comparison fft/fftw/fftw-3.3.4/rdft/scalar/r2cb/hb2_16.c @ 19:26056e866c29

Add FFTW to comparison table
author Chris Cannam
date Tue, 06 Oct 2015 13:08:39 +0100
parents
children
comparison
equal deleted inserted replaced
18:8db794ca3e0b 19:26056e866c29
1 /*
2 * Copyright (c) 2003, 2007-14 Matteo Frigo
3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
18 *
19 */
20
21 /* This file was automatically generated --- DO NOT EDIT */
22 /* Generated on Tue Mar 4 13:50:28 EST 2014 */
23
24 #include "codelet-rdft.h"
25
26 #ifdef HAVE_FMA
27
28 /* Generated by: ../../../genfft/gen_hc2hc.native -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -sign 1 -twiddle-log3 -precompute-twiddles -n 16 -dif -name hb2_16 -include hb.h */
29
30 /*
31 * This function contains 196 FP additions, 134 FP multiplications,
32 * (or, 104 additions, 42 multiplications, 92 fused multiply/add),
33 * 114 stack variables, 3 constants, and 64 memory accesses
34 */
35 #include "hb.h"
36
37 static void hb2_16(R *cr, R *ci, const R *W, stride rs, INT mb, INT me, INT ms)
38 {
39 DK(KP923879532, +0.923879532511286756128183189396788286822416626);
40 DK(KP707106781, +0.707106781186547524400844362104849039284835938);
41 DK(KP414213562, +0.414213562373095048801688724209698078569671875);
42 {
43 INT m;
44 for (m = mb, W = W + ((mb - 1) * 8); m < me; m = m + 1, cr = cr + ms, ci = ci - ms, W = W + 8, MAKE_VOLATILE_STRIDE(32, rs)) {
45 E Tv, TB, TF, Ty, T1J, T1O, T1N, T1K;
46 {
47 E Tw, T2z, T2C, Tx, T3f, T3l, T2F, T3r, Tz;
48 Tv = W[0];
49 Tw = W[2];
50 T2z = W[6];
51 T2C = W[7];
52 TB = W[4];
53 Tx = Tv * Tw;
54 T3f = Tv * T2z;
55 T3l = Tv * T2C;
56 T2F = Tv * TB;
57 T3r = Tw * TB;
58 TF = W[5];
59 Ty = W[1];
60 Tz = W[3];
61 {
62 E T2G, T3z, T3m, T3g, T3L, T3s, T1V, TA, T3w, T3Q, T30, T3C, TE, T1X, T1D;
63 E TG, T1G, T1o, T2p, T1Y, T2u, T2c, T1Z, TL, T1t, T2d, T35, T3n, T3R, T3F;
64 E T20, T1w, T3M, Tf, T3h, T2L, T2e, TW, T3N, T3I, T2Q, T36, T2V, T37, T1d;
65 E Tu, T3S, T18, T1z, T1i, T24, T2g, T27, T2h, TQ, TV;
66 {
67 E TH, T3, T2I, TU, T32, T1s, T1p, T6, TM, Ta, Tb, T33, TK, T2J, TP;
68 E Tc, T4, T5;
69 {
70 E TS, TT, T1q, T1r;
71 {
72 E T1, T1n, TC, T2b, T1W, T2, T3v, T2Z, TD;
73 T1 = cr[0];
74 T3v = Tw * TF;
75 T2Z = Tv * TF;
76 T2G = FNMS(Ty, TF, T2F);
77 T3z = FMA(Ty, TF, T2F);
78 T3m = FNMS(Ty, T2z, T3l);
79 T3g = FMA(Ty, T2C, T3f);
80 T3L = FNMS(Tz, TF, T3r);
81 T3s = FMA(Tz, TF, T3r);
82 T1V = FMA(Ty, Tz, Tx);
83 TA = FNMS(Ty, Tz, Tx);
84 TD = Tv * Tz;
85 T3w = FNMS(Tz, TB, T3v);
