annotate fft/fftw/fftw-3.3.4/reodft/reodft11e-r2hc.c @ 40:223f770b5341 kissfft-double tip

Try a double-precision kissfft
author Chris Cannam
date Wed, 07 Sep 2016 10:40:32 +0100
parents 26056e866c29
children
rev   line source
Chris@19 1 /*
Chris@19 2 * Copyright (c) 2003, 2007-14 Matteo Frigo
Chris@19 3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
Chris@19 4 *
Chris@19 5 * This program is free software; you can redistribute it and/or modify
Chris@19 6 * it under the terms of the GNU General Public License as published by
Chris@19 7 * the Free Software Foundation; either version 2 of the License, or
Chris@19 8 * (at your option) any later version.
Chris@19 9 *
Chris@19 10 * This program is distributed in the hope that it will be useful,
Chris@19 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
Chris@19 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
Chris@19 13 * GNU General Public License for more details.
Chris@19 14 *
Chris@19 15 * You should have received a copy of the GNU General Public License
Chris@19 16 * along with this program; if not, write to the Free Software
Chris@19 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Chris@19 18 *
Chris@19 19 */
Chris@19 20
Chris@19 21
Chris@19 22 /* Do an R{E,O}DFT11 problem via an R2HC problem, with some
Chris@19 23 pre/post-processing ala FFTPACK. Use a trick from:
Chris@19 24
Chris@19 25 S. C. Chan and K. L. Ho, "Direct methods for computing discrete
Chris@19 26 sinusoidal transforms," IEE Proceedings F 137 (6), 433--442 (1990).
Chris@19 27
Chris@19 28 to re-express as an REDFT01 (DCT-III) problem.
Chris@19 29
Chris@19 30 NOTE: We no longer use this algorithm, because it turns out to suffer
Chris@19 31 a catastrophic loss of accuracy for certain inputs, apparently because
Chris@19 32 its post-processing multiplies the output by a cosine. Near the zero
Chris@19 33 of the cosine, the REDFT01 must produce a near-singular output.
Chris@19 34 */
Chris@19 35
Chris@19 36 #include "reodft.h"
Chris@19 37
Chris@19 38 typedef struct {
Chris@19 39 solver super;
Chris@19 40 } S;
Chris@19 41
Chris@19 42 typedef struct {
Chris@19 43 plan_rdft super;
Chris@19 44 plan *cld;
Chris@19 45 twid *td, *td2;
Chris@19 46 INT is, os;
Chris@19 47 INT n;
Chris@19 48 INT vl;
Chris@19 49 INT ivs, ovs;
Chris@19 50 rdft_kind kind;
Chris@19 51 } P;
Chris@19 52
Chris@19 53 static void apply_re11(const plan *ego_, R *I, R *O)
Chris@19 54 {
Chris@19 55 const P *ego = (const P *) ego_;
Chris@19 56 INT is = ego->is, os = ego->os;
Chris@19 57 INT i, n = ego->n;
Chris@19 58 INT iv, vl = ego->vl;
Chris@19 59 INT ivs = ego->ivs, ovs = ego->ovs;
Chris@19 60 R *W;
Chris@19 61 R *buf;
Chris@19 62 E cur;
Chris@19 63
Chris@19 64 buf = (R *) MALLOC(sizeof(R) * n, BUFFERS);
Chris@19 65
Chris@19 66 for (iv = 0; iv < vl; ++iv, I += ivs, O += ovs) {
Chris@19 67 /* I wish that this didn't require an extra pass. */
Chris@19 68 /* FIXME: use recursive/cascade summation for better stability? */
Chris@19 69 buf[n - 1] = cur = K(2.0) * I[is * (n - 1)];
Chris@19 70 for (i = n - 1; i > 0; --i) {
Chris@19 71 E curnew;
Chris@19 72 buf[(i - 1)] = curnew = K(2.0) * I[is * (i - 1)] - cur;
Chris@19 73 cur = curnew;
Chris@19 74 }
Chris@19 75
Chris@19 76 W = ego->td->W;
Chris@19 77 for (i = 1; i < n - i; ++i) {
Chris@19 78 E a, b, apb, amb, wa, wb;
Chris@19 79 a = buf[i];
Chris@19 80 b = buf[n - i];
Chris@19 81 apb = a + b;
Chris@19 82 amb = a - b;
Chris@19 83 wa = W[2*i];
Chris@19 84 wb = W[2*i + 1];
