annotate fft/fftw/fftw-3.3.4/rdft/simd/common/hc2cfdftv_12.c @ 40:223f770b5341 kissfft-double tip

Try a double-precision kissfft
author Chris Cannam
date Wed, 07 Sep 2016 10:40:32 +0100
parents 26056e866c29
children
rev   line source
Chris@19 1 /*
Chris@19 2 * Copyright (c) 2003, 2007-14 Matteo Frigo
Chris@19 3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
Chris@19 4 *
Chris@19 5 * This program is free software; you can redistribute it and/or modify
Chris@19 6 * it under the terms of the GNU General Public License as published by
Chris@19 7 * the Free Software Foundation; either version 2 of the License, or
Chris@19 8 * (at your option) any later version.
Chris@19 9 *
Chris@19 10 * This program is distributed in the hope that it will be useful,
Chris@19 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
Chris@19 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
Chris@19 13 * GNU General Public License for more details.
Chris@19 14 *
Chris@19 15 * You should have received a copy of the GNU General Public License
Chris@19 16 * along with this program; if not, write to the Free Software
Chris@19 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Chris@19 18 *
Chris@19 19 */
Chris@19 20
Chris@19 21 /* This file was automatically generated --- DO NOT EDIT */
Chris@19 22 /* Generated on Tue Mar 4 13:51:49 EST 2014 */
Chris@19 23
Chris@19 24 #include "codelet-rdft.h"
Chris@19 25
Chris@19 26 #ifdef HAVE_FMA
Chris@19 27
Chris@19 28 /* Generated by: ../../../genfft/gen_hc2cdft_c.native -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -trivial-stores -variables 32 -no-generate-bytw -n 12 -dit -name hc2cfdftv_12 -include hc2cfv.h */
Chris@19 29
Chris@19 30 /*
Chris@19 31 * This function contains 71 FP additions, 66 FP multiplications,
Chris@19 32 * (or, 41 additions, 36 multiplications, 30 fused multiply/add),
Chris@19 33 * 86 stack variables, 2 constants, and 24 memory accesses
Chris@19 34 */
Chris@19 35 #include "hc2cfv.h"
Chris@19 36
Chris@19 37 static void hc2cfdftv_12(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
Chris@19 38 {
Chris@19 39 DVK(KP866025403, +0.866025403784438646763723170752936183471402627);
Chris@19 40 DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
Chris@19 41 {
Chris@19 42 INT m;
Chris@19 43 for (m = mb, W = W + ((mb - 1) * ((TWVL / VL) * 22)); m < me; m = m + VL, Rp = Rp + (VL * ms), Ip = Ip + (VL * ms), Rm = Rm - (VL * ms), Im = Im - (VL * ms), W = W + (TWVL * 22), MAKE_VOLATILE_STRIDE(48, rs)) {
Chris@19 44 V T3, T7, TH, TE, Th, TC, Tq, T11, TU, Tx, Tb, Tz, Tu, Tw, Tp;
