annotate fft/fftw/fftw-3.3.4/reodft/reodft11e-radix2.c @ 40:223f770b5341 kissfft-double tip

Try a double-precision kissfft
author Chris Cannam
date Wed, 07 Sep 2016 10:40:32 +0100
parents 26056e866c29
children
rev   line source
Chris@19 1 /*
Chris@19 2 * Copyright (c) 2003, 2007-14 Matteo Frigo
Chris@19 3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
Chris@19 4 *
Chris@19 5 * This program is free software; you can redistribute it and/or modify
Chris@19 6 * it under the terms of the GNU General Public License as published by
Chris@19 7 * the Free Software Foundation; either version 2 of the License, or
Chris@19 8 * (at your option) any later version.
Chris@19 9 *
Chris@19 10 * This program is distributed in the hope that it will be useful,
Chris@19 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
Chris@19 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
Chris@19 13 * GNU General Public License for more details.
Chris@19 14 *
Chris@19 15 * You should have received a copy of the GNU General Public License
Chris@19 16 * along with this program; if not, write to the Free Software
Chris@19 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Chris@19 18 *
Chris@19 19 */
Chris@19 20
Chris@19 21
Chris@19 22 /* Do an R{E,O}DFT11 problem of *even* size by a pair of R2HC problems
Chris@19 23 of half the size, plus some pre/post-processing. Use a trick from:
Chris@19 24
Chris@19 25 Zhongde Wang, "On computing the discrete Fourier and cosine transforms,"
Chris@19 26 IEEE Trans. Acoust. Speech Sig. Proc. ASSP-33 (4), 1341--1344 (1985).
Chris@19 27
Chris@19 28 to re-express as a pair of half-size REDFT01 (DCT-III) problems. Our
Chris@19 29 implementation looks quite a bit different from the algorithm described
Chris@19 30 in the paper because we combined the paper's pre/post-processing with
Chris@19 31 the pre/post-processing used to turn REDFT01 into R2HC. (Also, the
Chris@19 32 paper uses a DCT/DST pair, but we turn the DST into a DCT via the
Chris@19 33 usual reordering/sign-flip trick. We additionally combined a couple
Chris@19 34 of the matrices/transformations of the paper into a single pass.)
Chris@19 35
Chris@19 36 NOTE: We originally used a simpler method by S. C. Chan and K. L. Ho
Chris@19 37 that turned out to have numerical problems; see reodft11e-r2hc.c.
Chris@19 38
Chris@19 39 (For odd sizes, see reodft11e-r2hc-odd.c.)
Chris@19 40 */
Chris@19 41
Chris@19 42 #include "reodft.h"
Chris@19 43
Chris@19 44 typedef struct {
Chris@19 45 solver super;
Chris@19 46 } S;
Chris@19 47
Chris@19 48 typedef struct {
Chris@19 49 plan_rdft super;
Chris@19 50 plan *cld;
Chris@19 51 twid *td, *td2;
Chris@19 52 INT is, os;
Chris@19 53 INT n;
Chris@19 54 INT vl;
Chris@19 55 INT ivs, ovs;
Chris@19 56 rdft_kind kind;
Chris@19 57 } P;
Chris@19 58
