2d, T2b); | |
157 ci[WS(rs, 5)] = FMA(T29, T2d, T2e); | |
158 T10 = FMA(KP559016994, Tl, Tk); | |
159 Tm = FNMS(KP559016994, Tl, Tk); | |
160 TL = FNMS(KP250000000, TK, TH); | |
161 { | |
162 E TE, TU, T12, TR, TX, T1d, T1c, T19, TD, T1e, T1b, TW, TT; | |
163 { | |
164 E TC, T15, T1a, TS, Tj, TN; | |
165 TE = W[3]; | |
166 TC = FMA(KP951056516, TB, Tm); | |
167 TU = FNMS(KP951056516, TB, Tm); | |
168 TN = FNMS(KP559016994, TM, TL); | |
169 T15 = FMA(KP559016994, TM, TL); | |
170 T12 = FMA(KP951056516, T11, T10); | |
171 T1a = FNMS(KP951056516, T11, T10); | |
172 TS = TE * TC; | |
173 TR = FNMS(KP951056516, TQ, TN); | |
174 TX = FMA(KP951056516, TQ, TN); | |
175 Tj = W[2]; | |
176 T1d = FMA(KP951056516, T16, T15); | |
177 T17 = FNMS(KP951056516, T16, T15); | |
178 T1c = W[11]; | |
179 T19 = W[10]; | |
180 ci[WS(rs, 2)] = FMA(Tj, TR, TS); | |
181 TD = Tj * TC; | |
182 T1e = T1c * T1a; | |
183 T1b = T19 * T1a; | |
184 } | |
185 cr[WS(rs, 2)] = FNMS(TE, TR, TD); | |
186 ci[WS(rs, 6)] = FMA(T19, T1d, T1e); | |
187 cr[WS(rs, 6)] = FNMS(T1c, T1d, T1b); | |
188 TW = W[15]; | |
189 TT = W[14]; | |
190 { | |
191 E TZ, T18, TY, TV; | |
192 T14 = W[7]; | |
193 TY = TW * TU; | |
194 TV = TT * TU; | |
195 TZ = W[6]; | |
196 T18 = T14 * T12; | |
197 ci[WS(rs, 8)] = FMA(TT, TX, TY); | |
198 cr[WS(rs, 8)] = FNMS(TW, TX, TV); | |
199 T13 = TZ * T12; | |
200 ci[WS(rs, 4)] = FMA(TZ, T17, T18); | |
201 } | |
202 } | |
203 } | |
204 { | |
205 E T20, T1K, T1q, T1U; | |
206 T20 = FNMS(KP618033988, T1I, T1J); | |
207 T1K = FMA(KP618033988, T1J, T1I); | |
208 cr[WS(rs, 4)] = FNMS(T14, T17, T13); | |
209 T1q = FMA(KP559016994, T1p, T1o); | |
210 T1U = FNMS(KP559016994, T1p, T1o); | |
211 { | |
212 E T1A, T1O, T1W, T1R, T1L, T27, T26, T23, T1z, T28, T25, T1Q, T1N; | |
213 { | |
214 E T1y, T1Z, T24, T1M, T1f, T1H; | |
215 T1A = W[1]; | |
216 T1O = FMA(KP951056516, T1x, T1q); | |
217 T1y = FNMS(KP951056516, T1x, T1q); | |
218 T1Z = FNMS(KP559016994, T1G, T1F); | |
219 T1H = FMA(KP559016994, T1G, T1F); | |
220 T24 = FMA(KP951056516, T1V, T1U); | |
221 T1W = FNMS(KP951056516, T1V, T1U); | |
222 T1M = T1A * T1y; | |
223 T1R = FNMS(KP951056516, T1K, T1H); | |
224 T1L = FMA(KP951056516, T1K, T1H); | |
225 T1f = W[0]; | |
226 T21 = FMA(KP951056516, T20, T1Z); | |
227 T27 = FNMS(KP951056516, T20, T1Z); | |
228 T26 = W[13]; | |
229 T23 = W[12]; | |
230 ci[WS(rs, 1)] = FMA(T1f, T1L, T1M); | |
231 T1z = T1f * T1y; | |
232 T28 = T26 * T24; | |
233 T25 = T23 * T24; | |
234 } | |
235 cr[WS(rs, 1)] = FNMS(T1A, T1L, T1z); | |