Chris@19 45 V Tl, T9, Ta, T8, Ty, Tn, To, Tm, TG, T1, T2, Tt, T5, T6, T4;
Chris@19 46 V Tv, Tj, Tk, Ti, TD, Tf, Tg, Te, TB, TT, TF, TR, Tr;
Chris@19 47 T1 = LD(&(Rp[0]), ms, &(Rp[0]));
Chris@19 48 T2 = LD(&(Rm[0]), -ms, &(Rm[0]));
Chris@19 49 Tt = LDW(&(W[0]));
Chris@19 50 T5 = LD(&(Rp[WS(rs, 2)]), ms, &(Rp[0]));
Chris@19 51 T6 = LD(&(Rm[WS(rs, 2)]), -ms, &(Rm[0]));
Chris@19 52 T4 = LDW(&(W[TWVL * 6]));
Chris@19 53 Tv = LDW(&(W[TWVL * 8]));
Chris@19 54 Tn = LD(&(Rp[WS(rs, 1)]), ms, &(Rp[WS(rs, 1)]));
Chris@19 55 To = LD(&(Rm[WS(rs, 1)]), -ms, &(Rm[WS(rs, 1)]));
Chris@19 56 T3 = VFMACONJ(T2, T1);
Chris@19 57 Tu = VZMULIJ(Tt, VFNMSCONJ(T2, T1));
Chris@19 58 Tm = LDW(&(W[TWVL * 2]));
Chris@19 59 TG = LDW(&(W[TWVL * 4]));
Chris@19 60 T7 = VZMULJ(T4, VFMACONJ(T6, T5));
Chris@19 61 Tw = VZMULIJ(Tv, VFNMSCONJ(T6, T5));
Chris@19 62 Tj = LD(&(Rp[WS(rs, 5)]), ms, &(Rp[WS(rs, 1)]));
Chris@19 63 Tk = LD(&(Rm[WS(rs, 5)]), -ms, &(Rm[WS(rs, 1)]));
Chris@19 64 Ti = LDW(&(W[TWVL * 18]));
Chris@19 65 TD = LDW(&(W[TWVL * 20]));
Chris@19 66 Tp = VZMULJ(Tm, VFMACONJ(To, Tn));
Chris@19 67 TH = VZMULIJ(TG, VFNMSCONJ(To, Tn));
Chris@19 68 Tf = LD(&(Rp[WS(rs, 3)]), ms, &(Rp[WS(rs, 1)]));
Chris@19 69 Tg = LD(&(Rm[WS(rs, 3)]), -ms, &(Rm[WS(rs, 1)]));
Chris@19 70 Te = LDW(&(W[TWVL * 10]));
Chris@19 71 TB = LDW(&(W[TWVL * 12]));
Chris@19 72 Tl = VZMULJ(Ti, VFMACONJ(Tk, Tj));
Chris@19 73 TE = VZMULIJ(TD, VFNMSCONJ(Tk, Tj));
Chris@19 74 T9 = LD(&(Rp[WS(rs, 4)]), ms, &(Rp[0]));
Chris@19 75 Ta = LD(&(Rm[WS(rs, 4)]), -ms, &(Rm[0]));
Chris@19 76 T8 = LDW(&(W[TWVL * 14]));
Chris@19 77 Ty = LDW(&(W[TWVL * 16]));
Chris@19 78 Th = VZMULJ(Te, VFMACONJ(Tg, Tf));
Chris@19 79 TC = VZMULIJ(TB, VFNMSCONJ(Tg, Tf));
Chris@19 80 Tq = VADD(Tl, Tp);
Chris@19 81 T11 = VSUB(Tp, Tl);
Chris@19 82 TU = VSUB(Tu, Tw);
Chris@19 83 Tx = VADD(Tu, Tw);
Chris@19 84 Tb = VZMULJ(T8, VFMACONJ(Ta, T9));
Chris@19 85 Tz = VZMULIJ(Ty, VFNMSCONJ(Ta, T9));
Chris@19 86 TT = VSUB(TC, TE);
Chris@19 87 TF = VADD(TC, TE);
Chris@19 88 TR = VFNMS(LDK(KP500000000), Tq, Th);
Chris@19 89 Tr = VADD(Th, Tq);
Chris@19 90 {
Chris@19 91 V TX, TA, T1d, TV, TY, TI, T1e, T12, TQ, Td, T10, Tc, T1a, TN, TJ;
Chris@19 92 V T1j, T1f, T1b, TS, TM, Ts, T17, T13, TZ, T1i, T1c, T16, TW, TP, TO;
Chris@19 93 V TL, TK, T1k, T1l, T1h, T1g, T18, T19, T15, T14;
Chris@19 94 T10 = VSUB(Tb, T7);
Chris@19 95 Tc = VADD(T7, Tb);
Chris@19 96 TX = VFNMS(LDK(KP500000000), Tx, Tz);
Chris@19 97 TA = VADD(Tx, Tz);
Chris@19 98 T1d = VADD(TU, TT);
Chris@19 99 TV = VSUB(TT, TU);
Chris@19 100 TY = VFNMS(LDK(KP500000000), TF, TH);
Chris@19 101 TI = VADD(TF, TH);
Chris@19 102 T1e = VADD(T10, T11);