Chris@19 59 static void apply_re11(const plan *ego_, R *I, R *O)
Chris@19 60 {
Chris@19 61 const P *ego = (const P *) ego_;
Chris@19 62 INT is = ego->is, os = ego->os;
Chris@19 63 INT i, n = ego->n, n2 = n/2;
Chris@19 64 INT iv, vl = ego->vl;
Chris@19 65 INT ivs = ego->ivs, ovs = ego->ovs;
Chris@19 66 R *W = ego->td->W;
Chris@19 67 R *W2;
Chris@19 68 R *buf;
Chris@19 69
Chris@19 70 buf = (R *) MALLOC(sizeof(R) * n, BUFFERS);
Chris@19 71
Chris@19 72 for (iv = 0; iv < vl; ++iv, I += ivs, O += ovs) {
Chris@19 73 buf[0] = K(2.0) * I[0];
Chris@19 74 buf[n2] = K(2.0) * I[is * (n - 1)];
Chris@19 75 for (i = 1; i + i < n2; ++i) {
Chris@19 76 INT k = i + i;
Chris@19 77 E a, b, a2, b2;
Chris@19 78 {
Chris@19 79 E u, v;
Chris@19 80 u = I[is * (k - 1)];
Chris@19 81 v = I[is * k];
Chris@19 82 a = u + v;
Chris@19 83 b2 = u - v;
Chris@19 84 }
Chris@19 85 {
Chris@19 86 E u, v;
Chris@19 87 u = I[is * (n - k - 1)];
Chris@19 88 v = I[is * (n - k)];
Chris@19 89 b = u + v;
Chris@19 90 a2 = u - v;
Chris@19 91 }
Chris@19 92 {
Chris@19 93 E wa, wb;
Chris@19 94 wa = W[2*i];
Chris@19 95 wb = W[2*i + 1];
Chris@19 96 {
Chris@19 97 E apb, amb;
Chris@19 98 apb = a + b;
Chris@19 99 amb = a - b;
Chris@19 100 buf[i] = wa * amb + wb * apb;
Chris@19 101 buf[n2 - i] = wa * apb - wb * amb;
Chris@19 102 }
Chris@19 103 {
Chris@19 104 E apb, amb;
Chris@19 105 apb = a2 + b2;
Chris@19 106 amb = a2 - b2;
Chris@19 107 buf[n2 + i] = wa * amb + wb * apb;
Chris@19 108 buf[n - i] = wa * apb - wb * amb;
Chris@19 109 }
Chris@19 110 }
Chris@19 111 }
Chris@19 112 if (i + i == n2) {
Chris@19 113 E u, v;
Chris@19 114 u = I[is * (n2 - 1)];
Chris@19 115 v = I[is * n2];
Chris@19 116 buf[i] = (u + v) * (W[2*i] * K(2.0));
Chris@19 117 buf[n - i] = (u - v) * (W[2*i] * K(2.0));
Chris@19 118 }
Chris@19 119
Chris@19 120
Chris@19 121 /* child plan: two r2hc's of size n/2 */
Chris@19 122 {
Chris@19 123 plan_rdft *cld = (plan_rdft *) ego->cld;
Chris@19 124 cld->apply((plan *) cld, buf, buf);
Chris@19 125 }
Chris@19 126
Chris@19 127 W2 = ego->td2->W;
Chris@19 128 { /* i == 0 case */
Chris@19 129 E wa, wb;
Chris@19 130 E a, b;
Chris@19 131 wa = W2[0]; /* cos */
Chris@19 132 wb = W2[1]; /* sin */
Chris@19 133 a = buf[0];
Chris@19 134 b = buf[n2];
Chris@19 135 O[0] = wa * a + wb * b;
Chris@19 136 O[os * (n - 1)] = wb * a - wa * b;
Chris@19 137 }
Chris@19 138 W2 += 2;
Chris@19 139 for (i = 1; i + i < n2; ++i, W2 += 2) {
Chris@19 140 INT k;
Chris@19 141 E u, v, u2, v2;
Chris@19 142 u = buf[i];
Chris@19 143 v = buf[n2 - i];
Chris@19 144 u2 = buf[n2 + i];
Chris@19 145 v2 = buf[n - i];
Chris@19 146 k = (i + i) - 1;
Chris@19 147 {
Chris@19 148 E wa, wb;
Chris@19 149 E a, b;
Chris@19 150 wa = W2[0]; /* cos */
Chris@19 151 wb = W2[1]; /* sin */
Chris@19 152 a = u - v;
Chris@19 153 b = v2 - u2;
Chris@19 154 O[os * k] = wa * a + wb * b;
Chris@19 155 O[os * (n - 1 - k)] = wb * a - wa * b;
