annotate fft/fftw/fftw-3.3.4/rdft/vrank3-transpose.c @ 40:223f770b5341 kissfft-double tip

Try a double-precision kissfft
author Chris Cannam
date Wed, 07 Sep 2016 10:40:32 +0100
parents 26056e866c29
children
rev   line source
Chris@19 1 /*
Chris@19 2 * Copyright (c) 2003, 2007-14 Matteo Frigo
Chris@19 3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
Chris@19 4 *
Chris@19 5 * This program is free software; you can redistribute it and/or modify
Chris@19 6 * it under the terms of the GNU General Public License as published by
Chris@19 7 * the Free Software Foundation; either version 2 of the License, or
Chris@19 8 * (at your option) any later version.
Chris@19 9 *
Chris@19 10 * This program is distributed in the hope that it will be useful,
Chris@19 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
Chris@19 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
Chris@19 13 * GNU General Public License for more details.
Chris@19 14 *
Chris@19 15 * You should have received a copy of the GNU General Public License
Chris@19 16 * along with this program; if not, write to the Free Software
Chris@19 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Chris@19 18 *
Chris@19 19 */
Chris@19 20
Chris@19 21
Chris@19 22 /* rank-0, vector-rank-3, non-square in-place transposition
Chris@19 23 (see rank0.c for square transposition) */
Chris@19 24
Chris@19 25 #include "rdft.h"
Chris@19 26
Chris@19 27 #ifdef HAVE_STRING_H
Chris@19 28 #include <string.h> /* for memcpy() */
Chris@19 29 #endif
Chris@19 30
Chris@19 31 struct P_s;
Chris@19 32
Chris@19 33 typedef struct {
Chris@19 34 rdftapply apply;
Chris@19 35 int (*applicable)(const problem_rdft *p, planner *plnr,
Chris@19 36 int dim0, int dim1, int dim2, INT *nbuf);
Chris@19 37 int (*mkcldrn)(const problem_rdft *p, planner *plnr, struct P_s *ego);
Chris@19 38 const char *nam;
Chris@19 39 } transpose_adt;
Chris@19 40
Chris@19 41 typedef struct {
Chris@19 42 solver super;
Chris@19 43 const transpose_adt *adt;
Chris@19 44 } S;
Chris@19 45
Chris@19 46 typedef struct P_s {
Chris@19 47 plan_rdft super;
Chris@19 48 INT n, m, vl; /* transpose n x m matrix of vl-tuples */
Chris@19 49 INT nbuf; /* buffer size */
Chris@19 50 INT nd, md, d; /* transpose-gcd params */
Chris@19 51 INT nc, mc; /* transpose-cut params */
Chris@19 52 plan *cld1, *cld2, *cld3; /* children, null if unused */
Chris@19 53 const S *slv;
Chris@19 54 } P;
Chris@19 55
Chris@19 56
Chris@19 57 /*************************************************************************/
Chris@19 58 /* some utilities for the solvers */
Chris@19 59
Chris@19 60 static INT gcd(INT a, INT b)
Chris@19 61 {
Chris@19 62 INT r;
Chris@19 63 do {
Chris@19 64 r = a % b;
Chris@19 65 a = b;
Chris@19 66 b = r;
Chris@19 67 } while (r != 0);
Chris@19 68
Chris@19 69 return a;
Chris@19 70 }
Chris@19 71
Chris@19 72 /* whether we can transpose with one of our routines expecting
Chris@19 73 contiguous Ntuples */
Chris@19 74 static int Ntuple_transposable(const iodim *a, const iodim *b, INT vl, INT vs)
Chris@19 75 {
Chris@19 76 return (vs == 1 && b->is == vl && a->os == vl &&
Chris@19 77 ((a->n == b->n && a->is == b->os
Chris@19 78 && a->is >= b->n && a->is % vl == 0)
Chris@19 79 || (a->is == b->n * vl && b->os == a->n * vl)));
Chris@19 80 }
Chris@19 81
Chris@19 82 /* check whether a and b correspond to the first and second dimensions
Chris@19 83 of a transpose of tuples with vector length = vl, stride = vs. */
Chris@19 84 static int transposable(const iodim *a, const iodim *b, INT vl, INT vs)
Chris@19 85 {
Chris@19 86 return ((a->n == b->n && a->os == b->is && a->is == b->os)
Chris@19 87 || Ntuple_transposable(a, b, vl, vs));
Chris@19 88 }
Chris@19 89
Chris@19 90 static int pickdim(const tensor *s, int *pdim0, int *pdim1, int *pdim2)
Chris@19 91 {
Chris@19 92 int dim0, dim1;
Chris@19 93
Chris@19 94 for (dim0 = 0; dim0 < s->rnk; ++dim0)
