comparison fft/fftw/fftw-3.3.4/dft/simd/common/n1fv_13.c @ 19:26056e866c29

Add FFTW to comparison table
author Chris Cannam
date Tue, 06 Oct 2015 13:08:39 +0100
parents
children
comparison
equal deleted inserted replaced
18:8db794ca3e0b 19:26056e866c29
1 /*
2 * Copyright (c) 2003, 2007-14 Matteo Frigo
3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
18 *
19 */
20
21 /* This file was automatically generated --- DO NOT EDIT */
22 /* Generated on Tue Mar 4 13:46:49 EST 2014 */
23
24 #include "codelet-dft.h"
25
26 #ifdef HAVE_FMA
27
28 /* Generated by: ../../../genfft/gen_notw_c.native -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -n 13 -name n1fv_13 -include n1f.h */
29
30 /*
31 * This function contains 88 FP additions, 63 FP multiplications,
32 * (or, 31 additions, 6 multiplications, 57 fused multiply/add),
33 * 96 stack variables, 23 constants, and 26 memory accesses
34 */
35 #include "n1f.h"
36
37 static void n1fv_13(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs)
38 {
39 DVK(KP904176221, +0.904176221990848204433795481776887926501523162);
40 DVK(KP575140729, +0.575140729474003121368385547455453388461001608);
41 DVK(KP300462606, +0.300462606288665774426601772289207995520941381);
42 DVK(KP516520780, +0.516520780623489722840901288569017135705033622);
43 DVK(KP522026385, +0.522026385161275033714027226654165028300441940);
44 DVK(KP957805992, +0.957805992594665126462521754605754580515587217);
45 DVK(KP600477271, +0.600477271932665282925769253334763009352012849);
46 DVK(KP251768516, +0.251768516431883313623436926934233488546674281);
47 DVK(KP503537032, +0.503537032863766627246873853868466977093348562);
48 DVK(KP769338817, +0.769338817572980603471413688209101117038278899);
49 DVK(KP859542535, +0.859542535098774820163672132761689612766401925);
50 DVK(KP581704778, +0.581704778510515730456870384989698884939833902);
51 DVK(KP853480001, +0.853480001859823990758994934970528322872359049);
52 DVK(KP083333333, +0.083333333333333333333333333333333333333333333);
53 DVK(KP226109445, +0.226109445035782405468510155372505010481906348);
54 DVK(KP301479260, +0.301479260047709873958013540496673347309208464);
55 DVK(KP686558370, +0.686558370781754340655719594850823015421401653);
56 DVK(KP514918778, +0.514918778086315755491789696138117261566051239);
57 DVK(KP038632954, +0.038632954644348171955506895830342264440241080);
58 DVK(KP612264650, +0.612264650376756543746494474777125408779395514);
59 DVK(KP302775637, +0.302775637731994646559610633735247973125648287);
