annotate fft/fftw/fftw-3.3.4/reodft/reodft00e-splitradix.c @ 40:223f770b5341 kissfft-double tip

Try a double-precision kissfft
author Chris Cannam
date Wed, 07 Sep 2016 10:40:32 +0100
parents 26056e866c29
children
rev   line source
Chris@19 1 /*
Chris@19 2 * Copyright (c) 2005 Matteo Frigo
Chris@19 3 * Copyright (c) 2005 Massachusetts Institute of Technology
Chris@19 4 *
Chris@19 5 * This program is free software; you can redistribute it and/or modify
Chris@19 6 * it under the terms of the GNU General Public License as published by
Chris@19 7 * the Free Software Foundation; either version 2 of the License, or
Chris@19 8 * (at your option) any later version.
Chris@19 9 *
Chris@19 10 * This program is distributed in the hope that it will be useful,
Chris@19 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
Chris@19 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
Chris@19 13 * GNU General Public License for more details.
Chris@19 14 *
Chris@19 15 * You should have received a copy of the GNU General Public License
Chris@19 16 * along with this program; if not, write to the Free Software
Chris@19 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Chris@19 18 *
Chris@19 19 */
Chris@19 20
Chris@19 21
Chris@19 22 /* Do an R{E,O}DFT00 problem (of an odd length n) recursively via an
Chris@19 23 R{E,O}DFT00 problem and an RDFT problem of half the length.
Chris@19 24
Chris@19 25 This works by "logically" expanding the array to a real-even/odd DFT of
Chris@19 26 length 2n-/+2 and then applying the split-radix algorithm.
Chris@19 27
Chris@19 28 In this way, we can avoid having to pad to twice the length
Chris@19 29 (ala redft00-r2hc-pad), saving a factor of ~2 for n=2^m+/-1,
Chris@19 30 but don't incur the accuracy loss that the "ordinary" algorithm
Chris@19 31 sacrifices (ala redft00-r2hc.c).
Chris@19 32 */
Chris@19 33
Chris@19 34 #include "reodft.h"
Chris@19 35
Chris@19 36 typedef struct {
Chris@19 37 solver super;
Chris@19 38 } S;
Chris@19 39
Chris@19 40 typedef struct {
Chris@19 41 plan_rdft super;
Chris@19 42 plan *clde, *cldo;
Chris@19 43 twid *td;
Chris@19 44 INT is, os;
Chris@19 45 INT n;
Chris@19 46 INT vl;
Chris@19 47 INT ivs, ovs;
Chris@19 48 } P;
Chris@19 49
Chris@19 50 /* redft00 */
Chris@19 51 static void apply_e(const plan *ego_, R *I, R *O)
Chris@19 52 {
Chris@19 53 const P *ego = (const P *) ego_;
Chris@19 54 INT is = ego->is, os = ego->os;
Chris@19 55 INT i, j, n = ego->n + 1, n2 = (n-1)/2;
Chris@19 56 INT iv, vl = ego->vl;
Chris@19 57 INT ivs = ego->ivs, ovs = ego->ovs;
Chris@19 58 R *W = ego->td->W - 2;
Chris@19 59 R *buf;
Chris@19 60
Chris@19 61 buf = (R *) MALLOC(sizeof(R) * n2, BUFFERS);
Chris@19 62