86 T3Q = FMA(Tz, TB, T3v);
87 T30 = FMA(Ty, TB, T2Z);
88 T3C = FNMS(Ty, TB, T2Z);
89 T1n = TA * TF;
90 TC = TA * TB;
91 T2b = T1V * TF;
92 T1W = T1V * TB;
93 TE = FMA(Ty, Tw, TD);
94 T1X = FNMS(Ty, Tw, TD);
95 T2 = ci[WS(rs, 7)];
96 TS = ci[WS(rs, 9)];
97 T1D = FMA(TE, TF, TC);
98 TG = FNMS(TE, TF, TC);
99 T1G = FNMS(TE, TB, T1n);
100 T1o = FMA(TE, TB, T1n);
101 T2p = FMA(T1X, TF, T1W);
102 T1Y = FNMS(T1X, TF, T1W);
103 T2u = FNMS(T1X, TB, T2b);
104 T2c = FMA(T1X, TB, T2b);
105 TH = T1 - T2;
106 T3 = T1 + T2;
107 TT = cr[WS(rs, 14)];
108 }
109 T1q = ci[WS(rs, 15)];
110 T1r = cr[WS(rs, 8)];
111 T4 = cr[WS(rs, 4)];
112 T2I = TS - TT;
113 TU = TS + TT;
114 T32 = T1q - T1r;
115 T1s = T1q + T1r;
116 T5 = ci[WS(rs, 3)];
117 }
118 {
119 E TI, TJ, T8, T9, TN, TO;
120 T8 = cr[WS(rs, 2)];
121 T9 = ci[WS(rs, 5)];
122 TI = ci[WS(rs, 11)];
123 T1p = T4 - T5;
124 T6 = T4 + T5;
125 TM = T8 - T9;
126 Ta = T8 + T9;
127 TJ = cr[WS(rs, 12)];
128 TN = ci[WS(rs, 13)];
129 TO = cr[WS(rs, 10)];
130 Tb = ci[WS(rs, 1)];
131 T33 = TI - TJ;
132 TK = TI + TJ;
133 T2J = TN - TO;
134 TP = TN + TO;
135 Tc = cr[WS(rs, 6)];
136 }
137 {
138 E TR, Td, T3D, T34;
139 T1Z = TH + TK;
140 TL = TH - TK;
141 T1t = T1p + T1s;
142 T2d = T1s - T1p;
143 TR = Tb - Tc;
144 Td = Tb + Tc;
145 T3D = T32 + T33;
146 T34 = T32 - T33;
147 {
148 E Te, T2K, T1u, T1v, T31, T3E, T2H, T7;
149 Te = Ta + Td;
150 T31 = Ta - Td;
151 T3E = T2J + T2I;
152 T2K = T2I - T2J;
153 TQ = TM - TP;
154 T1u = TM + TP;
155 T1v = TR + TU;
156 TV = TR - TU;
157 T35 = T31 + T34;
158 T3n = T34 - T31;
159 T3R = T3D - T3E;
160 T3F = T3D + T3E;
161 T2H = T3 - T6;
162 T7 = T3 + T6;
163 T20 = T1u + T1v;
164 T1w = T1u - T1v;
165 T3M = T7 - Te;
166 Tf = T7 + Te;
167 T3h = T2H - T2K;
168 T2L = T2H + T2K;
169 }
170 }
171 }
172 {
173 E T1e, Ti, T2N, T1c, T2O, T1h, T19, Tl, T13, Tp, Tq, T2S, T11, T2T, T16;
174 E Tr, Tj, Tk, Tm, TY, Tt;
175 {
176 E T1a, T1b, Tg, Th, T1f, T1g;
177 Tg = cr[WS(rs, 1)];
178 Th = ci[WS(rs, 6)];
179 T1a = ci[WS(rs, 14)];
180 T2e = TQ - TV;
181 TW = TQ + TV;
182 T1e = Tg - Th;
183 Ti = Tg + Th;
184 T1b = cr[WS(rs, 9)];
185 T1f = ci[WS(rs, 10)];
186 T1g = cr[WS(rs, 13)];
187 Tj = cr[WS(rs, 5)];
188 T2N = T1a - T1b;
189 T1c = T1a + T1b;
190 T2O = T1f - T1g;
191 T1h = T1f + T1g;
192 Tk = ci[WS(rs, 2)];
193 }
194 {
195 E TZ, T10, Tn, To, T14, T15;
196 Tn = ci[0];
197 To = cr[WS(rs, 7)];
198 TZ = ci[WS(rs, 8)];
199 T19 = Tj - Tk;
200 Tl = Tj + Tk;
201 T13 = Tn - To;
202 Tp = Tn + To;
203 T10 = cr[WS(rs, 15)];
204 T14 = ci[WS(rs, 12)];
