Mercurial > hg > js-dsp-test
comparison fft/fftw/fftw-3.3.4/rdft/scalar/r2cb/hb2_5.c @ 19:26056e866c29
Add FFTW to comparison table
author | Chris Cannam |
---|---|
date | Tue, 06 Oct 2015 13:08:39 +0100 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
18:8db794ca3e0b | 19:26056e866c29 |
---|---|
1 /* | |
2 * Copyright (c) 2003, 2007-14 Matteo Frigo | |
3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology | |
4 * | |
5 * This program is free software; you can redistribute it and/or modify | |
6 * it under the terms of the GNU General Public License as published by | |
7 * the Free Software Foundation; either version 2 of the License, or | |
8 * (at your option) any later version. | |
9 * | |
10 * This program is distributed in the hope that it will be useful, | |
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
13 * GNU General Public License for more details. | |
14 * | |
15 * You should have received a copy of the GNU General Public License | |
16 * along with this program; if not, write to the Free Software | |
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA | |
18 * | |
19 */ | |
20 | |
21 /* This file was automatically generated --- DO NOT EDIT */ | |
22 /* Generated on Tue Mar 4 13:50:29 EST 2014 */ | |
23 | |
24 #include "codelet-rdft.h" | |
25 | |
26 #ifdef HAVE_FMA | |
27 | |
28 /* Generated by: ../../../genfft/gen_hc2hc.native -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -sign 1 -twiddle-log3 -precompute-twiddles -n 5 -dif -name hb2_5 -include hb.h */ | |
29 | |
30 /* | |
31 * This function contains 44 FP additions, 40 FP multiplications, | |
32 * (or, 14 additions, 10 multiplications, 30 fused multiply/add), | |
33 * 51 stack variables, 4 constants, and 20 memory accesses | |
34 */ | |
35 #include "hb.h" | |
36 | |
37 static void hb2_5(R *cr, R *ci, const R *W, stride rs, INT mb, INT me, INT ms) | |
38 { | |
39 DK(KP951056516, +0.951056516295153572116439333379382143405698634); | |
40 DK(KP559016994, +0.559016994374947424102293417182819058860154590); | |
41 DK(KP250000000, +0.250000000000000000000000000000000000000000000); | |
42 DK(KP618033988, +0.618033988749894848204586834365638117720309180); | |
43 { | |
44 INT m; | |
45 for (m = mb, W = W + ((mb - 1) * 4); m < me; m = m + 1, cr = cr + ms, ci = ci - ms, W = W + 4, MAKE_VOLATILE_STRIDE(10, rs)) { | |
46 E T9, TB, Tz, Tm, T1, TG, TO, TJ, TC, Tn, Tg, To, Tf, Tw, TQ; | |
47 E T8, Tb, Th, Ta, Ti, Tp; | |
48 T9 = W[0]; | |
49 TB = W[3]; | |
50 Tz = W[2]; | |
51 Tm = W[1]; | |
52 { | |
53 E T4, Tu, T5, T6; | |
54 T1 = cr[0]; | |
55 { | |
56 E TF, TA, T2, T3; | |
57 TF = T9 * TB; | |
58 TA = T9 * Tz; | |
59 T2 = cr[WS(rs, 1)]; | |
60 T3 = ci[0]; | |
61 TG = FMA(Tm, Tz, TF); | |
62 TO = FNMS(Tm, Tz, TF); | |
63 TJ = FMA(Tm, TB, TA); | |
64 TC = FNMS(Tm, TB, TA); | |
65 T4 = T2 + T3; | |
66 Tu = T2 - T3; | |
67 T5 = cr[WS(rs, 2)]; | |
68 T6 = ci[WS(rs, 1)]; | |
69 } | |
70 Tn = ci[WS(rs, 4)]; | |
71 { | |
72 E Td, Te, T7, Tv; | |