Chris@19 95 for (dim1 = 0; dim1 < s->rnk; ++dim1) {
Chris@19 96 int dim2 = 3 - dim0 - dim1;
Chris@19 97 if (dim0 == dim1) continue;
Chris@19 98 if ((s->rnk == 2 || s->dims[dim2].is == s->dims[dim2].os)
Chris@19 99 && transposable(s->dims + dim0, s->dims + dim1,
Chris@19 100 s->rnk == 2 ? (INT)1 : s->dims[dim2].n,
Chris@19 101 s->rnk == 2 ? (INT)1 : s->dims[dim2].is)) {
Chris@19 102 *pdim0 = dim0;
Chris@19 103 *pdim1 = dim1;
Chris@19 104 *pdim2 = dim2;
Chris@19 105 return 1;
Chris@19 106 }
Chris@19 107 }
Chris@19 108 return 0;
Chris@19 109 }
Chris@19 110
Chris@19 111 #define MINBUFDIV 9 /* min factor by which buffer is smaller than data */
Chris@19 112 #define MAXBUF 65536 /* maximum non-ugly buffer */
Chris@19 113
Chris@19 114 /* generic applicability function */
Chris@19 115 static int applicable(const solver *ego_, const problem *p_, planner *plnr,
Chris@19 116 int *dim0, int *dim1, int *dim2, INT *nbuf)
Chris@19 117 {
Chris@19 118 const S *ego = (const S *) ego_;
Chris@19 119 const problem_rdft *p = (const problem_rdft *) p_;
Chris@19 120
Chris@19 121 return (1
Chris@19 122 && p->I == p->O
Chris@19 123 && p->sz->rnk == 0
Chris@19 124 && (p->vecsz->rnk == 2 || p->vecsz->rnk == 3)
Chris@19 125
Chris@19 126 && pickdim(p->vecsz, dim0, dim1, dim2)
Chris@19 127
Chris@19 128 /* UGLY if vecloop in wrong order for locality */
Chris@19 129 && (!NO_UGLYP(plnr) ||
Chris@19 130 p->vecsz->rnk == 2 ||
Chris@19 131 X(iabs)(p->vecsz->dims[*dim2].is)
Chris@19 132 < X(imax)(X(iabs)(p->vecsz->dims[*dim0].is),
Chris@19 133 X(iabs)(p->vecsz->dims[*dim0].os)))
Chris@19 134
Chris@19 135 /* SLOW if non-square */
Chris@19 136 && (!NO_SLOWP(plnr)
Chris@19 137 || p->vecsz->dims[*dim0].n == p->vecsz->dims[*dim1].n)
Chris@19 138
Chris@19 139 && ego->adt->applicable(p, plnr, *dim0,*dim1,*dim2,nbuf)
Chris@19 140
Chris@19 141 /* buffers too big are UGLY */
Chris@19 142 && ((!NO_UGLYP(plnr) && !CONSERVE_MEMORYP(plnr))
Chris@19 143 || *nbuf <= MAXBUF
Chris@19 144 || *nbuf * MINBUFDIV <= X(tensor_sz)(p->vecsz))
Chris@19 145 );
Chris@19 146 }
Chris@19 147
Chris@19 148 static void get_transpose_vec(const problem_rdft *p, int dim2, INT *vl,INT *vs)
Chris@19 149 {
Chris@19 150 if (p->vecsz->rnk == 2) {
Chris@19 151 *vl = 1; *vs = 1;
Chris@19 152 }
Chris@19 153 else {
Chris@19 154 *vl = p->vecsz->dims[dim2].n;
Chris@19 155 *vs = p->vecsz->dims[dim2].is; /* == os */
Chris@19 156 }
Chris@19 157 }
Chris@19 158
Chris@19 159 /*************************************************************************/
Chris@19 160 /* Cache-oblivious in-place transpose of non-square matrices, based
Chris@19 161 on transposes of blocks given by the gcd of the dimensions.
Chris@19 162
Chris@19 163 This algorithm is related to algorithm V5 from Murray Dow,
Chris@19 164 "Transposing a matrix on a vector computer," Parallel Computing 21
Chris@19 165 (12), 1997-2005 (1995), with the modification that we use
Chris@19 166 cache-oblivious recursive transpose subroutines (and we derived
Chris@19 167 it independently).
Chris@19 168
Chris@19 169 For a p x q matrix, this requires scratch space equal to the size
Chris@19 170 of the matrix divided by gcd(p,q). Alternatively, see also the
Chris@19 171 "cut" algorithm below, if |p-q| * gcd(p,q) < max(p,q). */
Chris@19 172
Chris@19 173 static void apply_gcd(const plan *ego_, R *I, R *O)
Chris@19 174 {
Chris@19 175 const P *ego = (const P *) ego_;
Chris@19 176 INT n = ego->nd, m = ego->md, d = ego->d;
Chris@19 177 INT vl = ego->vl;
Chris@19 178 R *buf = (R *)MALLOC(sizeof(R) * ego->nbuf, BUFFERS);
Chris@19 179 INT i, num_el = n*m*d*vl;
Chris@19 180
Chris@19 181 A(ego->n == n * d && ego->m == m * d);
Chris@19 182 UNUSED(O);
Chris@19 183
Chris@19 184 /* Transpose the matrix I in-place, where I is an (n*d) x (m*d) matrix
Chris@19 185 of vl-tuples and buf contains n*m*d*vl elements.