205 T15 = cr[WS(rs, 11)];
206 Tq = cr[WS(rs, 3)];
207 T2S = TZ - T10;
208 T11 = TZ + T10;
209 T2T = T14 - T15;
210 T16 = T14 + T15;
211 Tr = ci[WS(rs, 4)];
212 }
213 {
214 E T2P, T2U, T2M, Ts, T3G, T3H, T2R;
215 T2P = T2N - T2O;
216 T3G = T2N + T2O;
217 T3H = T2S + T2T;
218 T2U = T2S - T2T;
219 Tm = Ti + Tl;
220 T2M = Ti - Tl;
221 TY = Tq - Tr;
222 Ts = Tq + Tr;
223 T3N = T3H - T3G;
224 T3I = T3G + T3H;
225 Tt = Tp + Ts;
226 T2R = Tp - Ts;
227 T2Q = T2M - T2P;
228 T36 = T2M + T2P;
229 T2V = T2R + T2U;
230 T37 = T2U - T2R;
231 }
232 {
233 E T25, T26, T22, T23, T12, T17;
234 T12 = TY - T11;
235 T25 = TY + T11;
236 T26 = T13 + T16;
237 T17 = T13 - T16;
238 T22 = T1c - T19;
239 T1d = T19 + T1c;
240 Tu = Tm + Tt;
241 T3S = Tm - Tt;
242 T18 = FNMS(KP414213562, T17, T12);
243 T1z = FMA(KP414213562, T12, T17);
244 T1i = T1e - T1h;
245 T23 = T1e + T1h;
246 T24 = FNMS(KP414213562, T23, T22);
247 T2g = FMA(KP414213562, T22, T23);
248 T27 = FNMS(KP414213562, T26, T25);
249 T2h = FMA(KP414213562, T25, T26);
250 }
251 }
252 {
253 E T1j, T1y, T3V, T3X, T3W, T38, T3i, T3o, T2W, T3K, T3B, T3A;
254 cr[0] = Tf + Tu;
255 T3A = Tf - Tu;
256 T1j = FMA(KP414213562, T1i, T1d);
257 T1y = FNMS(KP414213562, T1d, T1i);
258 T3K = T3C * T3A;
259 T3B = T3z * T3A;
260 {
261 E T3O, T3T, T3J, T3P, T3U;
262 T3O = T3M - T3N;
263 T3V = T3M + T3N;
264 T3X = T3S + T3R;
265 T3T = T3R - T3S;
266 ci[0] = T3F + T3I;
267 T3J = T3F - T3I;
268 T3P = T3L * T3O;
269 T3U = T3L * T3T;
270 T3W = TA * T3V;
271 cr[WS(rs, 8)] = FNMS(T3C, T3J, T3B);
272 ci[WS(rs, 8)] = FMA(T3z, T3J, T3K);
273 cr[WS(rs, 12)] = FNMS(T3Q, T3T, T3P);
274 ci[WS(rs, 12)] = FMA(T3Q, T3O, T3U);
275 T38 = T36 + T37;
276 T3i = T37 - T36;
277 T3o = T2Q - T2V;
278 T2W = T2Q + T2V;
279 }
280 {
281 E T2q, T21, T28, T2w, T2v, T2f, T2i, T2r;
282 {
283 E T2Y, T3a, T3c, T3d, T39, T3e, T3b, T2X, T3Y;
284 cr[WS(rs, 4)] = FNMS(TE, T3X, T3W);
285 T3Y = TA * T3X;
286 {
287 E T3t, T3j, T3x, T3p;
288 T3t = FMA(KP707106781, T3i, T3h);
289 T3j = FNMS(KP707106781, T3i, T3h);
290 T3x = FMA(KP707106781, T3o, T3n);
291 T3p = FNMS(KP707106781, T3o, T3n);
292 ci[WS(rs, 4)] = FMA(TE, T3V, T3Y);
293 {
294 E T3u, T3k, T3y, T3q;
295 T3u = T3s * T3t;
296 T3k = T3g * T3j;
297 T3y = T3s * T3x;
298 T3q = T3g * T3p;
299 cr[WS(rs, 6)] = FNMS(T3w, T3x, T3u);
300 cr[WS(rs, 14)] = FNMS(T3m, T3p, T3k);
301 ci[WS(rs, 6)] = FMA(T3w, T3t, T3y);
302 ci[WS(rs, 14)] = FMA(T3m, T3j, T3q);
303 T3b = FMA(KP707106781, T2W, T2L);
304 T2X = FNMS(KP707106781, T2W, T2L);
305 }
306 }
307 T2Y = T2G * T2X;
