comparison fft/fftw/fftw-3.3.4/doc/html/The-1d-Real_002ddata-DFT.html @ 19:26056e866c29

Add FFTW to comparison table
author Chris Cannam
date Tue, 06 Oct 2015 13:08:39 +0100
parents
children
comparison
equal deleted inserted replaced
18:8db794ca3e0b 19:26056e866c29
1 <html lang="en">
2 <head>
3 <title>The 1d Real-data DFT - FFTW 3.3.4</title>
4 <meta http-equiv="Content-Type" content="text/html">
5 <meta name="description" content="FFTW 3.3.4">
6 <meta name="generator" content="makeinfo 4.13">
7 <link title="Top" rel="start" href="index.html#Top">
8 <link rel="up" href="What-FFTW-Really-Computes.html#What-FFTW-Really-Computes" title="What FFTW Really Computes">
9 <link rel="prev" href="The-1d-Discrete-Fourier-Transform-_0028DFT_0029.html#The-1d-Discrete-Fourier-Transform-_0028DFT_0029" title="The 1d Discrete Fourier Transform (DFT)">
10 <link rel="next" href="1d-Real_002deven-DFTs-_0028DCTs_0029.html#g_t1d-Real_002deven-DFTs-_0028DCTs_0029" title="1d Real-even DFTs (DCTs)">
11 <link href="http://www.gnu.org/software/texinfo/" rel="generator-home" title="Texinfo Homepage">
12 <!--
13 This manual is for FFTW
14 (version 3.3.4, 20 September 2013).
15
16 Copyright (C) 2003 Matteo Frigo.
17
18 Copyright (C) 2003 Massachusetts Institute of Technology.
19
20 Permission is granted to make and distribute verbatim copies of
21 this manual provided the copyright notice and this permission
22 notice are preserved on all copies.
23
24 Permission is granted to copy and distribute modified versions of
25 this manual under the conditions for verbatim copying, provided
26 that the entire resulting derived work is distributed under the
27 terms of a permission notice identical to this one.
28
29 Permission is granted to copy and distribute translations of this
30 manual into another language, under the above conditions for
31 modified versions, except that this permission notice may be
32 stated in a translation approved by the Free Software Foundation.
33 -->
34 <meta http-equiv="Content-Style-Type" content="text/css">
35 <style type="text/css"><!--
36 pre.display { font-family:inherit }
37 pre.format { font-family:inherit }
38 pre.smalldisplay { font-family:inherit; font-size:smaller }
39 pre.smallformat { font-family:inherit; font-size:smaller }
40 pre.smallexample { font-size:smaller }
41 pre.smalllisp { font-size:smaller }
42 span.sc { font-variant:small-caps }
43 span.roman { font-family:serif; font-weight:normal; }
44 span.sansserif { font-family:sans-serif; font-weight:normal; }
45 --></style>
46 </head>
47 <body>
48 <div class="node">
49 <a name="The-1d-Real-data-DFT"></a>
50 <a name="The-1d-Real_002ddata-DFT"></a>
51 <p>
52 Next:&nbsp;<a rel="next" accesskey="n" href="1d-Real_002deven-DFTs-_0028DCTs_0029.html#g_t1d-Real_002deven-DFTs-_0028DCTs_0029">1d Real-even DFTs (DCTs)</a>,
53 Previous:&nbsp;<a rel="previous" accesskey="p" href="The-1d-Discrete-Fourier-Transform-_0028DFT_0029.html#The-1d-Discrete-Fourier-Transform-_0028DFT_0029">The 1d Discrete Fourier Transform (DFT)</a>,
54 Up:&nbsp;<a rel="up" accesskey="u" href="What-FFTW-Really-Computes.html#What-FFTW-Really-Computes">What FFTW Really Computes</a>
55 <hr>
56 </div>
57
58 <h4 class="subsection">4.8.2 The 1d Real-data DFT</h4>
59
60 <p>The real-input (r2c) DFT in FFTW computes the <em>forward</em> transform
61 Y of the size <code>n</code> real array X, exactly as defined
62 above, i.e.
63 <center><img src="equation-dft.png" align="top">.</center>This output array Y can easily be shown to possess the
64 &ldquo;Hermitian&rdquo; symmetry
65 <a name="index-Hermitian-299"></a><i>Y<sub>k</sub> = Y<sub>n-k</sub></i><sup>*</sup>,where we take Y to be periodic so that
66 <i>Y<sub>n</sub> = Y</i><sub>0</sub>.
67
68 <p>As a result of this symmetry, half of the output Y is redundant
69 (being the complex conjugate of the other half), and so the 1d r2c
70 transforms only output elements 0<small class="dots">...</small>n/2 of Y
71 (n/2+1 complex numbers), where the division by 2 is
72 rounded down.
73
74 <p>Moreover, the Hermitian symmetry implies that
75 <i>Y</i><sub>0</sub>and, if n is even, the
76 <i>Y</i><sub><i>n</i>/2</sub>element, are purely real. So, for the <code>R2HC</code> r2r transform, these
77 elements are not stored in the halfcomplex output format.
78 <a name="index-r2r-300"></a><a name="index-R2HC-301"></a><a name="index-halfcomplex-format-302"></a>
79
80 <p>The c2r and <code>H2RC</code> r2r transforms compute the backward DFT of the
81 <em>complex</em> array X with Hermitian symmetry, stored in the
82 r2c/<code>R2HC</code> output formats, respectively, where the backward
83 transform is defined exactly as for the complex case:
84 <center><img src="equation-idft.png" align="top">.</center>The outputs <code>Y</code> of this transform can easily be seen to be purely
85 real, and are stored as an array of real numbers.
86
87 <p><a name="index-normalization-303"></a>Like FFTW's complex DFT, these transforms are unnormalized. In other
88 words, applying the real-to-complex (forward) and then the
89 complex-to-real (backward) transform will multiply the input by
90 n.
91
92 <!-- =========> -->
93 </body></html>
94