comparison fft/fftw/fftw-3.3.4/rdft/scalar/r2cb/hb2_8.c @ 19:26056e866c29

Add FFTW to comparison table
author Chris Cannam
date Tue, 06 Oct 2015 13:08:39 +0100
parents
children
comparison
equal deleted inserted replaced
18:8db794ca3e0b 19:26056e866c29
1 /*
2 * Copyright (c) 2003, 2007-14 Matteo Frigo
3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
18 *
19 */
20
21 /* This file was automatically generated --- DO NOT EDIT */
22 /* Generated on Tue Mar 4 13:50:28 EST 2014 */
23
24 #include "codelet-rdft.h"
25
26 #ifdef HAVE_FMA
27
28 /* Generated by: ../../../genfft/gen_hc2hc.native -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -sign 1 -twiddle-log3 -precompute-twiddles -n 8 -dif -name hb2_8 -include hb.h */
29
30 /*
31 * This function contains 74 FP additions, 50 FP multiplications,
32 * (or, 44 additions, 20 multiplications, 30 fused multiply/add),
33 * 77 stack variables, 1 constants, and 32 memory accesses
34 */
35 #include "hb.h"
36
37 static void hb2_8(R *cr, R *ci, const R *W, stride rs, INT mb, INT me, INT ms)
38 {
39 DK(KP707106781, +0.707106781186547524400844362104849039284835938);
40 {
41 INT m;
42 for (m = mb, W = W + ((mb - 1) * 6); m < me; m = m + 1, cr = cr + ms, ci = ci - ms, W = W + 6, MAKE_VOLATILE_STRIDE(16, rs)) {
43 E Tf, Tg, Tl, Tp, Ti, Tj, T1o, T1u, Tk, T1b, To, T1e, TK, Tq, T13;
44 E TP, T1p, T7, T1h, T1v, TZ, Tv, Tw, Ta, Tx, T1j, TE, TB, Td, Ty;
45 E Th, T1n, T1t;
46 Tf = W[0];
47 Tg = W[2];
48 Tl = W[4];
49 Tp = W[5];
50 Ti = W[1];
51 Th = Tf * Tg;
52 T1n = Tf * Tl;
53 T1t = Tf * Tp;
54 Tj = W[3];
55 {
56 E Tr, T3, Ts, T1f, TO, TL, T6, Tt;
57 {
58 E TM, TN, T4, T5;
59 {
60 E T1, Tn, T2, TJ, Tm;
61 T1 = cr[0];
62 T1o = FMA(Ti, Tp, T1n);
63 T1u = FNMS(Ti, Tl, T1t);
64 Tk = FMA(Ti, Tj, Th);
65 T1b = FNMS(Ti, Tj, Th);
66 Tn = Tf * Tj;
67 T2 = ci[WS(rs, 3)];
68 TM = ci[WS(rs, 7)];
69 TJ = Tk * Tp;
70 Tm = Tk * Tl;
71 To = FNMS(Ti, Tg, Tn);
72 T1e = FMA(Ti, Tg, Tn);
73 Tr = T1 - T2;
74 T3 = T1 + T2;
75 TK = FNMS(To, Tl, TJ);
76 Tq = FMA(To, Tp, Tm);
77 TN = cr[WS(rs, 4)];
78 }
79 T4 = cr[WS(rs, 2)];
80 T5 = ci[WS(rs, 1)];
81 Ts = ci[WS(rs, 5)];
82 T1f = TM - TN;
83 TO = TM + TN;
84 TL = T4 - T5;
85 T6 = T4 + T5;
86 Tt = cr[WS(rs, 6)];
87 }
88 {
89 E TC, TD, Tb, Tc;
90 {
91 E T8, T1g, Tu, T9;