60 DVK(KP866025403, +0.866025403784438646763723170752936183471402627);
61 DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
62 {
63 INT i;
64 const R *xi;
65 R *xo;
66 xi = ri;
67 xo = ro;
68 for (i = v; i > 0; i = i - VL, xi = xi + (VL * ivs), xo = xo + (VL * ovs), MAKE_VOLATILE_STRIDE(26, is), MAKE_VOLATILE_STRIDE(26, os)) {
69 V T1, T7, T2, Tg, Tf, TN, Th, Tq, Ta, Tj, T5, Tr, Tk;
70 T1 = LD(&(xi[0]), ivs, &(xi[0]));
71 {
72 V Td, Te, T8, T9, T3, T4;
73 Td = LD(&(xi[WS(is, 8)]), ivs, &(xi[0]));
74 Te = LD(&(xi[WS(is, 5)]), ivs, &(xi[WS(is, 1)]));
75 T7 = LD(&(xi[WS(is, 12)]), ivs, &(xi[0]));
76 T8 = LD(&(xi[WS(is, 10)]), ivs, &(xi[0]));
77 T9 = LD(&(xi[WS(is, 4)]), ivs, &(xi[0]));
78 T2 = LD(&(xi[WS(is, 1)]), ivs, &(xi[WS(is, 1)]));
79 T3 = LD(&(xi[WS(is, 3)]), ivs, &(xi[WS(is, 1)]));
80 T4 = LD(&(xi[WS(is, 9)]), ivs, &(xi[WS(is, 1)]));
81 Tg = LD(&(xi[WS(is, 11)]), ivs, &(xi[WS(is, 1)]));
82 Tf = VADD(Td, Te);
83 TN = VSUB(Td, Te);
84 Th = LD(&(xi[WS(is, 6)]), ivs, &(xi[0]));
85 Tq = VSUB(T8, T9);
86 Ta = VADD(T8, T9);
87 Tj = LD(&(xi[WS(is, 7)]), ivs, &(xi[WS(is, 1)]));
88 T5 = VADD(T3, T4);
89 Tr = VSUB(T4, T3);
90 Tk = LD(&(xi[WS(is, 2)]), ivs, &(xi[0]));
91 }
92 {
93 V Tt, Ti, Ty, Tb, Ts, TQ, Tx, T6, Tu, Tl;
94 Tt = VSUB(Tg, Th);
95 Ti = VADD(Tg, Th);
96 Ty = VFMS(LDK(KP500000000), Ta, T7);
97 Tb = VADD(T7, Ta);
98 Ts = VSUB(Tq, Tr);
99 TQ = VADD(Tr, Tq);
100 Tx = VFNMS(LDK(KP500000000), T5, T2);
101 T6 = VADD(T2, T5);
102 Tu = VSUB(Tj, Tk);
103 Tl = VADD(Tj, Tk);
104 {
105 V TK, Tz, Tc, TX, Tv, TO, TL, Tm;
106 TK = VADD(Tx, Ty);
107 Tz = VSUB(Tx, Ty);
108 Tc = VADD(T6, Tb);
109 TX = VSUB(T6, Tb);
110 Tv = VSUB(Tt, Tu);
111 TO = VADD(Tt, Tu);
112 TL = VSUB(Ti, Tl);
113 Tm = VADD(Ti, Tl);
114 {
115 V TF, Tw, TP, TY, TT, TM, TA, Tn;
116 TF = VSUB(Ts, Tv);
117 Tw = VADD(Ts, Tv);
118 TP = VFNMS(LDK(KP500000000), TO, TN);
119 TY = VADD(TN, TO);
120 TT = VFNMS(LDK(KP866025403), TL, TK);
121 TM = VFMA(LDK(KP866025403), TL, TK);
122 TA = VFNMS(LDK(KP500000000), Tm, Tf);
123 Tn = VADD(Tf, Tm);
124 {
125 V T1f, T1n, TI, T18, T1k, T1c, TD, T17, T10, T1m, T16, T1e, TU, TR;
126 TU = VFNMS(LDK(KP866025403), TQ, TP);
127 TR = VFMA(LDK(KP866025403), TQ, TP);
128 {
129 V TZ, T15, TE, TB;
130 TZ = VFMA(LDK(KP302775637), TY, TX);
131 T15 = VFNMS(LDK(KP302775637), TX, TY);
132 TE = VSUB(Tz, TA);
133 TB = VADD(Tz, TA);
134 {
135 V TH, To, TV, T13;
136 TH = VSUB(Tc, Tn);
137 To = VADD(Tc, Tn);