Chris@19 63 for (iv = 0; iv < vl; ++iv, I += ivs, O += ovs) {
Chris@19 64 /* do size (n-1)/2 r2hc transform of odd-indexed elements
Chris@19 65 with stride 4, "wrapping around" end of array with even
Chris@19 66 boundary conditions */
Chris@19 67 for (j = 0, i = 1; i < n; i += 4)
Chris@19 68 buf[j++] = I[is * i];
Chris@19 69 for (i = 2*n-2-i; i > 0; i -= 4)
Chris@19 70 buf[j++] = I[is * i];
Chris@19 71 {
Chris@19 72 plan_rdft *cld = (plan_rdft *) ego->cldo;
Chris@19 73 cld->apply((plan *) cld, buf, buf);
Chris@19 74 }
Chris@19 75
Chris@19 76 /* do size (n+1)/2 redft00 of the even-indexed elements,
Chris@19 77 writing to O: */
Chris@19 78 {
Chris@19 79 plan_rdft *cld = (plan_rdft *) ego->clde;
Chris@19 80 cld->apply((plan *) cld, I, O);
Chris@19 81 }
Chris@19 82
Chris@19 83 /* combine the results with the twiddle factors to get output */
Chris@19 84 { /* DC element */
Chris@19 85 E b20 = O[0], b0 = K(2.0) * buf[0];
Chris@19 86 O[0] = b20 + b0;
Chris@19 87 O[2*(n2*os)] = b20 - b0;
Chris@19 88 /* O[n2*os] = O[n2*os]; */
Chris@19 89 }
Chris@19 90 for (i = 1; i < n2 - i; ++i) {
Chris@19 91 E ap, am, br, bi, wr, wi, wbr, wbi;
Chris@19 92 br = buf[i];
Chris@19 93 bi = buf[n2 - i];
Chris@19 94 wr = W[2*i];
Chris@19 95 wi = W[2*i+1];
Chris@19 96 #if FFT_SIGN == -1
Chris@19 97 wbr = K(2.0) * (wr*br + wi*bi);
Chris@19 98 wbi = K(2.0) * (wr*bi - wi*br);
Chris@19 99 #else
Chris@19 100 wbr = K(2.0) * (wr*br - wi*bi);
Chris@19 101 wbi = K(2.0) * (wr*bi + wi*br);
Chris@19 102 #endif
Chris@19 103 ap = O[i*os];
Chris@19 104 O[i*os] = ap + wbr;
Chris@19 105 O[(2*n2 - i)*os] = ap - wbr;
Chris@19 106 am = O[(n2 - i)*os];
Chris@19 107 #if FFT_SIGN == -1
Chris@19 108 O[(n2 - i)*os] = am - wbi;
Chris@19 109 O[(n2 + i)*os] = am + wbi;
Chris@19 110 #else
Chris@19 111 O[(n2 - i)*os] = am + wbi;
Chris@19 112 O[(n2 + i)*os] = am - wbi;
Chris@19 113 #endif
Chris@19 114 }
Chris@19 115 if (i == n2 - i) { /* Nyquist element */
Chris@19 116 E ap, wbr;
Chris@19 117 wbr = K(2.0) * (W[2*i] * buf[i]);
Chris@19 118 ap = O[i*os];
Chris@19 119 O[i*os] = ap + wbr;
Chris@19 120 O[(2*n2 - i)*os] = ap - wbr;
Chris@19 121 }
Chris@19 122 }
Chris@19 123
Chris@19 124 X(ifree)(buf);
Chris@19 125 }
Chris@19 126
Chris@19 127 /* rodft00 */
Chris@19 128 static void apply_o(const plan *ego_, R *I, R *O)
Chris@19 129 {
Chris@19 130 const P *ego = (const P *) ego_;
Chris@19 131 INT is = ego->is, os = ego->os;
Chris@19 132 INT i, j, n = ego->n - 1, n2 = (n+1)/2;
Chris@19 133 INT iv, vl = ego->vl;
Chris@19 134 INT ivs = ego->ivs, ovs = ego->ovs;
Chris@19 135 R *W = ego->td->W - 2;
Chris@19 136 R *buf;
Chris@19 137
Chris@19 138 buf = (R *) MALLOC(sizeof(R) * n2, BUFFERS);
Chris@19 139