Chris@19 156 }
Chris@19 157 ++k;
Chris@19 158 W2 += 2;
Chris@19 159 {
Chris@19 160 E wa, wb;
Chris@19 161 E a, b;
Chris@19 162 wa = W2[0]; /* cos */
Chris@19 163 wb = W2[1]; /* sin */
Chris@19 164 a = u + v;
Chris@19 165 b = u2 + v2;
Chris@19 166 O[os * k] = wa * a + wb * b;
Chris@19 167 O[os * (n - 1 - k)] = wb * a - wa * b;
Chris@19 168 }
Chris@19 169 }
Chris@19 170 if (i + i == n2) {
Chris@19 171 INT k = (i + i) - 1;
Chris@19 172 E wa, wb;
Chris@19 173 E a, b;
Chris@19 174 wa = W2[0]; /* cos */
Chris@19 175 wb = W2[1]; /* sin */
Chris@19 176 a = buf[i];
Chris@19 177 b = buf[n2 + i];
Chris@19 178 O[os * k] = wa * a - wb * b;
Chris@19 179 O[os * (n - 1 - k)] = wb * a + wa * b;
Chris@19 180 }
Chris@19 181 }
Chris@19 182
Chris@19 183 X(ifree)(buf);
Chris@19 184 }
Chris@19 185
Chris@19 186 #if 0
Chris@19 187
Chris@19 188 /* This version of apply_re11 uses REDFT01 child plans, more similar
Chris@19 189 to the original paper by Z. Wang. We keep it around for reference
Chris@19 190 (it is simpler) and because it may become more efficient if we
Chris@19 191 ever implement REDFT01 codelets. */
Chris@19 192
Chris@19 193 static void apply_re11(const plan *ego_, R *I, R *O)
Chris@19 194 {
Chris@19 195 const P *ego = (const P *) ego_;
Chris@19 196 INT is = ego->is, os = ego->os;
Chris@19 197 INT i, n = ego->n;
Chris@19 198 INT iv, vl = ego->vl;
Chris@19 199 INT ivs = ego->ivs, ovs = ego->ovs;
Chris@19 200 R *W;
Chris@19 201 R *buf;
Chris@19 202
Chris@19 203 buf = (R *) MALLOC(sizeof(R) * n, BUFFERS);
Chris@19 204
Chris@19 205 for (iv = 0; iv < vl; ++iv, I += ivs, O += ovs) {
Chris@19 206 buf[0] = K(2.0) * I[0];
Chris@19 207 buf[n/2] = K(2.0) * I[is * (n - 1)];
Chris@19 208 for (i = 1; i + i < n; ++i) {
Chris@19 209 INT k = i + i;
Chris@19 210 E a, b;
Chris@19 211 a = I[is * (k - 1)];
Chris@19 212 b = I[is * k];
Chris@19 213 buf[i] = a + b;
Chris@19 214 buf[n - i] = a - b;
Chris@19 215 }
Chris@19 216
Chris@19 217 /* child plan: two redft01's (DCT-III) */
Chris@19 218 {
Chris@19 219 plan_rdft *cld = (plan_rdft *) ego->cld;
Chris@19 220 cld->apply((plan *) cld, buf, buf);
Chris@19 221 }
Chris@19 222
Chris@19 223 W = ego->td2->W;
Chris@19 224 for (i = 0; i + 1 < n/2; ++i, W += 2) {
Chris@19 225 {
Chris@19 226 E wa, wb;
Chris@19 227 E a, b;
Chris@19 228 wa = W[0]; /* cos */
Chris@19 229 wb = W[1]; /* sin */
Chris@19 230 a = buf[i];
Chris@19 231 b = buf[n/2 + i];
Chris@19 232 O[os * i] = wa * a + wb * b;
Chris@19 233 O[os * (n - 1 - i)] = wb * a - wa * b;
Chris@19 234 }
Chris@19 235 ++i;
Chris@19 236 W += 2;
Chris@19 237 {
Chris@19 238 E wa, wb;
Chris@19 239 E a, b;
Chris@19 240 wa = W[0]; /* cos */
Chris@19 241 wb = W[1]; /* sin */
Chris@19 242 a = buf[i];
Chris@19 243 b = buf[n/2 + i];
Chris@19 244 O[os * i] = wa * a - wb * b;
Chris@19 245 O[os * (n - 1 - i)] = wb * a + wa * b;