Chris@19 85 buf[i] = wa * amb + wb * apb;
Chris@19 86 buf[n - i] = wa * apb - wb * amb;
Chris@19 87 }
Chris@19 88 if (i == n - i) {
Chris@19 89 buf[i] = K(2.0) * buf[i] * W[2*i];
Chris@19 90 }
Chris@19 91
Chris@19 92 {
Chris@19 93 plan_rdft *cld = (plan_rdft *) ego->cld;
Chris@19 94 cld->apply((plan *) cld, buf, buf);
Chris@19 95 }
Chris@19 96
Chris@19 97 W = ego->td2->W;
Chris@19 98 O[0] = W[0] * buf[0];
Chris@19 99 for (i = 1; i < n - i; ++i) {
Chris@19 100 E a, b;
Chris@19 101 INT k;
Chris@19 102 a = buf[i];
Chris@19 103 b = buf[n - i];
Chris@19 104 k = i + i;
Chris@19 105 O[os * (k - 1)] = W[k - 1] * (a - b);
Chris@19 106 O[os * k] = W[k] * (a + b);
Chris@19 107 }
Chris@19 108 if (i == n - i) {
Chris@19 109 O[os * (n - 1)] = W[n - 1] * buf[i];
Chris@19 110 }
Chris@19 111 }
Chris@19 112
Chris@19 113 X(ifree)(buf);
Chris@19 114 }
Chris@19 115
Chris@19 116 /* like for rodft01, rodft11 is obtained from redft11 by
Chris@19 117 reversing the input and flipping the sign of every other output. */
Chris@19 118 static void apply_ro11(const plan *ego_, R *I, R *O)
Chris@19 119 {
Chris@19 120 const P *ego = (const P *) ego_;
Chris@19 121 INT is = ego->is, os = ego->os;
Chris@19 122 INT i, n = ego->n;
Chris@19 123 INT iv, vl = ego->vl;
Chris@19 124 INT ivs = ego->ivs, ovs = ego->ovs;
Chris@19 125 R *W;
Chris@19 126 R *buf;
Chris@19 127 E cur;
Chris@19 128
Chris@19 129 buf = (R *) MALLOC(sizeof(R) * n, BUFFERS);
Chris@19 130
Chris@19 131 for (iv = 0; iv < vl; ++iv, I += ivs, O += ovs) {
Chris@19 132 /* I wish that this didn't require an extra pass. */
Chris@19 133 /* FIXME: use recursive/cascade summation for better stability? */
Chris@19 134 buf[n - 1] = cur = K(2.0) * I[0];
Chris@19 135 for (i = n - 1; i > 0; --i) {
Chris@19 136 E curnew;
Chris@19 137 buf[(i - 1)] = curnew = K(2.0) * I[is * (n - i)] - cur;
Chris@19 138 cur = curnew;
Chris@19 139 }
Chris@19 140
Chris@19 141 W = ego->td->W;
Chris@19 142 for (i = 1; i < n - i; ++i) {
Chris@19 143 E a, b, apb, amb, wa, wb;
Chris@19 144 a = buf[i];
Chris@19 145 b = buf[n - i];
Chris@19 146 apb = a + b;
Chris@19 147 amb = a - b;
Chris@19 148 wa = W[2*i];
Chris@19 149 wb = W[2*i + 1];
Chris@19 150 buf[i] = wa * amb + wb * apb;
Chris@19 151 buf[n - i] = wa * apb - wb * amb;
Chris@19 152 }
Chris@19 153 if (i == n - i) {
Chris@19 154 buf[i] = K(2.0) * buf[i] * W[2*i];
Chris@19 155 }
Chris@19 156
Chris@19 157 {
Chris@19 158 plan_rdft *cld = (plan_rdft *) ego->cld;
Chris@19 159 cld->apply((plan *) cld, buf, buf);
Chris@19 160 }
Chris@19 161
Chris@19 162 W = ego->td2->W;
Chris@19 163 O[0] = W[0] * buf[0];
Chris@19 164 for (i = 1; i < n - i; ++i) {
Chris@19 165 E a, b;
Chris@19 166 INT k;
Chris@19 167 a = buf[i];
Chris@19 168 b = buf[n - i];
Chris@19 169 k = i + i;
Chris@19 170 O[os * (k - 1)] = W[k - 1] * (b - a);
Chris@19 171 O[os * k] = W[k] * (a + b);
Chris@19 172 }
Chris@19 173 if (i == n - i) {
Chris@19 174 O[os * (n - 1)] = -W[n - 1] * buf[i];
Chris@19 175 }
Chris@19 176 }
Chris@19 177
Chris@19 178 X(ifree)(buf);
Chris@19 179 }
Chris@19 180
Chris@19 181 static void awake(plan *ego_, enum wakefulness wakefulness)
Chris@19 182 {
Chris@19 183 P *ego = (P *) ego_;
Chris@19 184 static const tw_instr reodft010e_tw[] = {
Chris@19 185 { TW_COS, 0, 1 },
Chris@19 186 { TW_SIN, 0, 1 },
Chris@19 187 { TW_NEXT, 1, 0 }
Chris@19 188 };
Chris@19 189 static const tw_instr reodft11e_tw[] = {
Chris@19 190 { TW_COS, 1, 1 },
Chris@19 191 { TW_NEXT, 2, 0 }
Chris@19 192 };
Chris@19 193
Chris@19 194 X(plan_awake)(ego->cld, wakefulness);