138 TV = VFNMS(LDK(KP612264650), TU, TT);
139 T13 = VFMA(LDK(KP612264650), TT, TU);
140 {
141 V TS, T12, TG, T1b;
142 TS = VFNMS(LDK(KP038632954), TR, TM);
143 T12 = VFMA(LDK(KP038632954), TM, TR);
144 TG = VFNMS(LDK(KP514918778), TF, TE);
145 T1b = VFMA(LDK(KP686558370), TE, TF);
146 {
147 V TC, T1a, Tp, TW, T14;
148 TC = VFMA(LDK(KP301479260), TB, Tw);
149 T1a = VFNMS(LDK(KP226109445), Tw, TB);
150 Tp = VFNMS(LDK(KP083333333), To, T1);
151 ST(&(xo[0]), VADD(T1, To), ovs, &(xo[0]));
152 T1f = VFMA(LDK(KP853480001), TV, TS);
153 TW = VFNMS(LDK(KP853480001), TV, TS);
154 T1n = VFMA(LDK(KP853480001), T13, T12);
155 T14 = VFNMS(LDK(KP853480001), T13, T12);
156 TI = VFMA(LDK(KP581704778), TH, TG);
157 T18 = VFNMS(LDK(KP859542535), TG, TH);
158 T1k = VFMA(LDK(KP769338817), T1b, T1a);
159 T1c = VFNMS(LDK(KP769338817), T1b, T1a);
160 TD = VFMA(LDK(KP503537032), TC, Tp);
161 T17 = VFNMS(LDK(KP251768516), TC, Tp);
162 T10 = VMUL(LDK(KP600477271), VFMA(LDK(KP957805992), TZ, TW));
163 T1m = VFNMS(LDK(KP522026385), TW, TZ);
164 T16 = VMUL(LDK(KP600477271), VFMA(LDK(KP957805992), T15, T14));
165 T1e = VFNMS(LDK(KP522026385), T14, T15);
166 }
167 }
168 }
169 }
170 {
171 V T1o, T1q, T1g, T1i, T1d, T1h, T1l, T1p;
172 {
173 V T11, TJ, T19, T1j;
174 T11 = VFMA(LDK(KP516520780), TI, TD);
175 TJ = VFNMS(LDK(KP516520780), TI, TD);
176 T19 = VFMA(LDK(KP300462606), T18, T17);
177 T1j = VFNMS(LDK(KP300462606), T18, T17);
178 T1o = VMUL(LDK(KP575140729), VFNMS(LDK(KP904176221), T1n, T1m));
179 T1q = VMUL(LDK(KP575140729), VFMA(LDK(KP904176221), T1n, T1m));
180 T1g = VMUL(LDK(KP575140729), VFMA(LDK(KP904176221), T1f, T1e));
181 T1i = VMUL(LDK(KP575140729), VFNMS(LDK(KP904176221), T1f, T1e));
182 ST(&(xo[WS(os, 12)]), VFNMSI(T16, T11), ovs, &(xo[0]));
183 ST(&(xo[WS(os, 1)]), VFMAI(T16, T11), ovs, &(xo[WS(os, 1)]));
184 ST(&(xo[WS(os, 8)]), VFMAI(T10, TJ), ovs, &(xo[0]));
185 ST(&(xo[WS(os, 5)]), VFNMSI(T10, TJ), ovs, &(xo[WS(os, 1)]));
186 T1d = VFNMS(LDK(KP503537032), T1c, T19);
187 T1h = VFMA(LDK(KP503537032), T1c, T19);
188 T1l = VFNMS(LDK(KP503537032), T1k, T1j);
189 T1p = VFMA(LDK(KP503537032), T1k, T1j);
190 }
191 ST(&(xo[WS(os, 9)]), VFMAI(T1g, T1d), ovs, &(xo[WS(os, 1)]));
192 ST(&(xo[WS(os, 4)]), VFNMSI(T1g, T1d), ovs, &(xo[0]));
193 ST(&(xo[WS(os, 10)]), VFNMSI(T1i, T1h), ovs, &(xo[0]));
194 ST(&(xo[WS(os, 3)]), VFMAI(T1i, T1h), ovs, &(xo[WS(os, 1)]));
195 ST(&(xo[WS(os, 7)]), VFMAI(T1o, T1l), ovs, &(xo[WS(os, 1)]));
196 ST(&(xo[WS(os, 6)]), VFNMSI(T1o, T1l), ovs, &(xo[0]));
