annotate fft/fftw/fftw-3.3.4/rdft/simd/common/hc2cfdftv_6.c @ 40:223f770b5341 kissfft-double tip

Try a double-precision kissfft
author Chris Cannam
date Wed, 07 Sep 2016 10:40:32 +0100
parents 26056e866c29
children
rev   line source
Chris@19 1 /*
Chris@19 2 * Copyright (c) 2003, 2007-14 Matteo Frigo
Chris@19 3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
Chris@19 4 *
Chris@19 5 * This program is free software; you can redistribute it and/or modify
Chris@19 6 * it under the terms of the GNU General Public License as published by
Chris@19 7 * the Free Software Foundation; either version 2 of the License, or
Chris@19 8 * (at your option) any later version.
Chris@19 9 *
Chris@19 10 * This program is distributed in the hope that it will be useful,
Chris@19 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
Chris@19 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
Chris@19 13 * GNU General Public License for more details.
Chris@19 14 *
Chris@19 15 * You should have received a copy of the GNU General Public License
Chris@19 16 * along with this program; if not, write to the Free Software
Chris@19 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Chris@19 18 *
Chris@19 19 */
Chris@19 20
Chris@19 21 /* This file was automatically generated --- DO NOT EDIT */
Chris@19 22 /* Generated on Tue Mar 4 13:51:49 EST 2014 */
Chris@19 23
Chris@19 24 #include "codelet-rdft.h"
Chris@19 25
Chris@19 26 #ifdef HAVE_FMA
Chris@19 27
Chris@19 28 /* Generated by: ../../../genfft/gen_hc2cdft_c.native -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -trivial-stores -variables 32 -no-generate-bytw -n 6 -dit -name hc2cfdftv_6 -include hc2cfv.h */
Chris@19 29
Chris@19 30 /*
Chris@19 31 * This function contains 29 FP additions, 30 FP multiplications,
Chris@19 32 * (or, 17 additions, 18 multiplications, 12 fused multiply/add),
Chris@19 33 * 38 stack variables, 2 constants, and 12 memory accesses
Chris@19 34 */
Chris@19 35 #include "hc2cfv.h"
Chris@19 36
Chris@19 37 static void hc2cfdftv_6(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
Chris@19 38 {
Chris@19 39 DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
Chris@19 40 DVK(KP866025403, +0.866025403784438646763723170752936183471402627);
Chris@19 41 {
Chris@19 42 INT m;
Chris@19 43 for (m = mb, W = W + ((mb - 1) * ((TWVL / VL) * 10)); m < me; m = m + VL, Rp = Rp + (VL * ms), Ip = Ip + (VL * ms), Rm = Rm - (VL * ms), Im = Im - (VL * ms), W = W + (TWVL * 10), MAKE_VOLATILE_STRIDE(24, rs)) {
Chris@19 44 V T5, T6, T3, Tj, T4, T9, Te, Th, T1, T2, Ti, Tc, Td, Tb, Tg;
Chris@19 45 V T7, Ta, Tt, Tk, Tr, T8, Ts, Tf, Tx, Tu, To, Tl, Tw, Tv, Tn;
Chris@19 46 V Tm, Tz, Ty, Tp, Tq;
Chris@19 47 T1 = LD(&(Rp[0]), ms, &(Rp[0]));
Chris@19 48 T2 = LD(&(Rm[0]), -ms, &(Rm[0]));
Chris@19 49 Ti = LDW(&(W[0]));
Chris@19 50 Tc = LD(&(Rp[WS(rs, 2)]), ms, &(Rp[0]));
Chris@19 51 Td = LD(&(Rm[WS(rs, 2)]), -ms, &(Rm[0]));
Chris@19 52 Tb = LDW(&(W[TWVL * 8]));
Chris@19 53 Tg = LDW(&(W[TWVL * 6]));
Chris@19 54 T5 = LD(&(Rp[WS(rs, 1)]), ms, &(Rp[WS(rs, 1)]));