Chris@19 186
Chris@19 187 In general, to transpose a p x q matrix, you should call this
Chris@19 188 routine with d = gcd(p, q), n = p/d, and m = q/d. */
Chris@19 189
Chris@19 190 A(n > 0 && m > 0 && vl > 0);
Chris@19 191 A(d > 1);
Chris@19 192
Chris@19 193 /* treat as (d x n) x (d' x m) matrix. (d' = d) */
Chris@19 194
Chris@19 195 /* First, transpose d x (n x d') x m to d x (d' x n) x m,
Chris@19 196 using the buf matrix. This consists of d transposes
Chris@19 197 of contiguous n x d' matrices of m-tuples. */
Chris@19 198 if (n > 1) {
Chris@19 199 rdftapply cldapply = ((plan_rdft *) ego->cld1)->apply;
Chris@19 200 for (i = 0; i < d; ++i) {
Chris@19 201 cldapply(ego->cld1, I + i*num_el, buf);
Chris@19 202 memcpy(I + i*num_el, buf, num_el*sizeof(R));
Chris@19 203 }
Chris@19 204 }
Chris@19 205
Chris@19 206 /* Now, transpose (d x d') x (n x m) to (d' x d) x (n x m), which
Chris@19 207 is a square in-place transpose of n*m-tuples: */
Chris@19 208 {
Chris@19 209 rdftapply cldapply = ((plan_rdft *) ego->cld2)->apply;
Chris@19 210 cldapply(ego->cld2, I, I);
Chris@19 211 }
Chris@19 212
Chris@19 213 /* Finally, transpose d' x ((d x n) x m) to d' x (m x (d x n)),
Chris@19 214 using the buf matrix. This consists of d' transposes
Chris@19 215 of contiguous d*n x m matrices. */
Chris@19 216 if (m > 1) {
Chris@19 217 rdftapply cldapply = ((plan_rdft *) ego->cld3)->apply;
Chris@19 218 for (i = 0; i < d; ++i) {
Chris@19 219 cldapply(ego->cld3, I + i*num_el, buf);
Chris@19 220 memcpy(I + i*num_el, buf, num_el*sizeof(R));
Chris@19 221 }
Chris@19 222 }
Chris@19 223
Chris@19 224 X(ifree)(buf);
Chris@19 225 }
Chris@19 226
Chris@19 227 static int applicable_gcd(const problem_rdft *p, planner *plnr,
Chris@19 228 int dim0, int dim1, int dim2, INT *nbuf)
Chris@19 229 {
Chris@19 230 INT n = p->vecsz->dims[dim0].n;
Chris@19 231 INT m = p->vecsz->dims[dim1].n;
Chris@19 232 INT d, vl, vs;
Chris@19 233 get_transpose_vec(p, dim2, &vl, &vs);
Chris@19 234 d = gcd(n, m);
Chris@19 235 *nbuf = n * (m / d) * vl;
Chris@19 236 return (!NO_SLOWP(plnr) /* FIXME: not really SLOW for large 1d ffts */
Chris@19 237 && n != m
Chris@19 238 && d > 1
Chris@19 239 && Ntuple_transposable(p->vecsz->dims + dim0,
Chris@19 240 p->vecsz->dims + dim1,
Chris@19 241 vl, vs));
Chris@19 242 }
Chris@19 243
Chris@19 244 static int mkcldrn_gcd(const problem_rdft *p, planner *plnr, P *ego)
Chris@19 245 {
Chris@19 246 INT n = ego->nd, m = ego->md, d = ego->d;
Chris@19 247 INT vl = ego->vl;
Chris@19 248 R *buf = (R *)MALLOC(sizeof(R) * ego->nbuf, BUFFERS);
Chris@19 249 INT num_el = n*m*d*vl;
Chris@19 250
Chris@19 251 if (n > 1) {
Chris@19 252 ego->cld1 = X(mkplan_d)(plnr,
Chris@19 253 X(mkproblem_rdft_0_d)(
Chris@19 254 X(mktensor_3d)(n, d*m*vl, m*vl,
Chris@19 255 d, m*vl, n*m*vl,
Chris@19 256 m*vl, 1, 1),
Chris@19 257 TAINT(p->I, num_el), buf));
Chris@19 258 if (!ego->cld1)
Chris@19 259 goto nada;
Chris@19 260 X(ops_madd)(d, &ego->cld1->ops, &ego->super.super.ops,
Chris@19 261 &ego->super.super.ops);
Chris@19 262 ego->super.super.ops.other += num_el * d * 2;
Chris@19 263 }
Chris@19 264
Chris@19 265 ego->cld2 = X(mkplan_d)(plnr,
Chris@19 266 X(mkproblem_rdft_0_d)(
Chris@19 267 X(mktensor_3d)(d, d*n*m*vl, n*m*vl,
Chris@19 268 d, n*m*vl, d*n*m*vl,
Chris@19 269 n*m*vl, 1, 1),
Chris@19 270 p->I, p->I));
Chris@19 271 if (!ego->cld2)
Chris@19 272 goto nada;
Chris@19 273 X(ops_add2)(&ego->cld2->ops, &ego->super.super.ops);
Chris@19 274
Chris@19 275 if (m > 1) {
Chris@19 276 ego->cld3 = X(mkplan_d)(plnr,
Chris@19 277 X(mkproblem_rdft_0_d)(
Chris@19 278 X(mktensor_3d)(d*n, m*vl, vl,
Chris@19 279 m, vl, d*n*vl,
Chris@19 280 vl, 1, 1),
Chris@19 281 TAINT(p->I, num_el), buf));
Chris@19 282 if (!ego->cld3)
Chris@19 283 goto nada;
Chris@19 284 X(ops_madd2)(d, &ego->cld3->ops, &ego->super.super.ops);
Chris@19 285 ego->super.super.ops.other += num_el * d * 2;
Chris@19 286 }
Chris@19 287
Chris@19 288 X(ifree)(buf);
Chris@19 289 return 1;
Chris@19 290
Chris@19 291 nada:
Chris@19 292 X(ifree)(buf);
Chris@19 293 return 0;
Chris@19 294 }
Chris@19 295
Chris@19 296 static const transpose_adt adt_gcd =
Chris@19 297 {
Chris@19 298 apply_gcd, applicable_gcd, mkcldrn_gcd,
Chris@19 299 "rdft-transpose-gcd"
Chris@19 300 };
Chris@19 301
Chris@19 302 /*************************************************************************/
Chris@19 303 /* Cache-oblivious in-place transpose of non-square n x m matrices,
Chris@19 304 based on transposing a sub-matrix first and then transposing the
Chris@19 305 remainder(s) with the help of a buffer. See also transpose-gcd,
Chris@19 306 above, if gcd(n,m) is large.