197 ST(&(xo[WS(os, 11)]), VFMAI(T1q, T1p), ovs, &(xo[WS(os, 1)]));
198 ST(&(xo[WS(os, 2)]), VFNMSI(T1q, T1p), ovs, &(xo[0]));
199 }
200 }
201 }
202 }
203 }
204 }
205 }
206 VLEAVE();
207 }
208
209 static const kdft_desc desc = { 13, XSIMD_STRING("n1fv_13"), {31, 6, 57, 0}, &GENUS, 0, 0, 0, 0 };
210
211 void XSIMD(codelet_n1fv_13) (planner *p) {
212 X(kdft_register) (p, n1fv_13, &desc);
213 }
214
215 #else /* HAVE_FMA */
216
217 /* Generated by: ../../../genfft/gen_notw_c.native -simd -compact -variables 4 -pipeline-latency 8 -n 13 -name n1fv_13 -include n1f.h */
218
219 /*
220 * This function contains 88 FP additions, 34 FP multiplications,
221 * (or, 69 additions, 15 multiplications, 19 fused multiply/add),
222 * 60 stack variables, 20 constants, and 26 memory accesses
223 */
224 #include "n1f.h"
225
226 static void n1fv_13(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs)
227 {
228 DVK(KP2_000000000, +2.000000000000000000000000000000000000000000000);
229 DVK(KP083333333, +0.083333333333333333333333333333333333333333333);
230 DVK(KP075902986, +0.075902986037193865983102897245103540356428373);
231 DVK(KP251768516, +0.251768516431883313623436926934233488546674281);
232 DVK(KP132983124, +0.132983124607418643793760531921092974399165133);
233 DVK(KP258260390, +0.258260390311744861420450644284508567852516811);
234 DVK(KP1_732050807, +1.732050807568877293527446341505872366942805254);
235 DVK(KP300238635, +0.300238635966332641462884626667381504676006424);
236 DVK(KP011599105, +0.011599105605768290721655456654083252189827041);
237 DVK(KP156891391, +0.156891391051584611046832726756003269660212636);
238 DVK(KP256247671, +0.256247671582936600958684654061725059144125175);
239 DVK(KP174138601, +0.174138601152135905005660794929264742616964676);
240 DVK(KP575140729, +0.575140729474003121368385547455453388461001608);
241 DVK(KP503537032, +0.503537032863766627246873853868466977093348562);
242 DVK(KP113854479, +0.113854479055790798974654345867655310534642560);
243 DVK(KP265966249, +0.265966249214837287587521063842185948798330267);
244 DVK(KP387390585, +0.387390585467617292130675966426762851778775217);
245 DVK(KP300462606, +0.300462606288665774426601772289207995520941381);
246 DVK(KP866025403, +0.866025403784438646763723170752936183471402627);
247 DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
248 {
249 INT i;
250 const R *xi;
251 R *xo;
252 xi = ri;
253 xo = ro;