308 T3a = T30 * T2X;
309 T3c = T1V * T3b;
310 T3d = FMA(KP707106781, T38, T35);
311 T39 = FNMS(KP707106781, T38, T35);
312 T3e = T1X * T3b;
313 T2q = FMA(KP707106781, T20, T1Z);
314 T21 = FNMS(KP707106781, T20, T1Z);
315 cr[WS(rs, 2)] = FNMS(T1X, T3d, T3c);
316 ci[WS(rs, 10)] = FMA(T2G, T39, T3a);
317 cr[WS(rs, 10)] = FNMS(T30, T39, T2Y);
318 ci[WS(rs, 2)] = FMA(T1V, T3d, T3e);
319 T28 = T24 + T27;
320 T2w = T27 - T24;
321 T2v = FNMS(KP707106781, T2e, T2d);
322 T2f = FMA(KP707106781, T2e, T2d);
323 T2i = T2g - T2h;
324 T2r = T2g + T2h;
325 }
326 {
327 E TX, T1k, T1x, T1A;
328 T1J = FMA(KP707106781, TW, TL);
329 TX = FNMS(KP707106781, TW, TL);
330 {
331 E T2l, T29, T2n, T2j;
332 T2l = FNMS(KP923879532, T28, T21);
333 T29 = FMA(KP923879532, T28, T21);
334 T2n = FMA(KP923879532, T2i, T2f);
335 T2j = FNMS(KP923879532, T2i, T2f);
336 {
337 E T2o, T2m, T2k, T2a;
338 T2o = Tz * T2l;
339 T2m = Tw * T2l;
340 T2k = T2c * T29;
341 T2a = T1Y * T29;
342 ci[WS(rs, 3)] = FMA(Tw, T2n, T2o);
343 cr[WS(rs, 3)] = FNMS(Tz, T2n, T2m);
344 ci[WS(rs, 11)] = FMA(T1Y, T2j, T2k);
345 cr[WS(rs, 11)] = FNMS(T2c, T2j, T2a);
346 T1k = T18 - T1j;
347 T1O = T1j + T18;
348 }
349 }
350 T1N = FMA(KP707106781, T1w, T1t);
351 T1x = FNMS(KP707106781, T1w, T1t);
352 T1A = T1y - T1z;
353 T1K = T1y + T1z;
354 {
355 E T1E, T1l, T1H, T1B;
356 T1E = FMA(KP923879532, T1k, TX);
357 T1l = FNMS(KP923879532, T1k, TX);
358 T1H = FMA(KP923879532, T1A, T1x);
359 T1B = FNMS(KP923879532, T1A, T1x);
360 {
361 E T1I, T1F, T1C, T1m;
362 T1I = T1G * T1E;
363 T1F = T1D * T1E;
364 T1C = T1o * T1l;
365 T1m = TG * T1l;
366 ci[WS(rs, 5)] = FMA(T1D, T1H, T1I);
367 cr[WS(rs, 5)] = FNMS(T1G, T1H, T1F);
368 ci[WS(rs, 13)] = FMA(TG, T1B, T1C);
369 cr[WS(rs, 13)] = FNMS(T1o, T1B, T1m);
370 }
371 }
372 {
373 E T2A, T2s, T2D, T2x;
374 T2A = FMA(KP923879532, T2r, T2q);
375 T2s = FNMS(KP923879532, T2r, T2q);
376 T2D = FNMS(KP923879532, T2w, T2v);
377 T2x = FMA(KP923879532, T2w, T2v);
378 {
379 E T2B, T2t, T2E, T2y;
380 T2B = T2z * T2A;
381 T2t = T2p * T2s;
382 T2E = T2z * T2D;
383 T2y = T2p * T2x;
384 cr[WS(rs, 15)] = FNMS(T2C, T2D, T2B);
385 cr[WS(rs, 7)] = FNMS(T2u, T2x, T2t);
386 ci[WS(rs, 15)] = FMA(T2C, T2A, T2E);
387 ci[WS(rs, 7)] = FMA(T2u, T2s, T2y);
388 }
389 }
390 }
391 }
392 }
393 }
394 }
395 {
396 E T1L, T1R, T1P, T1T;
397 T1L = FNMS(KP923879532, T1K, T1J);
398 T1R = FMA(KP923879532, T1K, T1J);
399 T1P = FNMS(KP923879532, T1O, T1N);
400 T1T = FMA(KP923879532, T1O, T1N);
401 {
402 E T1S, T1M, T1U, T1Q;
403 T1S = Tv * T1R;