92 T8 = cr[WS(rs, 1)];
93 T13 = TO - TL;
94 TP = TL + TO;
95 T1p = T3 - T6;
96 T7 = T3 + T6;
97 T1g = Ts - Tt;
98 Tu = Ts + Tt;
99 T9 = ci[WS(rs, 2)];
100 TC = ci[WS(rs, 4)];
101 T1h = T1f + T1g;
102 T1v = T1f - T1g;
103 TZ = Tr + Tu;
104 Tv = Tr - Tu;
105 Tw = T8 - T9;
106 Ta = T8 + T9;
107 TD = cr[WS(rs, 7)];
108 }
109 Tb = ci[0];
110 Tc = cr[WS(rs, 3)];
111 Tx = ci[WS(rs, 6)];
112 T1j = TC - TD;
113 TE = TC + TD;
114 TB = Tb - Tc;
115 Td = Tb + Tc;
116 Ty = cr[WS(rs, 5)];
117 }
118 }
119 {
120 E TR, TF, Te, T1w;
121 TR = TB + TE;
122 TF = TB - TE;
123 Te = Ta + Td;
124 T1w = Ta - Td;
125 {
126 E Tz, T1i, T1B, T1x, T1c;
127 Tz = Tx + Ty;
128 T1i = Tx - Ty;
129 T1B = T1w + T1v;
130 T1x = T1v - T1w;
131 T1c = T7 - Te;
132 cr[0] = T7 + Te;
133 {
134 E T1k, T1q, TQ, TA;
135 T1k = T1i + T1j;
136 T1q = T1j - T1i;
137 TQ = Tw + Tz;
138 TA = Tw - Tz;
139 {
140 E T1y, T1C, T1m, T1d;
141 T1y = T1o * T1x;
142 T1C = Tk * T1B;
143 T1m = T1e * T1c;
144 T1d = T1b * T1c;
145 {
146 E T1z, T1r, T1l, TG, T14;
147 T1z = T1p + T1q;
148 T1r = T1p - T1q;
149 T1l = T1h - T1k;
150 ci[0] = T1h + T1k;
151 TG = TA + TF;
152 T14 = TA - TF;
153 {
154 E T10, TS, T1s, T1A;
155 T10 = TQ + TR;
156 TS = TQ - TR;
157 ci[WS(rs, 6)] = FMA(T1u, T1r, T1y);
158 T1s = T1o * T1r;
159 ci[WS(rs, 2)] = FMA(To, T1z, T1C);
160 T1A = Tk * T1z;
161 ci[WS(rs, 4)] = FMA(T1b, T1l, T1m);
162 cr[WS(rs, 4)] = FNMS(T1e, T1l, T1d);
163 {
164 E T15, T19, TV, TH;
165 T15 = FMA(KP707106781, T14, T13);
166 T19 = FNMS(KP707106781, T14, T13);
167 TV = FMA(KP707106781, TG, Tv);
168 TH = FNMS(KP707106781, TG, Tv);
169 {
170 E TT, TX, T11, T17;
171 TT = FNMS(KP707106781, TS, TP);
172 TX = FMA(KP707106781, TS, TP);
173 T11 = FNMS(KP707106781, T10, TZ);
174 T17 = FMA(KP707106781, T10, TZ);
175 cr[WS(rs, 6)] = FNMS(T1u, T1x, T1s);
176 cr[WS(rs, 2)] = FNMS(To, T1B, T1A);
177 {
178 E T1a, T16, TU, TI;
179 T1a = Tl * T19;
180 T16 = Tg * T15;
181 TU = TK * TH;
182 TI = Tq * TH;
183 {
184 E TY, TW, T18, T12;
185 TY = Ti * TV;
186 TW = Tf * TV;
187 T18 = Tl * T17;
188 T12 = Tg * T11;
189 ci[WS(rs, 7)] = FMA(Tp, T17, T1a);
190 ci[WS(rs, 3)] = FMA(Tj, T11, T16);
191 ci[WS(rs, 5)] = FMA(Tq, TT, TU);
192 cr[WS(rs, 5)] = FNMS(TK, TT, TI);
193 ci[WS(rs, 1)] = FMA(Tf, TX, TY);
194 cr[WS(rs, 1)] = FNMS(Ti, TX, TW);