Chris@19 307
Chris@19 308 This algorithm is related to algorithm V3 from Murray Dow,
Chris@19 309 "Transposing a matrix on a vector computer," Parallel Computing 21
Chris@19 310 (12), 1997-2005 (1995), with the modifications that we use
Chris@19 311 cache-oblivious recursive transpose subroutines and we have the
Chris@19 312 generalization for large |n-m| below.
Chris@19 313
Chris@19 314 The best case, and the one described by Dow, is for |n-m| small, in
Chris@19 315 which case we transpose a square sub-matrix of size min(n,m),
Chris@19 316 handling the remainder via a buffer. This requires scratch space
Chris@19 317 equal to the size of the matrix times |n-m| / max(n,m).
Chris@19 318
Chris@19 319 As a generalization when |n-m| is not small, we also support cutting
Chris@19 320 *both* dimensions to an nc x mc matrix which is *not* necessarily
Chris@19 321 square, but has a large gcd (and can therefore use transpose-gcd).
Chris@19 322 */
Chris@19 323
Chris@19 324 static void apply_cut(const plan *ego_, R *I, R *O)
Chris@19 325 {
Chris@19 326 const P *ego = (const P *) ego_;
Chris@19 327 INT n = ego->n, m = ego->m, nc = ego->nc, mc = ego->mc, vl = ego->vl;
Chris@19 328 INT i;
Chris@19 329 R *buf1 = (R *)MALLOC(sizeof(R) * ego->nbuf, BUFFERS);
Chris@19 330 UNUSED(O);
Chris@19 331
Chris@19 332 if (m > mc) {
Chris@19 333 ((plan_rdft *) ego->cld1)->apply(ego->cld1, I + mc*vl, buf1);
Chris@19 334 for (i = 0; i < nc; ++i)
Chris@19 335 memmove(I + (mc*vl) * i, I + (m*vl) * i, sizeof(R) * (mc*vl));
Chris@19 336 }
Chris@19 337
Chris@19 338 ((plan_rdft *) ego->cld2)->apply(ego->cld2, I, I); /* nc x mc transpose */
Chris@19 339
Chris@19 340 if (n > nc) {
Chris@19 341 R *buf2 = buf1 + (m-mc)*(nc*vl); /* FIXME: force better alignment? */
Chris@19 342 memcpy(buf2, I + nc*(m*vl), (n-nc)*(m*vl)*sizeof(R));
Chris@19 343 for (i = mc-1; i >= 0; --i)
Chris@19 344 memmove(I + (n*vl) * i, I + (nc*vl) * i, sizeof(R) * (n*vl));
Chris@19 345 ((plan_rdft *) ego->cld3)->apply(ego->cld3, buf2, I + nc*vl);
Chris@19 346 }
Chris@19 347
Chris@19 348 if (m > mc) {
Chris@19 349 if (n > nc)
Chris@19 350 for (i = mc; i < m; ++i)
Chris@19 351 memcpy(I + i*(n*vl), buf1 + (i-mc)*(nc*vl),
Chris@19 352 (nc*vl)*sizeof(R));
Chris@19 353 else
Chris@19 354 memcpy(I + mc*(n*vl), buf1, (m-mc)*(n*vl)*sizeof(R));
Chris@19 355 }
Chris@19 356
Chris@19 357 X(ifree)(buf1);
Chris@19 358 }
Chris@19 359
Chris@19 360 /* only cut one dimension if the resulting buffer is small enough */
Chris@19 361 static int cut1(INT n, INT m, INT vl)
Chris@19 362 {
Chris@19 363 return (X(imax)(n,m) >= X(iabs)(n-m) * MINBUFDIV
Chris@19 364 || X(imin)(n,m) * X(iabs)(n-m) * vl <= MAXBUF);
Chris@19 365 }
Chris@19 366
Chris@19 367 #define CUT_NSRCH 32 /* range of sizes to search for possible cuts */
Chris@19 368
Chris@19 369 static int applicable_cut(const problem_rdft *p, planner *plnr,
Chris@19 370 int dim0, int dim1, int dim2, INT *nbuf)
Chris@19 371 {
Chris@19 372 INT n = p->vecsz->dims[dim0].n;
Chris@19 373 INT m = p->vecsz->dims[dim1].n;
Chris@19 374 INT vl, vs;
Chris@19 375 get_transpose_vec(p, dim2, &vl, &vs);
Chris@19 376 *nbuf = 0; /* always small enough to be non-UGLY (?) */
Chris@19 377 A(MINBUFDIV <= CUT_NSRCH); /* assumed to avoid inf. loops below */
Chris@19 378 return (!NO_SLOWP(plnr) /* FIXME: not really SLOW for large 1d ffts? */
Chris@19 379 && n != m
Chris@19 380
Chris@19 381 /* Don't call transpose-cut recursively (avoid inf. loops):
Chris@19 382 the non-square sub-transpose produced when !cut1