Chris@19 103 T12 = VSUB(T10, T11);
Chris@19 104 TQ = VFNMS(LDK(KP500000000), Tc, T3);
Chris@19 105 Td = VADD(T3, Tc);
Chris@19 106 T1a = VADD(TX, TY);
Chris@19 107 TZ = VSUB(TX, TY);
Chris@19 108 TN = VADD(TA, TI);
Chris@19 109 TJ = VSUB(TA, TI);
Chris@19 110 T1j = VMUL(LDK(KP866025403), VADD(T1d, T1e));
Chris@19 111 T1f = VMUL(LDK(KP866025403), VSUB(T1d, T1e));
Chris@19 112 T1b = VADD(TQ, TR);
Chris@19 113 TS = VSUB(TQ, TR);
Chris@19 114 TM = VADD(Td, Tr);
Chris@19 115 Ts = VSUB(Td, Tr);
Chris@19 116 T17 = VFMA(LDK(KP866025403), T12, TZ);
Chris@19 117 T13 = VFNMS(LDK(KP866025403), T12, TZ);
Chris@19 118 T1i = VSUB(T1b, T1a);
Chris@19 119 T1c = VADD(T1a, T1b);
Chris@19 120 T16 = VFNMS(LDK(KP866025403), TV, TS);
Chris@19 121 TW = VFMA(LDK(KP866025403), TV, TS);
Chris@19 122 TP = VCONJ(VMUL(LDK(KP500000000), VADD(TN, TM)));
Chris@19 123 TO = VMUL(LDK(KP500000000), VSUB(TM, TN));
Chris@19 124 TL = VCONJ(VMUL(LDK(KP500000000), VFNMSI(TJ, Ts)));
Chris@19 125 TK = VMUL(LDK(KP500000000), VFMAI(TJ, Ts));
Chris@19 126 T1k = VCONJ(VMUL(LDK(KP500000000), VFNMSI(T1j, T1i)));
Chris@19 127 T1l = VMUL(LDK(KP500000000), VFMAI(T1j, T1i));
Chris@19 128 T1h = VMUL(LDK(KP500000000), VFMAI(T1f, T1c));
Chris@19 129 T1g = VCONJ(VMUL(LDK(KP500000000), VFNMSI(T1f, T1c)));
Chris@19 130 T18 = VMUL(LDK(KP500000000), VFNMSI(T17, T16));
Chris@19 131 T19 = VCONJ(VMUL(LDK(KP500000000), VFMAI(T17, T16)));
Chris@19 132 T15 = VCONJ(VMUL(LDK(KP500000000), VFMAI(T13, TW)));
Chris@19 133 T14 = VMUL(LDK(KP500000000), VFNMSI(T13, TW));
Chris@19 134 ST(&(Rm[WS(rs, 5)]), TP, -ms, &(Rm[WS(rs, 1)]));
Chris@19 135 ST(&(Rp[0]), TO, ms, &(Rp[0]));
Chris@19 136 ST(&(Rm[WS(rs, 2)]), TL, -ms, &(Rm[0]));
Chris@19 137 ST(&(Rp[WS(rs, 3)]), TK, ms, &(Rp[WS(rs, 1)]));
Chris@19 138 ST(&(Rm[WS(rs, 3)]), T1k, -ms, &(Rm[WS(rs, 1)]));
Chris@19 139 ST(&(Rp[WS(rs, 4)]), T1l, ms, &(Rp[0]));
Chris@19 140 ST(&(Rp[WS(rs, 2)]), T1h, ms, &(Rp[0]));
Chris@19 141 ST(&(Rm[WS(rs, 1)]), T1g, -ms, &(Rm[WS(rs, 1)]));
Chris@19 142 ST(&(Rp[WS(rs, 5)]), T18, ms, &(Rp[WS(rs, 1)]));
Chris@19 143 ST(&(Rm[WS(rs, 4)]), T19, -ms, &(Rm[0]));
Chris@19 144 ST(&(Rm[0]), T15, -ms, &(Rm[0]));
Chris@19 145 ST(&(Rp[WS(rs, 1)]), T14, ms, &(Rp[WS(rs, 1)]));
Chris@19 146 }
Chris@19 147 }
Chris@19 148 }
Chris@19 149 VLEAVE();
Chris@19 150 }
Chris@19 151
Chris@19 152 static const tw_instr twinstr[] = {
Chris@19 153 VTW(1, 1),
Chris@19 154 VTW(1, 2),
Chris@19 155 VTW(1, 3),
Chris@19 156 VTW(1, 4),
Chris@19 157 VTW(1, 5),
Chris@19 158 VTW(1, 6),
Chris@19 159 VTW(1, 7),
Chris@19 160 VTW(1, 8),
Chris@19 161 VTW(1, 9),
Chris@19 162 VTW(1, 10),