404 T1M = TB * T1L;
405 T1U = Tv * T1T;
406 T1Q = TB * T1P;
407 cr[WS(rs, 1)] = FNMS(Ty, T1T, T1S);
408 cr[WS(rs, 9)] = FNMS(TF, T1P, T1M);
409 ci[WS(rs, 1)] = FMA(Ty, T1R, T1U);
410 ci[WS(rs, 9)] = FMA(TF, T1L, T1Q);
411 }
412 }
413 }
414 }
415 }
416
417 static const tw_instr twinstr[] = {
418 {TW_CEXP, 1, 1},
419 {TW_CEXP, 1, 3},
420 {TW_CEXP, 1, 9},
421 {TW_CEXP, 1, 15},
422 {TW_NEXT, 1, 0}
423 };
424
425 static const hc2hc_desc desc = { 16, "hb2_16", twinstr, &GENUS, {104, 42, 92, 0} };
426
427 void X(codelet_hb2_16) (planner *p) {
428 X(khc2hc_register) (p, hb2_16, &desc);
429 }
430 #else /* HAVE_FMA */
431
432 /* Generated by: ../../../genfft/gen_hc2hc.native -compact -variables 4 -pipeline-latency 4 -sign 1 -twiddle-log3 -precompute-twiddles -n 16 -dif -name hb2_16 -include hb.h */
433
434 /*
435 * This function contains 196 FP additions, 108 FP multiplications,
436 * (or, 156 additions, 68 multiplications, 40 fused multiply/add),
437 * 80 stack variables, 3 constants, and 64 memory accesses
438 */
439 #include "hb.h"
440
441 static void hb2_16(R *cr, R *ci, const R *W, stride rs, INT mb, INT me, INT ms)
442 {
443 DK(KP382683432, +0.382683432365089771728459984030398866761344562);
444 DK(KP923879532, +0.923879532511286756128183189396788286822416626);
445 DK(KP707106781, +0.707106781186547524400844362104849039284835938);
446 {
447 INT m;
448 for (m = mb, W = W + ((mb - 1) * 8); m < me; m = m + 1, cr = cr + ms, ci = ci - ms, W = W + 8, MAKE_VOLATILE_STRIDE(32, rs)) {
449 E Tv, Ty, T1l, T1n, T1p, T1t, T27, T25, Tz, Tw, TB, T21, T1P, T1H, T1X;
450 E T17, T1L, T1N, T1v, T1w, T1x, T1B, T2F, T2T, T2b, T2R, T3j, T3x, T35, T3t;
451 {
452 E TA, T1J, T15, T1G, Tx, T1K, T16, T1F;
453 {
454 E T1m, T1s, T1o, T1r;
455 Tv = W[0];
456 Ty = W[1];
457 T1l = W[2];
458 T1n = W[3];
459 T1m = Tv * T1l;
460 T1s = Ty * T1l;
461 T1o = Ty * T1n;
462 T1r = Tv * T1n;
463 T1p = T1m + T1o;
464 T1t = T1r - T1s;
465 T27 = T1r + T1s;
466 T25 = T1m - T1o;
467 Tz = W[5];
468 TA = Ty * Tz;
469 T1J = T1l * Tz;
470 T15 = Tv * Tz;
471 T1G = T1n * Tz;
472 Tw = W[4];
473 Tx = Tv * Tw;
474 T1K = T1n * Tw;
475 T16 = Ty * Tw;
476 T1F = T1l * Tw;
477 }
478 TB = Tx - TA;
479 T21 = T1J + T1K;
480 T1P = T15 - T16;
481 T1H = T1F + T1G;
482 T1X = T1F - T1G;
483 T17 = T15 + T16;
484 T1L = T1J - T1K;
485 T1N = Tx + TA;
486 T1v = W[6];
487 T1w = W[7];
488 T1x = FMA(Tv, T1v, Ty * T1w);
489 T1B = FNMS(Ty, T1v, Tv * T1w);
490 {
491 E T2D, T2E, T29, T2a;
492 T2D = T25 * Tz;
493 T2E = T27 * Tw;
494 T2F = T2D + T2E;