73 Td = ci[WS(rs, 3)]; | |
74 Te = cr[WS(rs, 4)]; | |
75 T7 = T5 + T6; | |
76 Tv = T5 - T6; | |
77 Tg = ci[WS(rs, 2)]; | |
78 To = Td - Te; | |
79 Tf = Td + Te; | |
80 Tw = FMA(KP618033988, Tv, Tu); | |
81 TQ = FNMS(KP618033988, Tu, Tv); | |
82 T8 = T4 + T7; | |
83 Tb = T4 - T7; | |
84 Th = cr[WS(rs, 3)]; | |
85 } | |
86 } | |
87 cr[0] = T1 + T8; | |
88 Ta = FNMS(KP250000000, T8, T1); | |
89 Ti = Tg + Th; | |
90 Tp = Tg - Th; | |
91 { | |
92 E Tc, TK, Ts, Tq; | |
93 Tc = FMA(KP559016994, Tb, Ta); | |
94 TK = FNMS(KP559016994, Tb, Ta); | |
95 Ts = To - Tp; | |
96 Tq = To + Tp; | |
97 { | |
98 E Tj, TL, Tr, TM, TT; | |
99 Tj = FMA(KP618033988, Ti, Tf); | |
100 TL = FNMS(KP618033988, Tf, Ti); | |
101 ci[0] = Tn + Tq; | |
102 Tr = FNMS(KP250000000, Tq, Tn); | |
103 TM = FMA(KP951056516, TL, TK); | |
104 TT = FNMS(KP951056516, TL, TK); | |
105 { | |
106 E Tk, TD, Tt, TP; | |
107 Tk = FNMS(KP951056516, Tj, Tc); | |
108 TD = FMA(KP951056516, Tj, Tc); | |
109 Tt = FMA(KP559016994, Ts, Tr); | |
110 TP = FNMS(KP559016994, Ts, Tr); | |
111 { | |
112 E TW, TU, TS, TN; | |
113 TW = TB * TT; | |
114 TU = Tz * TT; | |
115 TS = TO * TM; | |
116 TN = TJ * TM; | |
117 { | |
118 E TI, TE, Ty, Tl; | |
119 TI = TG * TD; | |
120 TE = TC * TD; | |
121 Ty = Tm * Tk; | |
122 Tl = T9 * Tk; | |
123 { | |
124 E TR, TV, Tx, TH; | |
125 TR = FNMS(KP951056516, TQ, TP); | |
126 TV = FMA(KP951056516, TQ, TP); | |
127 Tx = FMA(KP951056516, Tw, Tt); | |
128 TH = FNMS(KP951056516, Tw, Tt); | |
129 ci[WS(rs, 3)] = FMA(Tz, TV, TW); | |
130 cr[WS(rs, 3)] = FNMS(TB, TV, TU); | |
131 ci[WS(rs, 2)] = FMA(TJ, TR, TS); | |
132 cr[WS(rs, 2)] = FNMS(TO, TR, TN); | |
133 ci[WS(rs, 4)] = FMA(TC, TH, TI); | |
134 cr[WS(rs, 4)] = FNMS(TG, TH, TE); | |
135 ci[WS(rs, 1)] = FMA(T9, Tx, Ty); | |
136 cr[WS(rs, 1)] = FNMS(Tm, Tx, Tl); | |
137 } | |
138 } | |
139 } | |
140 } | |
141 } | |
142 } | |
143 } | |
144 } | |
145 } | |
146 | |
147 static const tw_instr twinstr[] = { | |
148 {TW_CEXP, 1, 1}, | |
149 {TW_CEXP, 1, 3}, | |
150 {TW_NEXT, 1, 0} | |
151 }; | |
152 | |
153 static const hc2hc_desc desc = { 5, "hb2_5", twinstr, &GENUS, {14, 10, 30, 0} }; | |
154 | |
155 void X(codelet_hb2_5) (planner *p) { | |
156 X(khc2hc_register) (p, hb2_5, &desc); | |
157 } | |
158 #else /* HAVE_FMA */ | |
159 | |
160 /* Generated by: ../../../genfft/gen_hc2hc.native -compact -variables 4 -pipeline-latency 4 -sign 1 -twiddle-log3 -precompute-twiddles -n 5 -dif -name hb2_5 -include hb.h */ | |
161 | |
162 /* | |
163 * This function contains 44 FP additions, 32 FP multiplications, | |
164 * (or, 30 additions, 18 multiplications, 14 fused multiply/add), | |
165 * 33 stack variables, 4 constants, and 20 memory accesses | |
166 */ | |
167 #include "hb.h" | |
168 | |
169 static void hb2_5(R *cr, R *ci, const R *W, stride rs, INT mb, INT me, INT ms) | |
170 { | |
171 DK(KP250000000, +0.250000000000000000000000000000000000000000000); | |
172 DK(KP587785252, +0.587785252292473129168705954639072768597652438); | |