Chris@19 195
Chris@19 196 X(twiddle_awake)(wakefulness,
Chris@19 197 &ego->td, reodft010e_tw, 4*ego->n, 1, ego->n/2+1);
Chris@19 198 X(twiddle_awake)(wakefulness,
Chris@19 199 &ego->td2, reodft11e_tw, 8*ego->n, 1, ego->n * 2);
Chris@19 200 }
Chris@19 201
Chris@19 202 static void destroy(plan *ego_)
Chris@19 203 {
Chris@19 204 P *ego = (P *) ego_;
Chris@19 205 X(plan_destroy_internal)(ego->cld);
Chris@19 206 }
Chris@19 207
Chris@19 208 static void print(const plan *ego_, printer *p)
Chris@19 209 {
Chris@19 210 const P *ego = (const P *) ego_;
Chris@19 211 p->print(p, "(%se-r2hc-%D%v%(%p%))",
Chris@19 212 X(rdft_kind_str)(ego->kind), ego->n, ego->vl, ego->cld);
Chris@19 213 }
Chris@19 214
Chris@19 215 static int applicable0(const solver *ego_, const problem *p_)
Chris@19 216 {
Chris@19 217 const problem_rdft *p = (const problem_rdft *) p_;
Chris@19 218
Chris@19 219 UNUSED(ego_);
Chris@19 220
Chris@19 221 return (1
Chris@19 222 && p->sz->rnk == 1
Chris@19 223 && p->vecsz->rnk <= 1
Chris@19 224 && (p->kind[0] == REDFT11 || p->kind[0] == RODFT11)
Chris@19 225 );
Chris@19 226 }
Chris@19 227
Chris@19 228 static int applicable(const solver *ego, const problem *p, const planner *plnr)
Chris@19 229 {
Chris@19 230 return (!NO_SLOWP(plnr) && applicable0(ego, p));
Chris@19 231 }
Chris@19 232
Chris@19 233 static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr)
Chris@19 234 {
Chris@19 235 P *pln;
Chris@19 236 const problem_rdft *p;
Chris@19 237 plan *cld;
Chris@19 238 R *buf;
Chris@19 239 INT n;
Chris@19 240 opcnt ops;
Chris@19 241
Chris@19 242 static const plan_adt padt = {
Chris@19 243 X(rdft_solve), awake, print, destroy
Chris@19 244 };
Chris@19 245
Chris@19 246 if (!applicable(ego_, p_, plnr))
Chris@19 247 return (plan *)0;
Chris@19 248
Chris@19 249 p = (const problem_rdft *) p_;
Chris@19 250
Chris@19 251 n = p->sz->dims[0].n;
Chris@19 252 buf = (R *) MALLOC(sizeof(R) * n, BUFFERS);
Chris@19 253
Chris@19 254 cld = X(mkplan_d)(plnr, X(mkproblem_rdft_1_d)(X(mktensor_1d)(n, 1, 1),
Chris@19 255 X(mktensor_0d)(),
Chris@19 256 buf, buf, R2HC));
Chris@19 257 X(ifree)(buf);
Chris@19 258 if (!cld)
Chris@19 259 return (plan *)0;
Chris@19 260
Chris@19 261 pln = MKPLAN_RDFT(P, &padt, p->kind[0]==REDFT11 ? apply_re11:apply_ro11);
Chris@19 262 pln->n = n;
Chris@19 263 pln->is = p->sz->dims[0].is;
Chris@19 264 pln->os = p->sz->dims[0].os;
Chris@19 265 pln->cld = cld;
Chris@19 266 pln->td = pln->td2 = 0;
Chris@19 267 pln->kind = p->kind[0];
Chris@19 268
Chris@19 269 X(tensor_tornk1)(p->vecsz, &pln->vl, &pln->ivs, &pln->ovs);
Chris@19 270
Chris@19 271 X(ops_zero)(&ops);
Chris@19 272 ops.other = 5 + (n-1) * 2 + (n-1)/2 * 12 + (1 - n % 2) * 6;
Chris@19 273 ops.add = (n - 1) * 1 + (n-1)/2 * 6;
Chris@19 274 ops.mul = 2 + (n-1) * 1 + (n-1)/2 * 6 + (1 - n % 2) * 3;
Chris@19 275
Chris@19 276 X(ops_zero)(&pln->super.super.ops);
Chris@19 277 X(ops_madd2)(pln->vl, &ops, &pln->super.super.ops);
Chris@19 278 X(ops_madd2)(pln->vl, &cld->ops, &pln->super.super.ops);
Chris@19 279
Chris@19 280 return &(pln->super.super);
Chris@19 281 }
Chris@19 282
Chris@19 283 /* constructor */
Chris@19 284 static solver *mksolver(void)
Chris@19 285 {
Chris@19 286 static const solver_adt sadt = { PROBLEM_RDFT, mkplan, 0 };
Chris@19 287 S *slv = MKSOLVER(S, &sadt);
Chris@19 288 return &(slv->super);
Chris@19 289 }
Chris@19 290
Chris@19 291 void X(reodft11e_r2hc_register)(planner *p)
Chris@19 292 {
Chris@19 293 REGISTER_SOLVER(p, mksolver());
Chris@19 294 }