Chris@19 383 should always have gcd(n,m) >= min(CUT_NSRCH,n,m),
Chris@19 384 for which transpose-gcd is applicable */
Chris@19 385 && (cut1(n, m, vl)
Chris@19 386 || gcd(n, m) < X(imin)(MINBUFDIV, X(imin)(n,m)))
Chris@19 387
Chris@19 388 && Ntuple_transposable(p->vecsz->dims + dim0,
Chris@19 389 p->vecsz->dims + dim1,
Chris@19 390 vl, vs));
Chris@19 391 }
Chris@19 392
Chris@19 393 static int mkcldrn_cut(const problem_rdft *p, planner *plnr, P *ego)
Chris@19 394 {
Chris@19 395 INT n = ego->n, m = ego->m, nc, mc;
Chris@19 396 INT vl = ego->vl;
Chris@19 397 R *buf;
Chris@19 398
Chris@19 399 /* pick the "best" cut */
Chris@19 400 if (cut1(n, m, vl)) {
Chris@19 401 nc = mc = X(imin)(n,m);
Chris@19 402 }
Chris@19 403 else {
Chris@19 404 INT dc, ns, ms;
Chris@19 405 dc = gcd(m, n); nc = n; mc = m;
Chris@19 406 /* search for cut with largest gcd
Chris@19 407 (TODO: different optimality criteria? different search range?) */
Chris@19 408 for (ms = m; ms > 0 && ms > m - CUT_NSRCH; --ms) {
Chris@19 409 for (ns = n; ns > 0 && ns > n - CUT_NSRCH; --ns) {
Chris@19 410 INT ds = gcd(ms, ns);
Chris@19 411 if (ds > dc) {
Chris@19 412 dc = ds; nc = ns; mc = ms;
Chris@19 413 if (dc == X(imin)(ns, ms))
Chris@19 414 break; /* cannot get larger than this */
Chris@19 415 }
Chris@19 416 }
Chris@19 417 if (dc == X(imin)(n, ms))
Chris@19 418 break; /* cannot get larger than this */
Chris@19 419 }
Chris@19 420 A(dc >= X(imin)(CUT_NSRCH, X(imin)(n, m)));
Chris@19 421 }
Chris@19 422 ego->nc = nc;
Chris@19 423 ego->mc = mc;
Chris@19 424 ego->nbuf = (m-mc)*(nc*vl) + (n-nc)*(m*vl);
Chris@19 425
Chris@19 426 buf = (R *)MALLOC(sizeof(R) * ego->nbuf, BUFFERS);
Chris@19 427
Chris@19 428 if (m > mc) {
Chris@19 429 ego->cld1 = X(mkplan_d)(plnr,
Chris@19 430 X(mkproblem_rdft_0_d)(
Chris@19 431 X(mktensor_3d)(nc, m*vl, vl,
Chris@19 432 m-mc, vl, nc*vl,
Chris@19 433 vl, 1, 1),
Chris@19 434 p->I + mc*vl, buf));
Chris@19 435 if (!ego->cld1)
Chris@19 436 goto nada;
Chris@19 437 X(ops_add2)(&ego->cld1->ops, &ego->super.super.ops);
Chris@19 438 }
Chris@19 439
Chris@19 440 ego->cld2 = X(mkplan_d)(plnr,
Chris@19 441 X(mkproblem_rdft_0_d)(
Chris@19 442 X(mktensor_3d)(nc, mc*vl, vl,
Chris@19 443 mc, vl, nc*vl,
Chris@19 444 vl, 1, 1),
Chris@19 445 p->I, p->I));
Chris@19 446 if (!ego->cld2)
Chris@19 447 goto nada;
Chris@19 448 X(ops_add2)(&ego->cld2->ops, &ego->super.super.ops);
Chris@19 449
Chris@19 450 if (n > nc) {
Chris@19 451 ego->cld3 = X(mkplan_d)(plnr,
Chris@19 452 X(mkproblem_rdft_0_d)(
Chris@19 453 X(mktensor_3d)(n-nc, m*vl, vl,
Chris@19 454 m, vl, n*vl,
Chris@19 455 vl, 1, 1),
Chris@19 456 buf + (m-mc)*(nc*vl), p->I + nc*vl));
Chris@19 457 if (!ego->cld3)
Chris@19 458 goto nada;
Chris@19 459 X(ops_add2)(&ego->cld3->ops, &ego->super.super.ops);
Chris@19 460 }
Chris@19 461
Chris@19 462 /* memcpy/memmove operations */
Chris@19 463 ego->super.super.ops.other += 2 * vl * (nc*mc * ((m > mc) + (n > nc))
Chris@19 464 + (n-nc)*m + (m-mc)*nc);
Chris@19 465
Chris@19 466 X(ifree)(buf);
Chris@19 467 return 1;
Chris@19 468
Chris@19 469 nada:
Chris@19 470 X(ifree)(buf);
Chris@19 471 return 0;
Chris@19 472 }
Chris@19 473
Chris@19 474 static const transpose_adt adt_cut =
Chris@19 475 {
Chris@19 476 apply_cut, applicable_cut, mkcldrn_cut,
Chris@19 477 "rdft-transpose-cut"
Chris@19 478 };
Chris@19 479
Chris@19 480 /*************************************************************************/
Chris@19 481 /* In-place transpose routine from TOMS, which follows the cycles of
Chris@19 482 the permutation so that it writes to each location only once.