236 ci[WS(rs, 7)] = FMA(T23, T27, T28); | |
237 cr[WS(rs, 7)] = FNMS(T26, T27, T25); | |
238 T1Q = W[17]; | |
239 T1N = W[16]; | |
240 { | |
241 E T1T, T22, T1S, T1P; | |
242 T1Y = W[5]; | |
243 T1S = T1Q * T1O; | |
244 T1P = T1N * T1O; | |
245 T1T = W[4]; | |
246 T22 = T1Y * T1W; | |
247 ci[WS(rs, 9)] = FMA(T1N, T1R, T1S); | |
248 cr[WS(rs, 9)] = FNMS(T1Q, T1R, T1P); | |
249 T1X = T1T * T1W; | |
250 ci[WS(rs, 3)] = FMA(T1T, T21, T22); | |
251 } | |
252 } | |
253 } | |
254 } | |
255 } | |
256 cr[WS(rs, 3)] = FNMS(T1Y, T21, T1X); | |
257 } | |
258 } | |
259 } | |
260 | |
261 static const tw_instr twinstr[] = { | |
262 {TW_FULL, 1, 10}, | |
263 {TW_NEXT, 1, 0} | |
264 }; | |
265 | |
266 static const hc2hc_desc desc = { 10, "hb_10", twinstr, &GENUS, {48, 18, 54, 0} }; | |
267 | |
268 void X(codelet_hb_10) (planner *p) { | |
269 X(khc2hc_register) (p, hb_10, &desc); | |
270 } | |
271 #else /* HAVE_FMA */ | |
272 | |
273 /* Generated by: ../../../genfft/gen_hc2hc.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 10 -dif -name hb_10 -include hb.h */ | |
274 | |
275 /* | |
276 * This function contains 102 FP additions, 60 FP multiplications, | |
277 * (or, 72 additions, 30 multiplications, 30 fused multiply/add), | |
278 * 41 stack variables, 4 constants, and 40 memory accesses | |
279 */ | |
280 #include "hb.h" | |
281 | |
282 static void hb_10(R *cr, R *ci, const R *W, stride rs, INT mb, INT me, INT ms) | |
283 { | |
284 DK(KP250000000, +0.250000000000000000000000000000000000000000000); | |
285 DK(KP951056516, +0.951056516295153572116439333379382143405698634); | |
286 DK(KP587785252, +0.587785252292473129168705954639072768597652438); | |
287 DK(KP559016994, +0.559016994374947424102293417182819058860154590); | |
288 { | |
289 INT m; | |
290 for (m = mb, W = W + ((mb - 1) * 18); m < me; m = m + 1, cr = cr + ms, ci = ci - ms, W = W + 18, MAKE_VOLATILE_STRIDE(20, rs)) { | |
291 E T3, T18, TE, TF, T1B, T1A, T1f, T1t, Ti, Tl, TJ, T1i, Tt, TA, T1w; | |
292 E T1v, T1p, T1E, TM, TO; | |
293 { | |
294 E T1, T2, TH, TI; | |
295 T1 = cr[0]; | |
296 T2 = ci[WS(rs, 4)]; | |
297 T3 = T1 + T2; | |
298 T18 = T1 - T2; | |
299 { | |
300 E T6, T19, Tg, T1d, T9, T1a, Td, T1c; | |
301 { | |
302 E T4, T5, Te, Tf; | |
303 T4 = cr[WS(rs, 2)]; | |
304 T5 = ci[WS(rs, 2)]; | |
305 T6 = T4 + T5; | |
306 T19 = T4 - T5; | |
307 Te = ci[WS(rs, 3)]; | |
308 Tf = cr[WS(rs, 1)]; | |
309 Tg = Te + Tf; | |
310 T1d = Te - Tf; | |
311 } | |
312 { | |
313 E T7, T8, Tb, Tc; | |
314 T7 = ci[WS(rs, 1)]; | |
315 T8 = cr[WS(rs, 3)]; | |