173 DK(KP951056516, +0.951056516295153572116439333379382143405698634); | |
174 DK(KP559016994, +0.559016994374947424102293417182819058860154590); | |
175 { | |
176 INT m; | |
177 for (m = mb, W = W + ((mb - 1) * 4); m < me; m = m + 1, cr = cr + ms, ci = ci - ms, W = W + 4, MAKE_VOLATILE_STRIDE(10, rs)) { | |
178 E Th, Tk, Ti, Tl, Tn, TP, Tx, TN; | |
179 { | |
180 E Tj, Tw, Tm, Tv; | |
181 Th = W[0]; | |
182 Tk = W[1]; | |
183 Ti = W[2]; | |
184 Tl = W[3]; | |
185 Tj = Th * Ti; | |
186 Tw = Tk * Ti; | |
187 Tm = Tk * Tl; | |
188 Tv = Th * Tl; | |
189 Tn = Tj + Tm; | |
190 TP = Tv + Tw; | |
191 Tx = Tv - Tw; | |
192 TN = Tj - Tm; | |
193 } | |
194 { | |
195 E T1, Tp, TK, TA, T8, To, T9, Tt, TI, TC, Tg, TB; | |
196 { | |
197 E T4, Ty, T7, Tz; | |
198 T1 = cr[0]; | |
199 { | |
200 E T2, T3, T5, T6; | |
201 T2 = cr[WS(rs, 1)]; | |
202 T3 = ci[0]; | |
203 T4 = T2 + T3; | |
204 Ty = T2 - T3; | |
205 T5 = cr[WS(rs, 2)]; | |
206 T6 = ci[WS(rs, 1)]; | |
207 T7 = T5 + T6; | |
208 Tz = T5 - T6; | |
209 } | |
210 Tp = KP559016994 * (T4 - T7); | |
211 TK = FMA(KP951056516, Ty, KP587785252 * Tz); | |
212 TA = FNMS(KP951056516, Tz, KP587785252 * Ty); | |
213 T8 = T4 + T7; | |
214 To = FNMS(KP250000000, T8, T1); | |
215 } | |
216 { | |
217 E Tc, Tr, Tf, Ts; | |
218 T9 = ci[WS(rs, 4)]; | |
219 { | |
220 E Ta, Tb, Td, Te; | |
221 Ta = ci[WS(rs, 3)]; | |
222 Tb = cr[WS(rs, 4)]; | |
223 Tc = Ta - Tb; | |
224 Tr = Ta + Tb; | |
225 Td = ci[WS(rs, 2)]; | |
226 Te = cr[WS(rs, 3)]; | |
227 Tf = Td - Te; | |
228 Ts = Td + Te; | |
229 } | |
230 Tt = FNMS(KP951056516, Ts, KP587785252 * Tr); | |
231 TI = FMA(KP951056516, Tr, KP587785252 * Ts); | |
232 TC = KP559016994 * (Tc - Tf); | |
233 Tg = Tc + Tf; | |
234 TB = FNMS(KP250000000, Tg, T9); | |
235 } | |
236 cr[0] = T1 + T8; | |
237 ci[0] = T9 + Tg; | |
238 { | |
239 E Tu, TF, TE, TG, Tq, TD; | |
240 Tq = To - Tp; | |
241 Tu = Tq - Tt; | |
242 TF = Tq + Tt; | |
243 TD = TB - TC; | |
244 TE = TA + TD; | |
245 TG = TD - TA; | |
246 cr[WS(rs, 2)] = FNMS(Tx, TE, Tn * Tu); | |
247 ci[WS(rs, 2)] = FMA(Tn, TE, Tx * Tu); | |
248 cr[WS(rs, 3)] = FNMS(Tl, TG, Ti * TF); | |
249 ci[WS(rs, 3)] = FMA(Ti, TG, Tl * TF); | |
250 } | |
251 { | |
252 E TJ, TO, TM, TQ, TH, TL; | |
253 TH = Tp + To; | |
254 TJ = TH - TI; | |
255 TO = TH + TI; | |
256 TL = TC + TB; | |
257 TM = TK + TL; | |
258 TQ = TL - TK; | |
259 cr[WS(rs, 1)] = FNMS(Tk, TM, Th * TJ); | |
260 ci[WS(rs, 1)] = FMA(Th, TM, Tk * TJ); | |
261 cr[WS(rs, 4)] = FNMS(TP, TQ, TN * TO); | |
262 ci[WS(rs, 4)] = FMA(TN, TQ, TP * TO); | |
263 } | |
264 } | |
265 } | |
266 } | |
267 } | |
268 | |
269 static const tw_instr twinstr[] = { | |
270 {TW_CEXP, 1, 1}, | |
271 {TW_CEXP, 1, 3}, | |
272 {TW_NEXT, 1, 0} | |
273 }; | |
274 | |
275 static const hc2hc_desc desc = { 5, "hb2_5", twinstr, &GENUS, {30, 18, 14, 0} }; | |
276 | |
277 void X(codelet_hb2_5) (planner *p) { | |
278 X(khc2hc_register) (p, hb2_5, &desc); | |
279 } | |
280 #endif /* HAVE_FMA */ |