495 T2T = T2D - T2E;
496 T29 = T25 * Tw;
497 T2a = T27 * Tz;
498 T2b = T29 - T2a;
499 T2R = T29 + T2a;
500 }
501 {
502 E T3h, T3i, T33, T34;
503 T3h = T1p * Tz;
504 T3i = T1t * Tw;
505 T3j = T3h + T3i;
506 T3x = T3h - T3i;
507 T33 = T1p * Tw;
508 T34 = T1t * Tz;
509 T35 = T33 - T34;
510 T3t = T33 + T34;
511 }
512 }
513 {
514 E T7, T36, T3k, TC, T1f, T2e, T2I, T1Q, Te, TJ, T1R, T18, T2L, T37, T2l;
515 E T3l, Tm, T1T, TT, T1h, T2A, T2N, T3b, T3n, Tt, T1U, T12, T1i, T2t, T2O;
516 E T3e, T3o;
517 {
518 E T3, T2c, T1e, T2d, T6, T2G, T1b, T2H;
519 {
520 E T1, T2, T1c, T1d;
521 T1 = cr[0];
522 T2 = ci[WS(rs, 7)];
523 T3 = T1 + T2;
524 T2c = T1 - T2;
525 T1c = ci[WS(rs, 11)];
526 T1d = cr[WS(rs, 12)];
527 T1e = T1c - T1d;
528 T2d = T1c + T1d;
529 }
530 {
531 E T4, T5, T19, T1a;
532 T4 = cr[WS(rs, 4)];
533 T5 = ci[WS(rs, 3)];
534 T6 = T4 + T5;
535 T2G = T4 - T5;
536 T19 = ci[WS(rs, 15)];
537 T1a = cr[WS(rs, 8)];
538 T1b = T19 - T1a;
539 T2H = T19 + T1a;
540 }
541 T7 = T3 + T6;
542 T36 = T2c + T2d;
543 T3k = T2H - T2G;
544 TC = T3 - T6;
545 T1f = T1b - T1e;
546 T2e = T2c - T2d;
547 T2I = T2G + T2H;
548 T1Q = T1b + T1e;
549 }
550 {
551 E Ta, T2f, TI, T2g, Td, T2i, TF, T2j;
552 {
553 E T8, T9, TG, TH;
554 T8 = cr[WS(rs, 2)];
555 T9 = ci[WS(rs, 5)];
556 Ta = T8 + T9;
557 T2f = T8 - T9;
558 TG = ci[WS(rs, 13)];
559 TH = cr[WS(rs, 10)];
560 TI = TG - TH;
561 T2g = TG + TH;
562 }
563 {
564 E Tb, Tc, TD, TE;
565 Tb = ci[WS(rs, 1)];
566 Tc = cr[WS(rs, 6)];
567 Td = Tb + Tc;
568 T2i = Tb - Tc;
569 TD = ci[WS(rs, 9)];
570 TE = cr[WS(rs, 14)];
571 TF = TD - TE;
572 T2j = TD + TE;
573 }
574 Te = Ta + Td;
575 TJ = TF - TI;
576 T1R = TI + TF;
577 T18 = Ta - Td;
578 {
579 E T2J, T2K, T2h, T2k;
580 T2J = T2f + T2g;
581 T2K = T2i + T2j;
582 T2L = KP707106781 * (T2J - T2K);
583 T37 = KP707106781 * (T2J + T2K);
584 T2h = T2f - T2g;
585 T2k = T2i - T2j;
586 T2l = KP707106781 * (T2h + T2k);
587 T3l = KP707106781 * (T2h - T2k);
588 }
589 }
590 {
591 E Ti, T2x, TR, T2y, Tl, T2u, TO, T2v, TL, TS;
592 {
593 E Tg, Th, TP, TQ;
594 Tg = cr[WS(rs, 1)];
595 Th = ci[WS(rs, 6)];
596 Ti = Tg + Th;
597 T2x = Tg - Th;
598 TP = ci[WS(rs, 10)];
599 TQ = cr[WS(rs, 13)];
600 TR = TP - TQ;
601 T2y = TP + TQ;
602 }
603 {
604 E Tj, Tk, TM, TN;
605 Tj = cr[WS(rs, 5)];
606 Tk = ci[WS(rs, 2)];
607 Tl = Tj + Tk;
608 T2u = Tj - Tk;
609 TM = ci[WS(rs, 14)];
610 TN = cr[WS(rs, 9)];
611 TO = TM - TN;
612 T2v = TM + TN;
613 }
614 Tm = Ti + Tl;
615 T1T = TO + TR;
616 TL = Ti - Tl;
617 TS = TO - TR;
618 TT = TL - TS;
619 T1h = TL + TS;