195 cr[WS(rs, 7)] = FNMS(Tp, T19, T18);
196 cr[WS(rs, 3)] = FNMS(Tj, T15, T12);
197 }
198 }
199 }
200 }
201 }
202 }
203 }
204 }
205 }
206 }
207 }
208 }
209 }
210
211 static const tw_instr twinstr[] = {
212 {TW_CEXP, 1, 1},
213 {TW_CEXP, 1, 3},
214 {TW_CEXP, 1, 7},
215 {TW_NEXT, 1, 0}
216 };
217
218 static const hc2hc_desc desc = { 8, "hb2_8", twinstr, &GENUS, {44, 20, 30, 0} };
219
220 void X(codelet_hb2_8) (planner *p) {
221 X(khc2hc_register) (p, hb2_8, &desc);
222 }
223 #else /* HAVE_FMA */
224
225 /* Generated by: ../../../genfft/gen_hc2hc.native -compact -variables 4 -pipeline-latency 4 -sign 1 -twiddle-log3 -precompute-twiddles -n 8 -dif -name hb2_8 -include hb.h */
226
227 /*
228 * This function contains 74 FP additions, 44 FP multiplications,
229 * (or, 56 additions, 26 multiplications, 18 fused multiply/add),
230 * 46 stack variables, 1 constants, and 32 memory accesses
231 */
232 #include "hb.h"
233
234 static void hb2_8(R *cr, R *ci, const R *W, stride rs, INT mb, INT me, INT ms)
235 {
236 DK(KP707106781, +0.707106781186547524400844362104849039284835938);
237 {
238 INT m;
239 for (m = mb, W = W + ((mb - 1) * 6); m < me; m = m + 1, cr = cr + ms, ci = ci - ms, W = W + 6, MAKE_VOLATILE_STRIDE(16, rs)) {
240 E Tf, Ti, Tg, Tj, Tl, Tp, TP, TR, TF, TG, TH, T15, TL, TT;
241 {
242 E Th, To, Tk, Tn;
243 Tf = W[0];
244 Ti = W[1];
245 Tg = W[2];
246 Tj = W[3];
247 Th = Tf * Tg;
248 To = Ti * Tg;
249 Tk = Ti * Tj;
250 Tn = Tf * Tj;
251 Tl = Th - Tk;
252 Tp = Tn + To;
253 TP = Th + Tk;
254 TR = Tn - To;
255 TF = W[4];
256 TG = W[5];
257 TH = FMA(Tf, TF, Ti * TG);
258 T15 = FNMS(TR, TF, TP * TG);
259 TL = FNMS(Ti, TF, Tf * TG);
260 TT = FMA(TP, TF, TR * TG);
261 }
262 {
263 E T7, T1f, T1i, Tw, TI, TW, T18, TM, Te, T19, T1a, TD, TJ, TZ, T12;
264 E TN, Tm, TE;
265 {
266 E T3, TU, Tv, TV, T6, T16, Ts, T17;
267 {
268 E T1, T2, Tt, Tu;
269 T1 = cr[0];
270 T2 = ci[WS(rs, 3)];
271 T3 = T1 + T2;
272 TU = T1 - T2;
273 Tt = ci[WS(rs, 5)];
274 Tu = cr[WS(rs, 6)];
275 Tv = Tt - Tu;
276 TV = Tt + Tu;
277 }
278 {
279 E T4, T5, Tq, Tr;
280 T4 = cr[WS(rs, 2)];
281 T5 = ci[WS(rs, 1)];
282 T6 = T4 + T5;
283 T16 = T4 - T5;
284 Tq = ci[WS(rs, 7)];
285 Tr = cr[WS(rs, 4)];
286 Ts = Tq - Tr;
287 T17 = Tq + Tr;
288 }
289 T7 = T3 + T6;
290 T1f = TU + TV;
291 T1i = T17 - T16;