Chris@19 483 Because of cache-line and other issues, however, this routine is
Chris@19 484 typically much slower than transpose-gcd or transpose-cut, even
Chris@19 485 though the latter do some extra writes. On the other hand, if the
Chris@19 486 vector length is large then the TOMS routine is best.
Chris@19 487
Chris@19 488 The TOMS routine also has the advantage of requiring less buffer
Chris@19 489 space for the case of gcd(nx,ny) small. However, in this case it
Chris@19 490 has been superseded by the combination of the generalized
Chris@19 491 transpose-cut method with the transpose-gcd method, which can
Chris@19 492 always transpose with buffers a small fraction of the array size
Chris@19 493 regardless of gcd(nx,ny). */
Chris@19 494
Chris@19 495 /*
Chris@19 496 * TOMS Transpose. Algorithm 513 (Revised version of algorithm 380).
Chris@19 497 *
Chris@19 498 * These routines do in-place transposes of arrays.
Chris@19 499 *
Chris@19 500 * [ Cate, E.G. and Twigg, D.W., ACM Transactions on Mathematical Software,
Chris@19 501 * vol. 3, no. 1, 104-110 (1977) ]
Chris@19 502 *
Chris@19 503 * C version by Steven G. Johnson (February 1997).
Chris@19 504 */
Chris@19 505
Chris@19 506 /*
Chris@19 507 * "a" is a 1D array of length ny*nx*N which constains the nx x ny
Chris@19 508 * matrix of N-tuples to be transposed. "a" is stored in row-major
Chris@19 509 * order (last index varies fastest). move is a 1D array of length
Chris@19 510 * move_size used to store information to speed up the process. The
Chris@19 511 * value move_size=(ny+nx)/2 is recommended. buf should be an array
Chris@19 512 * of length 2*N.
Chris@19 513 *
Chris@19 514 */
Chris@19 515
Chris@19 516 static void transpose_toms513(R *a, INT nx, INT ny, INT N,
Chris@19 517 char *move, INT move_size, R *buf)
Chris@19 518 {
Chris@19 519 INT i, im, mn;
Chris@19 520 R *b, *c, *d;
Chris@19 521 INT ncount;
Chris@19 522 INT k;
Chris@19 523
Chris@19 524 /* check arguments and initialize: */
Chris@19 525 A(ny > 0 && nx > 0 && N > 0 && move_size > 0);
Chris@19 526
Chris@19 527 b = buf;
Chris@19 528
Chris@19 529 /* Cate & Twigg have a special case for nx == ny, but we don't
Chris@19 530 bother, since we already have special code for this case elsewhere. */
Chris@19 531
Chris@19 532 c = buf + N;
Chris@19 533 ncount = 2; /* always at least 2 fixed points */
Chris@19 534 k = (mn = ny * nx) - 1;
Chris@19 535
Chris@19 536 for (i = 0; i < move_size; ++i)
Chris@19 537 move[i] = 0;
Chris@19 538
Chris@19 539 if (ny >= 3 && nx >= 3)
Chris@19 540 ncount += gcd(ny - 1, nx - 1) - 1; /* # fixed points */
Chris@19 541
Chris@19 542 i = 1;
Chris@19 543 im = ny;
Chris@19 544
Chris@19 545 while (1) {
Chris@19 546 INT i1, i2, i1c, i2c;
Chris@19 547 INT kmi;
Chris@19 548
Chris@19 549 /** Rearrange the elements of a loop
Chris@19 550 and its companion loop: **/
Chris@19 551
Chris@19 552 i1 = i;
Chris@19 553 kmi = k - i;
Chris@19 554 i1c = kmi;
Chris@19 555 switch (N) {
Chris@19 556 case 1:
Chris@19 557 b[0] = a[i1];
Chris@19 558 c[0] = a[i1c];
Chris@19 559 break;
Chris@19 560 case 2:
Chris@19 561 b[0] = a[2*i1];
Chris@19 562 b[1] = a[2*i1+1];
Chris@19 563 c[0] = a[2*i1c];
Chris@19 564 c[1] = a[2*i1c+1];
Chris@19 565 break;
Chris@19 566 default:
Chris@19 567 memcpy(b, &a[N * i1], N * sizeof(R));
Chris@19 568 memcpy(c, &a[N * i1c], N * sizeof(R));
Chris@19 569 }
Chris@19 570 while (1) {
Chris@19 571 i2 = ny * i1 - k * (i1 / nx);
Chris@19 572 i2c = k - i2;
Chris@19 573 if (i1 < move_size)