Chris@19 140 for (iv = 0; iv < vl; ++iv, I += ivs, O += ovs) {
Chris@19 141 /* do size (n+1)/2 r2hc transform of even-indexed elements
Chris@19 142 with stride 4, "wrapping around" end of array with odd
Chris@19 143 boundary conditions */
Chris@19 144 for (j = 0, i = 0; i < n; i += 4)
Chris@19 145 buf[j++] = I[is * i];
Chris@19 146 for (i = 2*n-i; i > 0; i -= 4)
Chris@19 147 buf[j++] = -I[is * i];
Chris@19 148 {
Chris@19 149 plan_rdft *cld = (plan_rdft *) ego->cldo;
Chris@19 150 cld->apply((plan *) cld, buf, buf);
Chris@19 151 }
Chris@19 152
Chris@19 153 /* do size (n-1)/2 rodft00 of the odd-indexed elements,
Chris@19 154 writing to O: */
Chris@19 155 {
Chris@19 156 plan_rdft *cld = (plan_rdft *) ego->clde;
Chris@19 157 if (I == O) {
Chris@19 158 /* can't use I+is and I, subplan would lose in-placeness */
Chris@19 159 cld->apply((plan *) cld, I + is, I + is);
Chris@19 160 /* we could maybe avoid this copy by modifying the
Chris@19 161 twiddle loop, but currently I can't be bothered. */
Chris@19 162 A(is >= os);
Chris@19 163 for (i = 0; i < n2-1; ++i)
Chris@19 164 O[os*i] = I[is*(i+1)];
Chris@19 165 }
Chris@19 166 else
Chris@19 167 cld->apply((plan *) cld, I + is, O);
Chris@19 168 }
Chris@19 169
Chris@19 170 /* combine the results with the twiddle factors to get output */
Chris@19 171 O[(n2-1)*os] = K(2.0) * buf[0];
Chris@19 172 for (i = 1; i < n2 - i; ++i) {
Chris@19 173 E ap, am, br, bi, wr, wi, wbr, wbi;
Chris@19 174 br = buf[i];
Chris@19 175 bi = buf[n2 - i];
Chris@19 176 wr = W[2*i];
Chris@19 177 wi = W[2*i+1];
Chris@19 178 #if FFT_SIGN == -1
Chris@19 179 wbr = K(2.0) * (wr*br + wi*bi);
Chris@19 180 wbi = K(2.0) * (wi*br - wr*bi);
Chris@19 181 #else
Chris@19 182 wbr = K(2.0) * (wr*br - wi*bi);
Chris@19 183 wbi = K(2.0) * (wr*bi + wi*br);
Chris@19 184 #endif
Chris@19 185 ap = O[(i-1)*os];
Chris@19 186 O[(i-1)*os] = wbi + ap;
Chris@19 187 O[(2*n2-1 - i)*os] = wbi - ap;
Chris@19 188 am = O[(n2-1 - i)*os];
Chris@19 189 #if FFT_SIGN == -1
Chris@19 190 O[(n2-1 - i)*os] = wbr + am;
Chris@19 191 O[(n2-1 + i)*os] = wbr - am;
Chris@19 192 #else
Chris@19 193 O[(n2-1 - i)*os] = wbr + am;
Chris@19 194 O[(n2-1 + i)*os] = wbr - am;
Chris@19 195 #endif
Chris@19 196 }
Chris@19 197 if (i == n2 - i) { /* Nyquist element */
Chris@19 198 E ap, wbi;
Chris@19 199 wbi = K(2.0) * (W[2*i+1] * buf[i]);
Chris@19 200 ap = O[(i-1)*os];
Chris@19 201 O[(i-1)*os] = wbi + ap;
Chris@19 202 O[(2*n2-1 - i)*os] = wbi - ap;
Chris@19 203 }
Chris@19 204 }
Chris@19 205
Chris@19 206 X(ifree)(buf);
Chris@19 207 }
Chris@19 208
Chris@19 209 static void awake(plan *ego_, enum wakefulness wakefulness)
Chris@19 210 {
Chris@19 211 P *ego = (P *) ego_;