292 Tw = Ts + Tv;
293 TI = T3 - T6;
294 TW = TU - TV;
295 T18 = T16 + T17;
296 TM = Ts - Tv;
297 }
298 {
299 E Ta, TX, TC, T11, Td, T10, Tz, TY;
300 {
301 E T8, T9, TA, TB;
302 T8 = cr[WS(rs, 1)];
303 T9 = ci[WS(rs, 2)];
304 Ta = T8 + T9;
305 TX = T8 - T9;
306 TA = ci[WS(rs, 4)];
307 TB = cr[WS(rs, 7)];
308 TC = TA - TB;
309 T11 = TA + TB;
310 }
311 {
312 E Tb, Tc, Tx, Ty;
313 Tb = ci[0];
314 Tc = cr[WS(rs, 3)];
315 Td = Tb + Tc;
316 T10 = Tb - Tc;
317 Tx = ci[WS(rs, 6)];
318 Ty = cr[WS(rs, 5)];
319 Tz = Tx - Ty;
320 TY = Tx + Ty;
321 }
322 Te = Ta + Td;
323 T19 = TX + TY;
324 T1a = T10 + T11;
325 TD = Tz + TC;
326 TJ = TC - Tz;
327 TZ = TX - TY;
328 T12 = T10 - T11;
329 TN = Ta - Td;
330 }
331 cr[0] = T7 + Te;
332 ci[0] = Tw + TD;
333 Tm = T7 - Te;
334 TE = Tw - TD;
335 cr[WS(rs, 4)] = FNMS(Tp, TE, Tl * Tm);
336 ci[WS(rs, 4)] = FMA(Tp, Tm, Tl * TE);
337 {
338 E TQ, TS, TK, TO;
339 TQ = TI + TJ;
340 TS = TN + TM;
341 cr[WS(rs, 2)] = FNMS(TR, TS, TP * TQ);
342 ci[WS(rs, 2)] = FMA(TP, TS, TR * TQ);
343 TK = TI - TJ;
344 TO = TM - TN;
345 cr[WS(rs, 6)] = FNMS(TL, TO, TH * TK);
346 ci[WS(rs, 6)] = FMA(TH, TO, TL * TK);
347 }
348 {
349 E T1h, T1l, T1k, T1m, T1g, T1j;
350 T1g = KP707106781 * (T19 + T1a);
351 T1h = T1f - T1g;
352 T1l = T1f + T1g;
353 T1j = KP707106781 * (TZ - T12);
354 T1k = T1i + T1j;
355 T1m = T1i - T1j;
356 cr[WS(rs, 3)] = FNMS(Tj, T1k, Tg * T1h);
357 ci[WS(rs, 3)] = FMA(Tg, T1k, Tj * T1h);
358 cr[WS(rs, 7)] = FNMS(TG, T1m, TF * T1l);
359 ci[WS(rs, 7)] = FMA(TF, T1m, TG * T1l);
360 }
361 {
362 E T14, T1d, T1c, T1e, T13, T1b;
363 T13 = KP707106781 * (TZ + T12);
364 T14 = TW - T13;
365 T1d = TW + T13;
366 T1b = KP707106781 * (T19 - T1a);
367 T1c = T18 - T1b;
368 T1e = T18 + T1b;
369 cr[WS(rs, 5)] = FNMS(T15, T1c, TT * T14);
370 ci[WS(rs, 5)] = FMA(T15, T14, TT * T1c);
371 cr[WS(rs, 1)] = FNMS(Ti, T1e, Tf * T1d);
372 ci[WS(rs, 1)] = FMA(Ti, T1d, Tf * T1e);
373 }
374 }
375 }
376 }
377 }
378
379 static const tw_instr twinstr[] = {
380 {TW_CEXP, 1, 1},
381 {TW_CEXP, 1, 3},
382 {TW_CEXP, 1, 7},
383 {TW_NEXT, 1, 0}
384 };
385
386 static const hc2hc_desc desc = { 8, "hb2_8", twinstr, &GENUS, {56, 26, 18, 0} };
387
388 void X(codelet_hb2_8) (planner *p) {
389 X(khc2hc_register) (p, hb2_8, &desc);
390 }
391 #endif /* HAVE_FMA */