620 {
621 E T2w, T2z, T39, T3a;
622 T2w = T2u + T2v;
623 T2z = T2x - T2y;
624 T2A = FMA(KP923879532, T2w, KP382683432 * T2z);
625 T2N = FNMS(KP382683432, T2w, KP923879532 * T2z);
626 T39 = T2x + T2y;
627 T3a = T2v - T2u;
628 T3b = FNMS(KP923879532, T3a, KP382683432 * T39);
629 T3n = FMA(KP382683432, T3a, KP923879532 * T39);
630 }
631 }
632 {
633 E Tp, T2q, T10, T2r, Ts, T2n, TX, T2o, TU, T11;
634 {
635 E Tn, To, TY, TZ;
636 Tn = ci[0];
637 To = cr[WS(rs, 7)];
638 Tp = Tn + To;
639 T2q = Tn - To;
640 TY = ci[WS(rs, 12)];
641 TZ = cr[WS(rs, 11)];
642 T10 = TY - TZ;
643 T2r = TY + TZ;
644 }
645 {
646 E Tq, Tr, TV, TW;
647 Tq = cr[WS(rs, 3)];
648 Tr = ci[WS(rs, 4)];
649 Ts = Tq + Tr;
650 T2n = Tq - Tr;
651 TV = ci[WS(rs, 8)];
652 TW = cr[WS(rs, 15)];
653 TX = TV - TW;
654 T2o = TV + TW;
655 }
656 Tt = Tp + Ts;
657 T1U = TX + T10;
658 TU = Tp - Ts;
659 T11 = TX - T10;
660 T12 = TU + T11;
661 T1i = T11 - TU;
662 {
663 E T2p, T2s, T3c, T3d;
664 T2p = T2n - T2o;
665 T2s = T2q - T2r;
666 T2t = FNMS(KP382683432, T2s, KP923879532 * T2p);
667 T2O = FMA(KP382683432, T2p, KP923879532 * T2s);
668 T3c = T2q + T2r;
669 T3d = T2n + T2o;
670 T3e = FNMS(KP923879532, T3d, KP382683432 * T3c);
671 T3o = FMA(KP382683432, T3d, KP923879532 * T3c);
672 }
673 }
674 {
675 E Tf, Tu, T1O, T1S, T1V, T1W;
676 Tf = T7 + Te;
677 Tu = Tm + Tt;
678 T1O = Tf - Tu;
679 T1S = T1Q + T1R;
680 T1V = T1T + T1U;
681 T1W = T1S - T1V;
682 cr[0] = Tf + Tu;
683 ci[0] = T1S + T1V;
684 cr[WS(rs, 8)] = FNMS(T1P, T1W, T1N * T1O);
685 ci[WS(rs, 8)] = FMA(T1P, T1O, T1N * T1W);
686 }
687 {
688 E T3g, T3r, T3q, T3s;
689 {
690 E T38, T3f, T3m, T3p;
691 T38 = T36 - T37;
692 T3f = T3b + T3e;
693 T3g = T38 - T3f;
694 T3r = T38 + T3f;
695 T3m = T3k + T3l;
696 T3p = T3n - T3o;
697 T3q = T3m - T3p;
698 T3s = T3m + T3p;
699 }
700 cr[WS(rs, 11)] = FNMS(T3j, T3q, T35 * T3g);
701 ci[WS(rs, 11)] = FMA(T3j, T3g, T35 * T3q);
702 cr[WS(rs, 3)] = FNMS(T1n, T3s, T1l * T3r);
703 ci[WS(rs, 3)] = FMA(T1n, T3r, T1l * T3s);
704 }
705 {
706 E T3w, T3B, T3A, T3C;
707 {
708 E T3u, T3v, T3y, T3z;
709 T3u = T36 + T37;
710 T3v = T3n + T3o;
711 T3w = T3u - T3v;
712 T3B = T3u + T3v;
713 T3y = T3k - T3l;
714 T3z = T3b - T3e;
715 T3A = T3y + T3z;
716 T3C = T3y - T3z;
717 }
718 cr[WS(rs, 7)] = FNMS(T3x, T3A, T3t * T3w);
719 ci[WS(rs, 7)] = FMA(T3t, T3A, T3x * T3w);
720 cr[WS(rs, 15)] = FNMS(T1w, T3C, T1v * T3B);
721 ci[WS(rs, 15)] = FMA(T1v, T3C, T1w * T3B);
722 }
723 {
724 E T14, T1q, T1k, T1u;
725 {
726 E TK, T13, T1g, T1j;
727 TK = TC + TJ;