Chris@19 246 }
Chris@19 247 }
Chris@19 248 if (i < n/2) {
Chris@19 249 E wa, wb;
Chris@19 250 E a, b;
Chris@19 251 wa = W[0]; /* cos */
Chris@19 252 wb = W[1]; /* sin */
Chris@19 253 a = buf[i];
Chris@19 254 b = buf[n/2 + i];
Chris@19 255 O[os * i] = wa * a + wb * b;
Chris@19 256 O[os * (n - 1 - i)] = wb * a - wa * b;
Chris@19 257 }
Chris@19 258 }
Chris@19 259
Chris@19 260 X(ifree)(buf);
Chris@19 261 }
Chris@19 262
Chris@19 263 #endif /* 0 */
Chris@19 264
Chris@19 265 /* like for rodft01, rodft11 is obtained from redft11 by
Chris@19 266 reversing the input and flipping the sign of every other output. */
Chris@19 267 static void apply_ro11(const plan *ego_, R *I, R *O)
Chris@19 268 {
Chris@19 269 const P *ego = (const P *) ego_;
Chris@19 270 INT is = ego->is, os = ego->os;
Chris@19 271 INT i, n = ego->n, n2 = n/2;
Chris@19 272 INT iv, vl = ego->vl;
Chris@19 273 INT ivs = ego->ivs, ovs = ego->ovs;
Chris@19 274 R *W = ego->td->W;
Chris@19 275 R *W2;
Chris@19 276 R *buf;
Chris@19 277
Chris@19 278 buf = (R *) MALLOC(sizeof(R) * n, BUFFERS);
Chris@19 279
Chris@19 280 for (iv = 0; iv < vl; ++iv, I += ivs, O += ovs) {
Chris@19 281 buf[0] = K(2.0) * I[is * (n - 1)];
Chris@19 282 buf[n2] = K(2.0) * I[0];
Chris@19 283 for (i = 1; i + i < n2; ++i) {
Chris@19 284 INT k = i + i;
Chris@19 285 E a, b, a2, b2;
Chris@19 286 {
Chris@19 287 E u, v;
Chris@19 288 u = I[is * (n - k)];
Chris@19 289 v = I[is * (n - 1 - k)];
Chris@19 290 a = u + v;
Chris@19 291 b2 = u - v;
Chris@19 292 }
Chris@19 293 {
Chris@19 294 E u, v;
Chris@19 295 u = I[is * (k)];
Chris@19 296 v = I[is * (k - 1)];
Chris@19 297 b = u + v;
Chris@19 298 a2 = u - v;
Chris@19 299 }
Chris@19 300 {
Chris@19 301 E wa, wb;
Chris@19 302 wa = W[2*i];
Chris@19 303 wb = W[2*i + 1];
Chris@19 304 {
Chris@19 305 E apb, amb;
Chris@19 306 apb = a + b;
Chris@19 307 amb = a - b;
Chris@19 308 buf[i] = wa * amb + wb * apb;
Chris@19 309 buf[n2 - i] = wa * apb - wb * amb;
Chris@19 310 }
Chris@19 311 {
Chris@19 312 E apb, amb;
Chris@19 313 apb = a2 + b2;
Chris@19 314 amb = a2 - b2;
Chris@19 315 buf[n2 + i] = wa * amb + wb * apb;
Chris@19 316 buf[n - i] = wa * apb - wb * amb;
Chris@19 317 }
Chris@19 318 }
Chris@19 319 }
Chris@19 320 if (i + i == n2) {
Chris@19 321 E u, v;
Chris@19 322 u = I[is * n2];
Chris@19 323 v = I[is * (n2 - 1)];
Chris@19 324 buf[i] = (u + v) * (W[2*i] * K(2.0));
Chris@19 325 buf[n - i] = (u - v) * (W[2*i] * K(2.0));
Chris@19 326 }
Chris@19 327
Chris@19 328
Chris@19 329 /* child plan: two r2hc's of size n/2 */
Chris@19 330 {
Chris@19 331 plan_rdft *cld = (plan_rdft *) ego->cld;
Chris@19 332 cld->apply((plan *) cld, buf, buf);
Chris@19 333 }
Chris@19 334
Chris@19 335 W2 = ego->td2->W;
Chris@19 336 { /* i == 0 case */
Chris@19 337 E wa, wb;
Chris@19 338 E a, b;
Chris@19 339 wa = W2[0]; /* cos */