Chris@19 212 static const tw_instr reodft00e_tw[] = {
Chris@19 213 { TW_COS, 1, 1 },
Chris@19 214 { TW_SIN, 1, 1 },
Chris@19 215 { TW_NEXT, 1, 0 }
Chris@19 216 };
Chris@19 217
Chris@19 218 X(plan_awake)(ego->clde, wakefulness);
Chris@19 219 X(plan_awake)(ego->cldo, wakefulness);
Chris@19 220 X(twiddle_awake)(wakefulness, &ego->td, reodft00e_tw,
Chris@19 221 2*ego->n, 1, ego->n/4);
Chris@19 222 }
Chris@19 223
Chris@19 224 static void destroy(plan *ego_)
Chris@19 225 {
Chris@19 226 P *ego = (P *) ego_;
Chris@19 227 X(plan_destroy_internal)(ego->cldo);
Chris@19 228 X(plan_destroy_internal)(ego->clde);
Chris@19 229 }
Chris@19 230
Chris@19 231 static void print(const plan *ego_, printer *p)
Chris@19 232 {
Chris@19 233 const P *ego = (const P *) ego_;
Chris@19 234 if (ego->super.apply == apply_e)
Chris@19 235 p->print(p, "(redft00e-splitradix-%D%v%(%p%)%(%p%))",
Chris@19 236 ego->n + 1, ego->vl, ego->clde, ego->cldo);
Chris@19 237 else
Chris@19 238 p->print(p, "(rodft00e-splitradix-%D%v%(%p%)%(%p%))",
Chris@19 239 ego->n - 1, ego->vl, ego->clde, ego->cldo);
Chris@19 240 }
Chris@19 241
Chris@19 242 static int applicable0(const solver *ego_, const problem *p_)
Chris@19 243 {
Chris@19 244 const problem_rdft *p = (const problem_rdft *) p_;
Chris@19 245 UNUSED(ego_);
Chris@19 246
Chris@19 247 return (1
Chris@19 248 && p->sz->rnk == 1
Chris@19 249 && p->vecsz->rnk <= 1
Chris@19 250 && (p->kind[0] == REDFT00 || p->kind[0] == RODFT00)
Chris@19 251 && p->sz->dims[0].n > 1 /* don't create size-0 sub-plans */
Chris@19 252 && p->sz->dims[0].n % 2 /* odd: 4 divides "logical" DFT */
Chris@19 253 && (p->I != p->O || p->vecsz->rnk == 0
Chris@19 254 || p->vecsz->dims[0].is == p->vecsz->dims[0].os)
Chris@19 255 && (p->kind[0] != RODFT00 || p->I != p->O ||
Chris@19 256 p->sz->dims[0].is >= p->sz->dims[0].os) /* laziness */
Chris@19 257 );
Chris@19 258 }
Chris@19 259
Chris@19 260 static int applicable(const solver *ego, const problem *p, const planner *plnr)
Chris@19 261 {
Chris@19 262 return (!NO_SLOWP(plnr) && applicable0(ego, p));
Chris@19 263 }
Chris@19 264
Chris@19 265 static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr)
Chris@19 266 {
Chris@19 267 P *pln;
Chris@19 268 const problem_rdft *p;
Chris@19 269 plan *clde, *cldo;
Chris@19 270 R *buf;
Chris@19 271 INT n, n0;
Chris@19 272 opcnt ops;
Chris@19 273 int inplace_odd;
Chris@19 274
Chris@19 275 static const plan_adt padt = {
Chris@19 276 X(rdft_solve), awake, print, destroy
Chris@19 277 };
Chris@19 278
Chris@19 279 if (!applicable(ego_, p_, plnr))
Chris@19 280 return (plan *)0;
Chris@19 281
Chris@19 282 p = (const problem_rdft *) p_;
Chris@19 283
Chris@19 284 n = (n0 = p->sz->dims[0].n) + (p->kind[0] == REDFT00 ? (INT)-1 : (INT)1);