316 T9 = T7 + T8; | |
317 T1a = T7 - T8; | |
318 Tb = cr[WS(rs, 4)]; | |
319 Tc = ci[0]; | |
320 Td = Tb + Tc; | |
321 T1c = Tb - Tc; | |
322 } | |
323 TE = T6 - T9; | |
324 TF = Td - Tg; | |
325 T1B = T1c - T1d; | |
326 T1A = T19 - T1a; | |
327 { | |
328 E T1b, T1e, Ta, Th; | |
329 T1b = T19 + T1a; | |
330 T1e = T1c + T1d; | |
331 T1f = T1b + T1e; | |
332 T1t = KP559016994 * (T1b - T1e); | |
333 Ta = T6 + T9; | |
334 Th = Td + Tg; | |
335 Ti = Ta + Th; | |
336 Tl = KP559016994 * (Ta - Th); | |
337 } | |
338 } | |
339 TH = ci[WS(rs, 9)]; | |
340 TI = cr[WS(rs, 5)]; | |
341 TJ = TH - TI; | |
342 T1i = TH + TI; | |
343 { | |
344 E Tp, T1j, Tz, T1n, Ts, T1k, Tw, T1m; | |
345 { | |
346 E Tn, To, Tx, Ty; | |
347 Tn = ci[WS(rs, 7)]; | |
348 To = cr[WS(rs, 7)]; | |
349 Tp = Tn - To; | |
350 T1j = Tn + To; | |
351 Tx = ci[WS(rs, 8)]; | |
352 Ty = cr[WS(rs, 6)]; | |
353 Tz = Tx - Ty; | |
354 T1n = Tx + Ty; | |
355 } | |
356 { | |
357 E Tq, Tr, Tu, Tv; | |
358 Tq = ci[WS(rs, 6)]; | |
359 Tr = cr[WS(rs, 8)]; | |
360 Ts = Tq - Tr; | |
361 T1k = Tq + Tr; | |
362 Tu = ci[WS(rs, 5)]; | |
363 Tv = cr[WS(rs, 9)]; | |
364 Tw = Tu - Tv; | |
365 T1m = Tu + Tv; | |
366 } | |
367 Tt = Tp - Ts; | |
368 TA = Tw - Tz; | |
369 T1w = T1m + T1n; | |
370 T1v = T1j + T1k; | |
371 { | |
372 E T1l, T1o, TK, TL; | |
373 T1l = T1j - T1k; | |
374 T1o = T1m - T1n; | |
375 T1p = T1l + T1o; | |
376 T1E = KP559016994 * (T1l - T1o); | |
377 TK = Tp + Ts; | |
378 TL = Tw + Tz; | |
379 TM = TK + TL; | |
380 TO = KP559016994 * (TK - TL); | |
381 } | |
382 } | |
383 } | |
384 cr[0] = T3 + Ti; | |
385 ci[0] = TJ + TM; | |
386 { | |
387 E T1g, T1q, T17, T1h; | |
388 T1g = T18 + T1f; | |
389 T1q = T1i + T1p; | |
390 T17 = W[8]; | |
391 T1h = W[9]; | |
392 cr[WS(rs, 5)] = FNMS(T1h, T1q, T17 * T1g); | |
393 ci[WS(rs, 5)] = FMA(T1h, T1g, T17 * T1q); | |
394 } | |
395 { | |
396 E TB, TG, T11, TX, TP, T10, Tm, TW, TN, Tk; | |
397 TB = FNMS(KP951056516, TA, KP587785252 * Tt); | |
398 TG = FNMS(KP951056516, TF, KP587785252 * TE); | |
399 T11 = FMA(KP951056516, TE, KP587785252 * TF); | |
400 TX = FMA(KP951056516, Tt, KP587785252 * TA); | |
401 TN = FNMS(KP250000000, TM, TJ); | |
402 TP = TN - TO; | |
403 T10 = TO + TN; | |
404 Tk = FNMS(KP250000000, Ti, T3); | |
405 Tm = Tk - Tl; | |
406 TW = Tl + Tk; | |
407 { | |
408 E TC, TQ, Tj, TD; | |
409 TC = Tm - TB; | |
410 TQ = TG + TP; | |
411 Tj = W[2]; | |
412 TD = W[3]; | |
413 cr[WS(rs, 2)] = FNMS(TD, TQ, Tj * TC); | |
414 ci[WS(rs, 2)] = FMA(TD, TC, Tj * TQ); | |
415 } | |
416 { | |