254 for (i = v; i > 0; i = i - VL, xi = xi + (VL * ivs), xo = xo + (VL * ovs), MAKE_VOLATILE_STRIDE(26, is), MAKE_VOLATILE_STRIDE(26, os)) {
255 V TW, Tb, Tm, Tu, TC, TR, TX, TK, TU, Tz, TB, TN, TT;
256 TW = LD(&(xi[0]), ivs, &(xi[0]));
257 {
258 V T3, TH, Tl, Tw, Tp, Tg, Tv, To, T6, Tr, T9, Ts, Ta, TI, T1;
259 V T2, Tq, Tt;
260 T1 = LD(&(xi[WS(is, 8)]), ivs, &(xi[0]));
261 T2 = LD(&(xi[WS(is, 5)]), ivs, &(xi[WS(is, 1)]));
262 T3 = VSUB(T1, T2);
263 TH = VADD(T1, T2);
264 {
265 V Th, Ti, Tj, Tk;
266 Th = LD(&(xi[WS(is, 12)]), ivs, &(xi[0]));
267 Ti = LD(&(xi[WS(is, 10)]), ivs, &(xi[0]));
268 Tj = LD(&(xi[WS(is, 4)]), ivs, &(xi[0]));
269 Tk = VADD(Ti, Tj);
270 Tl = VADD(Th, Tk);
271 Tw = VSUB(Ti, Tj);
272 Tp = VFNMS(LDK(KP500000000), Tk, Th);
273 }
274 {
275 V Tc, Td, Te, Tf;
276 Tc = LD(&(xi[WS(is, 1)]), ivs, &(xi[WS(is, 1)]));
277 Td = LD(&(xi[WS(is, 3)]), ivs, &(xi[WS(is, 1)]));
278 Te = LD(&(xi[WS(is, 9)]), ivs, &(xi[WS(is, 1)]));
279 Tf = VADD(Td, Te);
280 Tg = VADD(Tc, Tf);
281 Tv = VSUB(Td, Te);
282 To = VFNMS(LDK(KP500000000), Tf, Tc);
283 }
284 {
285 V T4, T5, T7, T8;
286 T4 = LD(&(xi[WS(is, 11)]), ivs, &(xi[WS(is, 1)]));
287 T5 = LD(&(xi[WS(is, 6)]), ivs, &(xi[0]));
288 T6 = VSUB(T4, T5);
289 Tr = VADD(T4, T5);
290 T7 = LD(&(xi[WS(is, 7)]), ivs, &(xi[WS(is, 1)]));
291 T8 = LD(&(xi[WS(is, 2)]), ivs, &(xi[0]));
292 T9 = VSUB(T7, T8);
293 Ts = VADD(T7, T8);
294 }
295 Ta = VADD(T6, T9);
296 TI = VADD(Tr, Ts);
297 Tb = VADD(T3, Ta);
298 Tm = VSUB(Tg, Tl);
299 Tq = VSUB(To, Tp);
300 Tt = VMUL(LDK(KP866025403), VSUB(Tr, Ts));
301 Tu = VADD(Tq, Tt);
302 TC = VSUB(Tq, Tt);
303 {
304 V TP, TQ, TG, TJ;
305 TP = VADD(Tg, Tl);
306 TQ = VADD(TH, TI);
307 TR = VMUL(LDK(KP300462606), VSUB(TP, TQ));
308 TX = VADD(TP, TQ);
309 TG = VADD(To, Tp);
310 TJ = VFNMS(LDK(KP500000000), TI, TH);
311 TK = VSUB(TG, TJ);
312 TU = VADD(TG, TJ);
313 }
314 {
315 V Tx, Ty, TL, TM;
316 Tx = VMUL(LDK(KP866025403), VSUB(Tv, Tw));
317 Ty = VFNMS(LDK(KP500000000), Ta, T3);
318 Tz = VSUB(Tx, Ty);
319 TB = VADD(Tx, Ty);
320 TL = VADD(Tv, Tw);
321 TM = VSUB(T6, T9);
322 TN = VSUB(TL, TM);
323 TT = VADD(TL, TM);
324 }
325 }
326 ST(&(xo[0]), VADD(TW, TX), ovs, &(xo[0]));
327 {
328 V T19, T1n, T14, T13, T1f, T1k, Tn, TE, T1e, T1j, TS, T1m, TZ, T1c, TA;
329 V TD;
330 {
331 V T17, T18, T11, T12;
332 T17 = VFMA(LDK(KP387390585), TN, VMUL(LDK(KP265966249), TK));
333 T18 = VFNMS(LDK(KP503537032), TU, VMUL(LDK(KP113854479), TT));
334 T19 = VSUB(T17, T18);
335 T1n = VADD(T17, T18);
336 T14 = VFMA(LDK(KP575140729), Tm, VMUL(LDK(KP174138601), Tb));