Chris@19 574 move[i1] = 1;
Chris@19 575 if (i1c < move_size)
Chris@19 576 move[i1c] = 1;
Chris@19 577 ncount += 2;
Chris@19 578 if (i2 == i)
Chris@19 579 break;
Chris@19 580 if (i2 == kmi) {
Chris@19 581 d = b;
Chris@19 582 b = c;
Chris@19 583 c = d;
Chris@19 584 break;
Chris@19 585 }
Chris@19 586 switch (N) {
Chris@19 587 case 1:
Chris@19 588 a[i1] = a[i2];
Chris@19 589 a[i1c] = a[i2c];
Chris@19 590 break;
Chris@19 591 case 2:
Chris@19 592 a[2*i1] = a[2*i2];
Chris@19 593 a[2*i1+1] = a[2*i2+1];
Chris@19 594 a[2*i1c] = a[2*i2c];
Chris@19 595 a[2*i1c+1] = a[2*i2c+1];
Chris@19 596 break;
Chris@19 597 default:
Chris@19 598 memcpy(&a[N * i1], &a[N * i2],
Chris@19 599 N * sizeof(R));
Chris@19 600 memcpy(&a[N * i1c], &a[N * i2c],
Chris@19 601 N * sizeof(R));
Chris@19 602 }
Chris@19 603 i1 = i2;
Chris@19 604 i1c = i2c;
Chris@19 605 }
Chris@19 606 switch (N) {
Chris@19 607 case 1:
Chris@19 608 a[i1] = b[0];
Chris@19 609 a[i1c] = c[0];
Chris@19 610 break;
Chris@19 611 case 2:
Chris@19 612 a[2*i1] = b[0];
Chris@19 613 a[2*i1+1] = b[1];
Chris@19 614 a[2*i1c] = c[0];
Chris@19 615 a[2*i1c+1] = c[1];
Chris@19 616 break;
Chris@19 617 default:
Chris@19 618 memcpy(&a[N * i1], b, N * sizeof(R));
Chris@19 619 memcpy(&a[N * i1c], c, N * sizeof(R));
Chris@19 620 }
Chris@19 621 if (ncount >= mn)
Chris@19 622 break; /* we've moved all elements */
Chris@19 623
Chris@19 624 /** Search for loops to rearrange: **/
Chris@19 625
Chris@19 626 while (1) {
Chris@19 627 INT max = k - i;
Chris@19 628 ++i;
Chris@19 629 A(i <= max);
Chris@19 630 im += ny;
Chris@19 631 if (im > k)
Chris@19 632 im -= k;
Chris@19 633 i2 = im;
Chris@19 634 if (i == i2)
Chris@19 635 continue;
Chris@19 636 if (i >= move_size) {
Chris@19 637 while (i2 > i && i2 < max) {
Chris@19 638 i1 = i2;
Chris@19 639 i2 = ny * i1 - k * (i1 / nx);
Chris@19 640 }
Chris@19 641 if (i2 == i)
Chris@19 642 break;
Chris@19 643 } else if (!move[i])
Chris@19 644 break;
Chris@19 645 }
Chris@19 646 }
Chris@19 647 }
Chris@19 648
Chris@19 649 static void apply_toms513(const plan *ego_, R *I, R *O)
Chris@19 650 {
Chris@19 651 const P *ego = (const P *) ego_;
Chris@19 652 INT n = ego->n, m = ego->m;
Chris@19 653 INT vl = ego->vl;
Chris@19 654 R *buf = (R *)MALLOC(sizeof(R) * ego->nbuf, BUFFERS);
Chris@19 655 UNUSED(O);
Chris@19 656 transpose_toms513(I, n, m, vl, (char *) (buf + 2*vl), (n+m)/2, buf);
Chris@19 657 X(ifree)(buf);
Chris@19 658 }
Chris@19 659
Chris@19 660 static int applicable_toms513(const problem_rdft *p, planner *plnr,
Chris@19 661 int dim0, int dim1, int dim2, INT *nbuf)
Chris@19 662 {
Chris@19 663 INT n = p->vecsz->dims[dim0].n;
Chris@19 664 INT m = p->vecsz->dims[dim1].n;
Chris@19 665 INT vl, vs;
Chris@19 666 get_transpose_vec(p, dim2, &vl, &vs);
Chris@19 667 *nbuf = 2*vl
Chris@19 668 + ((n + m) / 2 * sizeof(char) + sizeof(R) - 1) / sizeof(R);
Chris@19 669 return (!NO_SLOWP(plnr)
Chris@19 670 && (vl > 8 || !NO_UGLYP(plnr)) /* UGLY for small vl */
Chris@19 671 && n != m
Chris@19 672 && Ntuple_transposable(p->vecsz->dims + dim0,
Chris@19 673 p->vecsz->dims + dim1,
Chris@19 674 vl, vs));
Chris@19 675 }
Chris@19 676
Chris@19 677 static int mkcldrn_toms513(const problem_rdft *p, planner *plnr, P *ego)
Chris@19 678 {
Chris@19 679 UNUSED(p); UNUSED(plnr);
Chris@19 680 /* heuristic so that TOMS algorithm is last resort for small vl */
Chris@19 681 ego->super.super.ops.other += ego->n * ego->m * 2 * (ego->vl + 30);
Chris@19 682 return 1;
Chris@19 683 }
Chris@19 684