417 E T14, T16, T13, T15; | |
418 T14 = TW - TX; | |
419 T16 = T11 + T10; | |
420 T13 = W[10]; | |
421 T15 = W[11]; | |
422 cr[WS(rs, 6)] = FNMS(T15, T16, T13 * T14); | |
423 ci[WS(rs, 6)] = FMA(T15, T14, T13 * T16); | |
424 } | |
425 { | |
426 E TS, TU, TR, TT; | |
427 TS = Tm + TB; | |
428 TU = TP - TG; | |
429 TR = W[14]; | |
430 TT = W[15]; | |
431 cr[WS(rs, 8)] = FNMS(TT, TU, TR * TS); | |
432 ci[WS(rs, 8)] = FMA(TT, TS, TR * TU); | |
433 } | |
434 { | |
435 E TY, T12, TV, TZ; | |
436 TY = TW + TX; | |
437 T12 = T10 - T11; | |
438 TV = W[6]; | |
439 TZ = W[7]; | |
440 cr[WS(rs, 4)] = FNMS(TZ, T12, TV * TY); | |
441 ci[WS(rs, 4)] = FMA(TZ, TY, TV * T12); | |
442 } | |
443 } | |
444 { | |
445 E T1x, T1C, T1Q, T1N, T1F, T1R, T1u, T1M, T1D, T1s; | |
446 T1x = FNMS(KP951056516, T1w, KP587785252 * T1v); | |
447 T1C = FNMS(KP951056516, T1B, KP587785252 * T1A); | |
448 T1Q = FMA(KP951056516, T1A, KP587785252 * T1B); | |
449 T1N = FMA(KP951056516, T1v, KP587785252 * T1w); | |
450 T1D = FNMS(KP250000000, T1p, T1i); | |
451 T1F = T1D - T1E; | |
452 T1R = T1E + T1D; | |
453 T1s = FNMS(KP250000000, T1f, T18); | |
454 T1u = T1s - T1t; | |
455 T1M = T1t + T1s; | |
456 { | |
457 E T1y, T1G, T1r, T1z; | |
458 T1y = T1u - T1x; | |
459 T1G = T1C + T1F; | |
460 T1r = W[12]; | |
461 T1z = W[13]; | |
462 cr[WS(rs, 7)] = FNMS(T1z, T1G, T1r * T1y); | |
463 ci[WS(rs, 7)] = FMA(T1r, T1G, T1z * T1y); | |
464 } | |
465 { | |
466 E T1U, T1W, T1T, T1V; | |
467 T1U = T1M + T1N; | |
468 T1W = T1R - T1Q; | |
469 T1T = W[16]; | |
470 T1V = W[17]; | |
471 cr[WS(rs, 9)] = FNMS(T1V, T1W, T1T * T1U); | |
472 ci[WS(rs, 9)] = FMA(T1T, T1W, T1V * T1U); | |
473 } | |
474 { | |
475 E T1I, T1K, T1H, T1J; | |
476 T1I = T1u + T1x; | |
477 T1K = T1F - T1C; | |
478 T1H = W[4]; | |
479 T1J = W[5]; | |
480 cr[WS(rs, 3)] = FNMS(T1J, T1K, T1H * T1I); | |
481 ci[WS(rs, 3)] = FMA(T1H, T1K, T1J * T1I); | |
482 } | |
483 { | |
484 E T1O, T1S, T1L, T1P; | |
485 T1O = T1M - T1N; | |
486 T1S = T1Q + T1R; | |
487 T1L = W[0]; | |
488 T1P = W[1]; | |
489 cr[WS(rs, 1)] = FNMS(T1P, T1S, T1L * T1O); | |
490 ci[WS(rs, 1)] = FMA(T1L, T1S, T1P * T1O); | |
491 } | |
492 } | |
493 } | |
494 } | |
495 } | |
496 | |
497 static const tw_instr twinstr[] = { | |
498 {TW_FULL, 1, 10}, | |
499 {TW_NEXT, 1, 0} | |
500 }; | |
501 | |
502 static const hc2hc_desc desc = { 10, "hb_10", twinstr, &GENUS, {72, 30, 30, 0} }; | |
503 | |
504 void X(codelet_hb_10) (planner *p) { | |
505 X(khc2hc_register) (p, hb_10, &desc); | |
506 } | |
507 #endif /* HAVE_FMA */ |