Chris@19 285 A(n > 0 && n % 2 == 0);
Chris@19 286 buf = (R *) MALLOC(sizeof(R) * (n/2), BUFFERS);
Chris@19 287
Chris@19 288 inplace_odd = p->kind[0]==RODFT00 && p->I == p->O;
Chris@19 289 clde = X(mkplan_d)(plnr, X(mkproblem_rdft_1_d)(
Chris@19 290 X(mktensor_1d)(n0-n/2, 2*p->sz->dims[0].is,
Chris@19 291 inplace_odd ? p->sz->dims[0].is
Chris@19 292 : p->sz->dims[0].os),
Chris@19 293 X(mktensor_0d)(),
Chris@19 294 TAINT(p->I
Chris@19 295 + p->sz->dims[0].is * (p->kind[0]==RODFT00),
Chris@19 296 p->vecsz->rnk ? p->vecsz->dims[0].is : 0),
Chris@19 297 TAINT(p->O
Chris@19 298 + p->sz->dims[0].is * inplace_odd,
Chris@19 299 p->vecsz->rnk ? p->vecsz->dims[0].os : 0),
Chris@19 300 p->kind[0]));
Chris@19 301 if (!clde) {
Chris@19 302 X(ifree)(buf);
Chris@19 303 return (plan *)0;
Chris@19 304 }
Chris@19 305
Chris@19 306 cldo = X(mkplan_d)(plnr, X(mkproblem_rdft_1_d)(
Chris@19 307 X(mktensor_1d)(n/2, 1, 1),
Chris@19 308 X(mktensor_0d)(),
Chris@19 309 buf, buf, R2HC));
Chris@19 310 X(ifree)(buf);
Chris@19 311 if (!cldo)
Chris@19 312 return (plan *)0;
Chris@19 313
Chris@19 314 pln = MKPLAN_RDFT(P, &padt, p->kind[0] == REDFT00 ? apply_e : apply_o);
Chris@19 315
Chris@19 316 pln->n = n;
Chris@19 317 pln->is = p->sz->dims[0].is;
Chris@19 318 pln->os = p->sz->dims[0].os;
Chris@19 319 pln->clde = clde;
Chris@19 320 pln->cldo = cldo;
Chris@19 321 pln->td = 0;
Chris@19 322
Chris@19 323 X(tensor_tornk1)(p->vecsz, &pln->vl, &pln->ivs, &pln->ovs);
Chris@19 324
Chris@19 325 X(ops_zero)(&ops);
Chris@19 326 ops.other = n/2;
Chris@19 327 ops.add = (p->kind[0]==REDFT00 ? (INT)2 : (INT)0) +
Chris@19 328 (n/2-1)/2 * 6 + ((n/2)%2==0) * 2;
Chris@19 329 ops.mul = 1 + (n/2-1)/2 * 6 + ((n/2)%2==0) * 2;
Chris@19 330
Chris@19 331 /* tweak ops.other so that r2hc-pad is used for small sizes, which
Chris@19 332 seems to be a lot faster on my machine: */
Chris@19 333 ops.other += 256;
Chris@19 334
Chris@19 335 X(ops_zero)(&pln->super.super.ops);
Chris@19 336 X(ops_madd2)(pln->vl, &ops, &pln->super.super.ops);
Chris@19 337 X(ops_madd2)(pln->vl, &clde->ops, &pln->super.super.ops);
Chris@19 338 X(ops_madd2)(pln->vl, &cldo->ops, &pln->super.super.ops);
Chris@19 339
Chris@19 340 return &(pln->super.super);
Chris@19 341 }
Chris@19 342
Chris@19 343 /* constructor */
Chris@19 344 static solver *mksolver(void)
Chris@19 345 {
Chris@19 346 static const solver_adt sadt = { PROBLEM_RDFT, mkplan, 0 };
Chris@19 347 S *slv = MKSOLVER(S, &sadt);
Chris@19 348 return &(slv->super);
Chris@19 349 }
Chris@19 350
Chris@19 351 void X(reodft00e_splitradix_register)(planner *p)
Chris@19 352 {
Chris@19 353 REGISTER_SOLVER(p, mksolver());
Chris@19 354 }