Chris@19 55 T6 = LD(&(Rm[WS(rs, 1)]), -ms, &(Rm[WS(rs, 1)]));
Chris@19 56 T3 = VFMACONJ(T2, T1);
Chris@19 57 Tj = VZMULIJ(Ti, VFNMSCONJ(T2, T1));
Chris@19 58 T4 = LDW(&(W[TWVL * 4]));
Chris@19 59 T9 = LDW(&(W[TWVL * 2]));
Chris@19 60 Te = VZMULIJ(Tb, VFNMSCONJ(Td, Tc));
Chris@19 61 Th = VZMULJ(Tg, VFMACONJ(Td, Tc));
Chris@19 62 T7 = VZMULIJ(T4, VFNMSCONJ(T6, T5));
Chris@19 63 Ta = VZMULJ(T9, VFMACONJ(T6, T5));
Chris@19 64 Tt = VADD(Tj, Th);
Chris@19 65 Tk = VSUB(Th, Tj);
Chris@19 66 Tr = VADD(T3, T7);
Chris@19 67 T8 = VSUB(T3, T7);
Chris@19 68 Ts = VADD(Ta, Te);
Chris@19 69 Tf = VSUB(Ta, Te);
Chris@19 70 Tx = VMUL(LDK(KP866025403), VSUB(Tt, Ts));
Chris@19 71 Tu = VADD(Ts, Tt);
Chris@19 72 To = VMUL(LDK(KP866025403), VSUB(Tk, Tf));
Chris@19 73 Tl = VADD(Tf, Tk);
Chris@19 74 Tw = VFNMS(LDK(KP500000000), Tu, Tr);
Chris@19 75 Tv = VCONJ(VMUL(LDK(KP500000000), VADD(Tr, Tu)));
Chris@19 76 Tn = VFNMS(LDK(KP500000000), Tl, T8);
Chris@19 77 Tm = VMUL(LDK(KP500000000), VADD(T8, Tl));
Chris@19 78 Tz = VMUL(LDK(KP500000000), VFMAI(Tx, Tw));
Chris@19 79 Ty = VCONJ(VMUL(LDK(KP500000000), VFNMSI(Tx, Tw)));
Chris@19 80 ST(&(Rm[WS(rs, 2)]), Tv, -ms, &(Rm[0]));
Chris@19 81 Tp = VMUL(LDK(KP500000000), VFNMSI(To, Tn));
Chris@19 82 Tq = VCONJ(VMUL(LDK(KP500000000), VFMAI(To, Tn)));
Chris@19 83 ST(&(Rp[0]), Tm, ms, &(Rp[0]));
Chris@19 84 ST(&(Rp[WS(rs, 1)]), Tz, ms, &(Rp[WS(rs, 1)]));
Chris@19 85 ST(&(Rm[0]), Ty, -ms, &(Rm[0]));
Chris@19 86 ST(&(Rm[WS(rs, 1)]), Tq, -ms, &(Rm[WS(rs, 1)]));
Chris@19 87 ST(&(Rp[WS(rs, 2)]), Tp, ms, &(Rp[0]));
Chris@19 88 }
Chris@19 89 }
Chris@19 90 VLEAVE();
Chris@19 91 }
Chris@19 92
Chris@19 93 static const tw_instr twinstr[] = {
Chris@19 94 VTW(1, 1),
Chris@19 95 VTW(1, 2),
Chris@19 96 VTW(1, 3),
Chris@19 97 VTW(1, 4),
Chris@19 98 VTW(1, 5),
Chris@19 99 {TW_NEXT, VL, 0}
Chris@19 100 };
Chris@19 101
Chris@19 102 static const hc2c_desc desc = { 6, XSIMD_STRING("hc2cfdftv_6"), twinstr, &GENUS, {17, 18, 12, 0} };
Chris@19 103
Chris@19 104 void XSIMD(codelet_hc2cfdftv_6) (planner *p) {
Chris@19 105 X(khc2c_register) (p, hc2cfdftv_6, &desc, HC2C_VIA_DFT);
Chris@19 106 }
Chris@19 107 #else /* HAVE_FMA */
Chris@19 108
Chris@19 109 /* Generated by: ../../../genfft/gen_hc2cdft_c.native -simd -compact -variables 4 -pipeline-latency 8 -trivial-stores -variables 32 -no-generate-bytw -n 6 -dit -name hc2cfdftv_6 -include hc2cfv.h */
Chris@19 110
Chris@19 111 /*
Chris@19 112 * This function contains 29 FP additions, 20 FP multiplications,
Chris@19 113 * (or, 27 additions, 18 multiplications, 2 fused multiply/add),
Chris@19 114 * 42 stack variables, 3 constants, and 12 memory accesses
Chris@19 115 */
Chris@19 116 #include "hc2cfv.h"
Chris@19 117
Chris@19 118 static void hc2cfdftv_6(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
Chris@19 119 {
Chris@19 120 DVK(KP250000000, +0.250000000000000000000000000000000000000000000);
Chris@19 121 DVK(KP866025403, +0.866025403784438646763723170752936183471402627);
Chris@19 122 DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
Chris@19 123 {
Chris@19 124 INT m;