Chris@19 163 VTW(1, 11),
Chris@19 164 {TW_NEXT, VL, 0}
Chris@19 165 };
Chris@19 166
Chris@19 167 static const hc2c_desc desc = { 12, XSIMD_STRING("hc2cfdftv_12"), twinstr, &GENUS, {41, 36, 30, 0} };
Chris@19 168
Chris@19 169 void XSIMD(codelet_hc2cfdftv_12) (planner *p) {
Chris@19 170 X(khc2c_register) (p, hc2cfdftv_12, &desc, HC2C_VIA_DFT);
Chris@19 171 }
Chris@19 172 #else /* HAVE_FMA */
Chris@19 173
Chris@19 174 /* Generated by: ../../../genfft/gen_hc2cdft_c.native -simd -compact -variables 4 -pipeline-latency 8 -trivial-stores -variables 32 -no-generate-bytw -n 12 -dit -name hc2cfdftv_12 -include hc2cfv.h */
Chris@19 175
Chris@19 176 /*
Chris@19 177 * This function contains 71 FP additions, 41 FP multiplications,
Chris@19 178 * (or, 67 additions, 37 multiplications, 4 fused multiply/add),
Chris@19 179 * 58 stack variables, 4 constants, and 24 memory accesses
Chris@19 180 */
Chris@19 181 #include "hc2cfv.h"
Chris@19 182
Chris@19 183 static void hc2cfdftv_12(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
Chris@19 184 {
Chris@19 185 DVK(KP433012701, +0.433012701892219323381861585376468091735701313);
Chris@19 186 DVK(KP866025403, +0.866025403784438646763723170752936183471402627);
Chris@19 187 DVK(KP250000000, +0.250000000000000000000000000000000000000000000);
Chris@19 188 DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
Chris@19 189 {
Chris@19 190 INT m;
Chris@19 191 for (m = mb, W = W + ((mb - 1) * ((TWVL / VL) * 22)); m < me; m = m + VL, Rp = Rp + (VL * ms), Ip = Ip + (VL * ms), Rm = Rm - (VL * ms), Im = Im - (VL * ms), W = W + (TWVL * 22), MAKE_VOLATILE_STRIDE(48, rs)) {
Chris@19 192 V TX, T13, T4, Tf, TZ, TD, TF, T17, TW, T14, Tw, Tl, T10, TL, TN;
Chris@19 193 V T16;
Chris@19 194 {
Chris@19 195 V T1, T3, TA, Tb, Td, Te, T9, TC, T2, Tz, Tc, Ta, T6, T8, T7;
Chris@19 196 V T5, TB, TE, Ti, Tk, TI, Ts, Tu, Tv, Tq, TK, Tj, TH, Tt, Tr;
Chris@19 197 V Tn, Tp, To, Tm, TJ, Th, TM;
Chris@19 198 T1 = LD(&(Rp[0]), ms, &(Rp[0]));
Chris@19 199 T2 = LD(&(Rm[0]), -ms, &(Rm[0]));
Chris@19 200 T3 = VCONJ(T2);
Chris@19 201 Tz = LDW(&(W[0]));
Chris@19 202 TA = VZMULIJ(Tz, VSUB(T3, T1));
Chris@19 203 Tb = LD(&(Rp[WS(rs, 4)]), ms, &(Rp[0]));
Chris@19 204 Tc = LD(&(Rm[WS(rs, 4)]), -ms, &(Rm[0]));
Chris@19 205 Td = VCONJ(Tc);
Chris@19 206 Ta = LDW(&(W[TWVL * 14]));
Chris@19 207 Te = VZMULJ(Ta, VADD(Tb, Td));
Chris@19 208 T6 = LD(&(Rp[WS(rs, 2)]), ms, &(Rp[0]));
Chris@19 209 T7 = LD(&(Rm[WS(rs, 2)]), -ms, &(Rm[0]));
Chris@19 210 T8 = VCONJ(T7);
Chris@19 211 T5 = LDW(&(W[TWVL * 6]));
Chris@19 212 T9 = VZMULJ(T5, VADD(T6, T8));
Chris@19 213 TB = LDW(&(W[TWVL * 8]));