728 T13 = KP707106781 * (TT + T12);
729 T14 = TK - T13;
730 T1q = TK + T13;
731 T1g = T18 + T1f;
732 T1j = KP707106781 * (T1h + T1i);
733 T1k = T1g - T1j;
734 T1u = T1g + T1j;
735 }
736 cr[WS(rs, 10)] = FNMS(T17, T1k, TB * T14);
737 ci[WS(rs, 10)] = FMA(T17, T14, TB * T1k);
738 cr[WS(rs, 2)] = FNMS(T1t, T1u, T1p * T1q);
739 ci[WS(rs, 2)] = FMA(T1t, T1q, T1p * T1u);
740 }
741 {
742 E T1A, T1I, T1E, T1M;
743 {
744 E T1y, T1z, T1C, T1D;
745 T1y = TC - TJ;
746 T1z = KP707106781 * (T1i - T1h);
747 T1A = T1y - T1z;
748 T1I = T1y + T1z;
749 T1C = T1f - T18;
750 T1D = KP707106781 * (TT - T12);
751 T1E = T1C - T1D;
752 T1M = T1C + T1D;
753 }
754 cr[WS(rs, 14)] = FNMS(T1B, T1E, T1x * T1A);
755 ci[WS(rs, 14)] = FMA(T1x, T1E, T1B * T1A);
756 cr[WS(rs, 6)] = FNMS(T1L, T1M, T1H * T1I);
757 ci[WS(rs, 6)] = FMA(T1H, T1M, T1L * T1I);
758 }
759 {
760 E T2C, T2S, T2Q, T2U;
761 {
762 E T2m, T2B, T2M, T2P;
763 T2m = T2e - T2l;
764 T2B = T2t - T2A;
765 T2C = T2m - T2B;
766 T2S = T2m + T2B;
767 T2M = T2I - T2L;
768 T2P = T2N - T2O;
769 T2Q = T2M - T2P;
770 T2U = T2M + T2P;
771 }
772 cr[WS(rs, 13)] = FNMS(T2F, T2Q, T2b * T2C);
773 ci[WS(rs, 13)] = FMA(T2F, T2C, T2b * T2Q);
774 cr[WS(rs, 5)] = FNMS(T2T, T2U, T2R * T2S);
775 ci[WS(rs, 5)] = FMA(T2T, T2S, T2R * T2U);
776 }
777 {
778 E T2X, T31, T30, T32;
779 {
780 E T2V, T2W, T2Y, T2Z;
781 T2V = T2e + T2l;
782 T2W = T2N + T2O;
783 T2X = T2V - T2W;
784 T31 = T2V + T2W;
785 T2Y = T2I + T2L;
786 T2Z = T2A + T2t;
787 T30 = T2Y - T2Z;
788 T32 = T2Y + T2Z;
789 }
790 cr[WS(rs, 9)] = FNMS(Tz, T30, Tw * T2X);
791 ci[WS(rs, 9)] = FMA(Tw, T30, Tz * T2X);
792 cr[WS(rs, 1)] = FNMS(Ty, T32, Tv * T31);
793 ci[WS(rs, 1)] = FMA(Tv, T32, Ty * T31);
794 }
795 {
796 E T20, T26, T24, T28;
797 {
798 E T1Y, T1Z, T22, T23;
799 T1Y = T7 - Te;
800 T1Z = T1U - T1T;
801 T20 = T1Y - T1Z;
802 T26 = T1Y + T1Z;
803 T22 = T1Q - T1R;
804 T23 = Tm - Tt;
805 T24 = T22 - T23;
806 T28 = T23 + T22;
807 }
808 cr[WS(rs, 12)] = FNMS(T21, T24, T1X * T20);
809 ci[WS(rs, 12)] = FMA(T1X, T24, T21 * T20);
810 cr[WS(rs, 4)] = FNMS(T27, T28, T25 * T26);
811 ci[WS(rs, 4)] = FMA(T25, T28, T27 * T26);
812 }
813 }
814 }
815 }
816 }
817
818 static const tw_instr twinstr[] = {
819 {TW_CEXP, 1, 1},
820 {TW_CEXP, 1, 3},
821 {TW_CEXP, 1, 9},
822 {TW_CEXP, 1, 15},
823 {TW_NEXT, 1, 0}
824 };
825
826 static const hc2hc_desc desc = { 16, "hb2_16", twinstr, &GENUS, {156, 68, 40, 0} };
827
828 void X(codelet_hb2_16) (planner *p) {
829 X(khc2hc_register) (p, hb2_16, &desc);
830 }
831 #endif /* HAVE_FMA */