Chris@19 685 static const transpose_adt adt_toms513 =
Chris@19 686 {
Chris@19 687 apply_toms513, applicable_toms513, mkcldrn_toms513,
Chris@19 688 "rdft-transpose-toms513"
Chris@19 689 };
Chris@19 690
Chris@19 691 /*-----------------------------------------------------------------------*/
Chris@19 692 /*-----------------------------------------------------------------------*/
Chris@19 693 /* generic stuff: */
Chris@19 694
Chris@19 695 static void awake(plan *ego_, enum wakefulness wakefulness)
Chris@19 696 {
Chris@19 697 P *ego = (P *) ego_;
Chris@19 698 X(plan_awake)(ego->cld1, wakefulness);
Chris@19 699 X(plan_awake)(ego->cld2, wakefulness);
Chris@19 700 X(plan_awake)(ego->cld3, wakefulness);
Chris@19 701 }
Chris@19 702
Chris@19 703 static void print(const plan *ego_, printer *p)
Chris@19 704 {
Chris@19 705 const P *ego = (const P *) ego_;
Chris@19 706 p->print(p, "(%s-%Dx%D%v", ego->slv->adt->nam,
Chris@19 707 ego->n, ego->m, ego->vl);
Chris@19 708 if (ego->cld1) p->print(p, "%(%p%)", ego->cld1);
Chris@19 709 if (ego->cld2) p->print(p, "%(%p%)", ego->cld2);
Chris@19 710 if (ego->cld3) p->print(p, "%(%p%)", ego->cld3);
Chris@19 711 p->print(p, ")");
Chris@19 712 }
Chris@19 713
Chris@19 714 static void destroy(plan *ego_)
Chris@19 715 {
Chris@19 716 P *ego = (P *) ego_;
Chris@19 717 X(plan_destroy_internal)(ego->cld3);
Chris@19 718 X(plan_destroy_internal)(ego->cld2);
Chris@19 719 X(plan_destroy_internal)(ego->cld1);
Chris@19 720 }
Chris@19 721
Chris@19 722 static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr)
Chris@19 723 {
Chris@19 724 const S *ego = (const S *) ego_;
Chris@19 725 const problem_rdft *p;
Chris@19 726 int dim0, dim1, dim2;
Chris@19 727 INT nbuf, vs;
Chris@19 728 P *pln;
Chris@19 729
Chris@19 730 static const plan_adt padt = {
Chris@19 731 X(rdft_solve), awake, print, destroy
Chris@19 732 };
Chris@19 733
Chris@19 734 if (!applicable(ego_, p_, plnr, &dim0, &dim1, &dim2, &nbuf))
Chris@19 735 return (plan *) 0;
Chris@19 736
Chris@19 737 p = (const problem_rdft *) p_;
Chris@19 738 pln = MKPLAN_RDFT(P, &padt, ego->adt->apply);
Chris@19 739
Chris@19 740 pln->n = p->vecsz->dims[dim0].n;
Chris@19 741 pln->m = p->vecsz->dims[dim1].n;
Chris@19 742 get_transpose_vec(p, dim2, &pln->vl, &vs);
Chris@19 743 pln->nbuf = nbuf;
Chris@19 744 pln->d = gcd(pln->n, pln->m);
Chris@19 745 pln->nd = pln->n / pln->d;
Chris@19 746 pln->md = pln->m / pln->d;
Chris@19 747 pln->slv = ego;
Chris@19 748
Chris@19 749 X(ops_zero)(&pln->super.super.ops); /* mkcldrn is responsible for ops */
Chris@19 750
Chris@19 751 pln->cld1 = pln->cld2 = pln->cld3 = 0;
Chris@19 752 if (!ego->adt->mkcldrn(p, plnr, pln)) {
Chris@19 753 X(plan_destroy_internal)(&(pln->super.super));
Chris@19 754 return 0;
Chris@19 755 }
Chris@19 756
Chris@19 757 return &(pln->super.super);
Chris@19 758 }
Chris@19 759
Chris@19 760 static solver *mksolver(const transpose_adt *adt)
Chris@19 761 {
Chris@19 762 static const solver_adt sadt = { PROBLEM_RDFT, mkplan, 0 };
Chris@19 763 S *slv = MKSOLVER(S, &sadt);
Chris@19 764 slv->adt = adt;
Chris@19 765 return &(slv->super);
Chris@19 766 }
Chris@19 767
Chris@19 768 void X(rdft_vrank3_transpose_register)(planner *p)
Chris@19 769 {
Chris@19 770 unsigned i;
Chris@19 771 static const transpose_adt *const adts[] = {
Chris@19 772 &adt_gcd, &adt_cut,
Chris@19 773 &adt_toms513
Chris@19 774 };
Chris@19 775 for (i = 0; i < sizeof(adts) / sizeof(adts[0]); ++i)
Chris@19 776 REGISTER_SOLVER(p, mksolver(adts[i]));
Chris@19 777 }