Chris@19 125 for (m = mb, W = W + ((mb - 1) * ((TWVL / VL) * 10)); m < me; m = m + VL, Rp = Rp + (VL * ms), Ip = Ip + (VL * ms), Rm = Rm - (VL * ms), Im = Im - (VL * ms), W = W + (TWVL * 10), MAKE_VOLATILE_STRIDE(24, rs)) {
Chris@19 126 V Ta, Tu, Tn, Tw, Ti, Tv, T1, T8, Tg, Tf, T7, T3, Te, T6, T2;
Chris@19 127 V T4, T9, T5, Tk, Tm, Tj, Tl, Tc, Th, Tb, Td, Tr, Tp, Tq, To;
Chris@19 128 V Tt, Ts, TA, Ty, Tz, Tx, TC, TB;
Chris@19 129 T1 = LD(&(Rp[0]), ms, &(Rp[0]));
Chris@19 130 T8 = LD(&(Rp[WS(rs, 1)]), ms, &(Rp[WS(rs, 1)]));
Chris@19 131 Tg = LD(&(Rp[WS(rs, 2)]), ms, &(Rp[0]));
Chris@19 132 Te = LD(&(Rm[WS(rs, 2)]), -ms, &(Rm[0]));
Chris@19 133 Tf = VCONJ(Te);
Chris@19 134 T6 = LD(&(Rm[WS(rs, 1)]), -ms, &(Rm[WS(rs, 1)]));
Chris@19 135 T7 = VCONJ(T6);
Chris@19 136 T2 = LD(&(Rm[0]), -ms, &(Rm[0]));
Chris@19 137 T3 = VCONJ(T2);
Chris@19 138 T4 = VADD(T1, T3);
Chris@19 139 T5 = LDW(&(W[TWVL * 4]));
Chris@19 140 T9 = VZMULIJ(T5, VSUB(T7, T8));
Chris@19 141 Ta = VADD(T4, T9);
Chris@19 142 Tu = VSUB(T4, T9);
Chris@19 143 Tj = LDW(&(W[0]));
Chris@19 144 Tk = VZMULIJ(Tj, VSUB(T3, T1));
Chris@19 145 Tl = LDW(&(W[TWVL * 6]));
Chris@19 146 Tm = VZMULJ(Tl, VADD(Tf, Tg));
Chris@19 147 Tn = VADD(Tk, Tm);
Chris@19 148 Tw = VSUB(Tm, Tk);
Chris@19 149 Tb = LDW(&(W[TWVL * 2]));
Chris@19 150 Tc = VZMULJ(Tb, VADD(T7, T8));
Chris@19 151 Td = LDW(&(W[TWVL * 8]));
Chris@19 152 Th = VZMULIJ(Td, VSUB(Tf, Tg));
Chris@19 153 Ti = VADD(Tc, Th);
Chris@19 154 Tv = VSUB(Tc, Th);
Chris@19 155 Tr = VMUL(LDK(KP500000000), VBYI(VMUL(LDK(KP866025403), VSUB(Tn, Ti))));
Chris@19 156 To = VADD(Ti, Tn);
Chris@19 157 Tp = VMUL(LDK(KP500000000), VADD(Ta, To));
Chris@19 158 Tq = VFNMS(LDK(KP250000000), To, VMUL(LDK(KP500000000), Ta));
Chris@19 159 ST(&(Rp[0]), Tp, ms, &(Rp[0]));
Chris@19 160 Tt = VCONJ(VADD(Tq, Tr));
Chris@19 161 ST(&(Rm[WS(rs, 1)]), Tt, -ms, &(Rm[WS(rs, 1)]));
Chris@19 162 Ts = VSUB(Tq, Tr);
Chris@19 163 ST(&(Rp[WS(rs, 2)]), Ts, ms, &(Rp[0]));
Chris@19 164 TA = VMUL(LDK(KP500000000), VBYI(VMUL(LDK(KP866025403), VSUB(Tw, Tv))));
Chris@19 165 Tx = VADD(Tv, Tw);
Chris@19 166 Ty = VCONJ(VMUL(LDK(KP500000000), VADD(Tu, Tx)));
Chris@19 167 Tz = VFNMS(LDK(KP250000000), Tx, VMUL(LDK(KP500000000), Tu));
Chris@19 168 ST(&(Rm[WS(rs, 2)]), Ty, -ms, &(Rm[0]));
Chris@19 169 TC = VADD(Tz, TA);
Chris@19 170 ST(&(Rp[WS(rs, 1)]), TC, ms, &(Rp[WS(rs, 1)]));
Chris@19 171 TB = VCONJ(VSUB(Tz, TA));
Chris@19 172 ST(&(Rm[0]), TB, -ms, &(Rm[0]));
Chris@19 173 }
Chris@19 174 }
Chris@19 175 VLEAVE();
Chris@19 176 }
Chris@19 177
Chris@19 178 static const tw_instr twinstr[] = {
Chris@19 179 VTW(1, 1),
Chris@19 180 VTW(1, 2),
Chris@19 181 VTW(1, 3),
Chris@19 182 VTW(1, 4),
Chris@19 183 VTW(1, 5),
Chris@19 184 {TW_NEXT, VL, 0}
Chris@19 185 };
Chris@19 186
Chris@19 187 static const hc2c_desc desc = { 6, XSIMD_STRING("hc2cfdftv_6"), twinstr, &GENUS, {27, 18, 2, 0} };
Chris@19 188
Chris@19 189 void XSIMD(codelet_hc2cfdftv_6) (planner *p) {
Chris@19 190 X(khc2c_register) (p, hc2cfdftv_6, &desc, HC2C_VIA_DFT);
Chris@19 191 }
Chris@19 192 #endif /* HAVE_FMA */