337 T11 = VFNMS(LDK(KP156891391), TB, VMUL(LDK(KP256247671), TC));
338 T12 = VFMA(LDK(KP011599105), Tz, VMUL(LDK(KP300238635), Tu));
339 T13 = VSUB(T11, T12);
340 T1f = VADD(T14, T13);
341 T1k = VMUL(LDK(KP1_732050807), VADD(T11, T12));
342 }
343 Tn = VFNMS(LDK(KP174138601), Tm, VMUL(LDK(KP575140729), Tb));
344 TA = VFNMS(LDK(KP300238635), Tz, VMUL(LDK(KP011599105), Tu));
345 TD = VFMA(LDK(KP256247671), TB, VMUL(LDK(KP156891391), TC));
346 TE = VSUB(TA, TD);
347 T1e = VMUL(LDK(KP1_732050807), VADD(TD, TA));
348 T1j = VSUB(Tn, TE);
349 {
350 V TO, T1b, TV, TY, T1a;
351 TO = VFNMS(LDK(KP132983124), TN, VMUL(LDK(KP258260390), TK));
352 T1b = VSUB(TR, TO);
353 TV = VFMA(LDK(KP251768516), TT, VMUL(LDK(KP075902986), TU));
354 TY = VFNMS(LDK(KP083333333), TX, TW);
355 T1a = VSUB(TY, TV);
356 TS = VFMA(LDK(KP2_000000000), TO, TR);
357 T1m = VADD(T1b, T1a);
358 TZ = VFMA(LDK(KP2_000000000), TV, TY);
359 T1c = VSUB(T1a, T1b);
360 }
361 {
362 V TF, T10, T1l, T1o;
363 TF = VBYI(VFMA(LDK(KP2_000000000), TE, Tn));
364 T10 = VADD(TS, TZ);
365 ST(&(xo[WS(os, 1)]), VADD(TF, T10), ovs, &(xo[WS(os, 1)]));
366 ST(&(xo[WS(os, 12)]), VSUB(T10, TF), ovs, &(xo[0]));
367 {
368 V T15, T16, T1p, T1q;
369 T15 = VBYI(VFMS(LDK(KP2_000000000), T13, T14));
370 T16 = VSUB(TZ, TS);
371 ST(&(xo[WS(os, 5)]), VADD(T15, T16), ovs, &(xo[WS(os, 1)]));
372 ST(&(xo[WS(os, 8)]), VSUB(T16, T15), ovs, &(xo[0]));
373 T1p = VADD(T1n, T1m);
374 T1q = VBYI(VADD(T1j, T1k));
375 ST(&(xo[WS(os, 4)]), VSUB(T1p, T1q), ovs, &(xo[0]));
376 ST(&(xo[WS(os, 9)]), VADD(T1q, T1p), ovs, &(xo[WS(os, 1)]));
377 }
378 T1l = VBYI(VSUB(T1j, T1k));
379 T1o = VSUB(T1m, T1n);
380 ST(&(xo[WS(os, 3)]), VADD(T1l, T1o), ovs, &(xo[WS(os, 1)]));
381 ST(&(xo[WS(os, 10)]), VSUB(T1o, T1l), ovs, &(xo[0]));
382 {
383 V T1h, T1i, T1d, T1g;
384 T1h = VBYI(VSUB(T1e, T1f));
385 T1i = VSUB(T1c, T19);
386 ST(&(xo[WS(os, 6)]), VADD(T1h, T1i), ovs, &(xo[0]));
387 ST(&(xo[WS(os, 7)]), VSUB(T1i, T1h), ovs, &(xo[WS(os, 1)]));
388 T1d = VADD(T19, T1c);
389 T1g = VBYI(VADD(T1e, T1f));
390 ST(&(xo[WS(os, 2)]), VSUB(T1d, T1g), ovs, &(xo[0]));
391 ST(&(xo[WS(os, 11)]), VADD(T1g, T1d), ovs, &(xo[WS(os, 1)]));
392 }
393 }
394 }
395 }
396 }
397 VLEAVE();
398 }
399
400 static const kdft_desc desc = { 13, XSIMD_STRING("n1fv_13"), {69, 15, 19, 0}, &GENUS, 0, 0, 0, 0 };
401
402 void XSIMD(codelet_n1fv_13) (planner *p) {
403 X(kdft_register) (p, n1fv_13, &desc);
404 }
405
406 #endif /* HAVE_FMA */