Chris@19 340 wb = W2[1]; /* sin */
Chris@19 341 a = buf[0];
Chris@19 342 b = buf[n2];
Chris@19 343 O[0] = wa * a + wb * b;
Chris@19 344 O[os * (n - 1)] = wa * b - wb * a;
Chris@19 345 }
Chris@19 346 W2 += 2;
Chris@19 347 for (i = 1; i + i < n2; ++i, W2 += 2) {
Chris@19 348 INT k;
Chris@19 349 E u, v, u2, v2;
Chris@19 350 u = buf[i];
Chris@19 351 v = buf[n2 - i];
Chris@19 352 u2 = buf[n2 + i];
Chris@19 353 v2 = buf[n - i];
Chris@19 354 k = (i + i) - 1;
Chris@19 355 {
Chris@19 356 E wa, wb;
Chris@19 357 E a, b;
Chris@19 358 wa = W2[0]; /* cos */
Chris@19 359 wb = W2[1]; /* sin */
Chris@19 360 a = v - u;
Chris@19 361 b = u2 - v2;
Chris@19 362 O[os * k] = wa * a + wb * b;
Chris@19 363 O[os * (n - 1 - k)] = wa * b - wb * a;
Chris@19 364 }
Chris@19 365 ++k;
Chris@19 366 W2 += 2;
Chris@19 367 {
Chris@19 368 E wa, wb;
Chris@19 369 E a, b;
Chris@19 370 wa = W2[0]; /* cos */
Chris@19 371 wb = W2[1]; /* sin */
Chris@19 372 a = u + v;
Chris@19 373 b = u2 + v2;
Chris@19 374 O[os * k] = wa * a + wb * b;
Chris@19 375 O[os * (n - 1 - k)] = wa * b - wb * a;
Chris@19 376 }
Chris@19 377 }
Chris@19 378 if (i + i == n2) {
Chris@19 379 INT k = (i + i) - 1;
Chris@19 380 E wa, wb;
Chris@19 381 E a, b;
Chris@19 382 wa = W2[0]; /* cos */
Chris@19 383 wb = W2[1]; /* sin */
Chris@19 384 a = buf[i];
Chris@19 385 b = buf[n2 + i];
Chris@19 386 O[os * k] = wb * b - wa * a;
Chris@19 387 O[os * (n - 1 - k)] = wa * b + wb * a;
Chris@19 388 }
Chris@19 389 }
Chris@19 390
Chris@19 391 X(ifree)(buf);
Chris@19 392 }
Chris@19 393
Chris@19 394 static void awake(plan *ego_, enum wakefulness wakefulness)
Chris@19 395 {
Chris@19 396 P *ego = (P *) ego_;
Chris@19 397 static const tw_instr reodft010e_tw[] = {
Chris@19 398 { TW_COS, 0, 1 },
Chris@19 399 { TW_SIN, 0, 1 },
Chris@19 400 { TW_NEXT, 1, 0 }
Chris@19 401 };
Chris@19 402 static const tw_instr reodft11e_tw[] = {
Chris@19 403 { TW_COS, 1, 1 },
Chris@19 404 { TW_SIN, 1, 1 },
Chris@19 405 { TW_NEXT, 2, 0 }
Chris@19 406 };
Chris@19 407
Chris@19 408 X(plan_awake)(ego->cld, wakefulness);
Chris@19 409
Chris@19 410 X(twiddle_awake)(wakefulness, &ego->td, reodft010e_tw,
Chris@19 411 2*ego->n, 1, ego->n/4+1);
Chris@19 412 X(twiddle_awake)(wakefulness, &ego->td2, reodft11e_tw,
Chris@19 413 8*ego->n, 1, ego->n);
Chris@19 414 }
Chris@19 415
Chris@19 416 static void destroy(plan *ego_)
Chris@19 417 {
Chris@19 418 P *ego = (P *) ego_;
Chris@19 419 X(plan_destroy_internal)(ego->cld);
Chris@19 420 }
Chris@19 421
Chris@19 422 static void print(const plan *ego_, printer *p)
Chris@19 423 {
Chris@19 424 const P *ego = (const P *) ego_;
Chris@19 425 p->print(p, "(%se-radix2-r2hc-%D%v%(%p%))",
Chris@19 426 X(rdft_kind_str)(ego->kind), ego->n, ego->vl, ego->cld);
Chris@19 427 }
Chris@19 428
Chris@19 429 static int applicable0(const solver *ego_, const problem *p_)
Chris@19 430 {
Chris@19 431 const problem_rdft *p = (const problem_rdft *) p_;
Chris@19 432 UNUSED(ego_);
Chris@19 433
Chris@19 434 return (1
Chris@19 435 && p->sz->rnk == 1
Chris@19 436 && p->vecsz->rnk <= 1
Chris@19 437 && p->sz->dims[0].n % 2 == 0
Chris@19 438 && (p->kind[0] == REDFT11 || p->kind[0] == RODFT11)
Chris@19 439 );
Chris@19 440 }
Chris@19 441
Chris@19 442 static int applicable(const solver *ego, const problem *p, const planner *plnr)
Chris@19 443 {
Chris@19 444 return (!NO_SLOWP(plnr) && applicable0(ego, p));
Chris@19 445 }
Chris@19 446
Chris@19 447 static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr)
Chris@19 448 {
Chris@19 449 P *pln;
Chris@19 450 const problem_rdft *p;
Chris@19 451 plan *cld;
Chris@19 452 R *buf;
Chris@19 453 INT n;
Chris@19 454 opcnt ops;
Chris@19 455
Chris@19 456 static const plan_adt padt = {
Chris@19 457 X(rdft_solve), awake, print, destroy
Chris@19 458 };
Chris@19 459
Chris@19 460 if (!applicable(ego_, p_, plnr))
Chris@19 461 return (plan *)0;
Chris@19 462
Chris@19 463 p = (const problem_rdft *) p_;
Chris@19 464
Chris@19 465 n = p->sz->dims[0].n;
Chris@19 466 buf = (R *) MALLOC(sizeof(R) * n, BUFFERS);
Chris@19 467
Chris@19 468 cld = X(mkplan_d)(plnr, X(mkproblem_rdft_1_d)(X(mktensor_1d)(n/2, 1, 1),
Chris@19 469 X(mktensor_1d)(2, n/2, n/2),
Chris@19 470 buf, buf, R2HC));
Chris@19 471 X(ifree)(buf);
Chris@19 472 if (!cld)
Chris@19 473 return (plan *)0;
Chris@19 474
Chris@19 475 pln = MKPLAN_RDFT(P, &padt, p->kind[0]==REDFT11 ? apply_re11:apply_ro11);
Chris@19 476 pln->n = n;
Chris@19 477 pln->is = p->sz->dims[0].is;
Chris@19 478 pln->os = p->sz->dims[0].os;
Chris@19 479 pln->cld = cld;
Chris@19 480 pln->td = pln->td2 = 0;
Chris@19 481 pln->kind = p->kind[0];
Chris@19 482
Chris@19 483 X(tensor_tornk1)(p->vecsz, &pln->vl, &pln->ivs, &pln->ovs);
Chris@19 484
Chris@19 485 X(ops_zero)(&ops);
Chris@19 486 ops.add = 2 + (n/2 - 1)/2 * 20;
Chris@19 487 ops.mul = 6 + (n/2 - 1)/2 * 16;
Chris@19 488 ops.other = 4*n + 2 + (n/2 - 1)/2 * 6;
Chris@19 489 if ((n/2) % 2 == 0) {
Chris@19 490 ops.add += 4;
Chris@19 491 ops.mul += 8;
Chris@19 492 ops.other += 4;
Chris@19 493 }
Chris@19 494
Chris@19 495 X(ops_zero)(&pln->super.super.ops);
Chris@19 496 X(ops_madd2)(pln->vl, &ops, &pln->super.super.ops);
Chris@19 497 X(ops_madd2)(pln->vl, &cld->ops, &pln->super.super.ops);
Chris@19 498
Chris@19 499 return &(pln->super.super);
Chris@19 500 }
Chris@19 501
Chris@19 502 /* constructor */
Chris@19 503 static solver *mksolver(void)
Chris@19 504 {
Chris@19 505 static const solver_adt sadt = { PROBLEM_RDFT, mkplan, 0 };
Chris@19 506 S *slv = MKSOLVER(S, &sadt);
Chris@19 507 return &(slv->super);
Chris@19 508 }
Chris@19 509
Chris@19 510 void X(reodft11e_radix2_r2hc_register)(planner *p)
Chris@19 511 {
Chris@19 512 REGISTER_SOLVER(p, mksolver());
Chris@19 513 }