Chris@19 214 TC = VZMULIJ(TB, VSUB(T8, T6));
Chris@19 215 TX = VSUB(TC, TA);
Chris@19 216 T13 = VSUB(Te, T9);
Chris@19 217 T4 = VADD(T1, T3);
Chris@19 218 Tf = VADD(T9, Te);
Chris@19 219 TZ = VFNMS(LDK(KP250000000), Tf, VMUL(LDK(KP500000000), T4));
Chris@19 220 TD = VADD(TA, TC);
Chris@19 221 TE = LDW(&(W[TWVL * 16]));
Chris@19 222 TF = VZMULIJ(TE, VSUB(Td, Tb));
Chris@19 223 T17 = VFNMS(LDK(KP500000000), TD, TF);
Chris@19 224 Ti = LD(&(Rp[WS(rs, 3)]), ms, &(Rp[WS(rs, 1)]));
Chris@19 225 Tj = LD(&(Rm[WS(rs, 3)]), -ms, &(Rm[WS(rs, 1)]));
Chris@19 226 Tk = VCONJ(Tj);
Chris@19 227 TH = LDW(&(W[TWVL * 12]));
Chris@19 228 TI = VZMULIJ(TH, VSUB(Tk, Ti));
Chris@19 229 Ts = LD(&(Rp[WS(rs, 1)]), ms, &(Rp[WS(rs, 1)]));
Chris@19 230 Tt = LD(&(Rm[WS(rs, 1)]), -ms, &(Rm[WS(rs, 1)]));
Chris@19 231 Tu = VCONJ(Tt);
Chris@19 232 Tr = LDW(&(W[TWVL * 2]));
Chris@19 233 Tv = VZMULJ(Tr, VADD(Ts, Tu));
Chris@19 234 Tn = LD(&(Rp[WS(rs, 5)]), ms, &(Rp[WS(rs, 1)]));
Chris@19 235 To = LD(&(Rm[WS(rs, 5)]), -ms, &(Rm[WS(rs, 1)]));
Chris@19 236 Tp = VCONJ(To);
Chris@19 237 Tm = LDW(&(W[TWVL * 18]));
Chris@19 238 Tq = VZMULJ(Tm, VADD(Tn, Tp));
Chris@19 239 TJ = LDW(&(W[TWVL * 20]));
Chris@19 240 TK = VZMULIJ(TJ, VSUB(Tp, Tn));
Chris@19 241 TW = VSUB(TK, TI);
Chris@19 242 T14 = VSUB(Tv, Tq);
Chris@19 243 Tw = VADD(Tq, Tv);
Chris@19 244 Th = LDW(&(W[TWVL * 10]));
Chris@19 245 Tl = VZMULJ(Th, VADD(Ti, Tk));
Chris@19 246 T10 = VFNMS(LDK(KP250000000), Tw, VMUL(LDK(KP500000000), Tl));
Chris@19 247 TL = VADD(TI, TK);
Chris@19 248 TM = LDW(&(W[TWVL * 4]));
Chris@19 249 TN = VZMULIJ(TM, VSUB(Tu, Ts));
Chris@19 250 T16 = VFNMS(LDK(KP500000000), TL, TN);
Chris@19 251 }
Chris@19 252 {
Chris@19 253 V Ty, TS, TP, TT, Tg, Tx, TG, TO, TQ, TV, TR, TU, T1i, T1o, T1l;
Chris@19 254 V T1p, T1g, T1h, T1j, T1k, T1m, T1r, T1n, T1q, T12, T1c, T19, T1d, TY, T11;
Chris@19 255 V T15, T18, T1a, T1f, T1b, T1e;
Chris@19 256 Tg = VADD(T4, Tf);
Chris@19 257 Tx = VADD(Tl, Tw);
Chris@19 258 Ty = VADD(Tg, Tx);
Chris@19 259 TS = VSUB(Tg, Tx);
Chris@19 260 TG = VADD(TD, TF);
Chris@19 261 TO = VADD(TL, TN);
Chris@19 262 TP = VADD(TG, TO);
Chris@19 263 TT = VBYI(VSUB(TO, TG));
Chris@19 264 TQ = VCONJ(VMUL(LDK(KP500000000), VSUB(Ty, TP)));
Chris@19 265 ST(&(Rm[WS(rs, 5)]), TQ, -ms, &(Rm[WS(rs, 1)]));
Chris@19 266 TV = VMUL(LDK(KP500000000), VADD(TS, TT));
Chris@19 267 ST(&(Rp[WS(rs, 3)]), TV, ms, &(Rp[WS(rs, 1)]));
Chris@19 268 TR = VMUL(LDK(KP500000000), VADD(Ty, TP));
Chris@19 269 ST(&(Rp[0]), TR, ms, &(Rp[0]));
Chris@19 270 TU = VCONJ(VMUL(LDK(KP500000000), VSUB(TS, TT)));
Chris@19 271 ST(&(Rm[WS(rs, 2)]), TU, -ms, &(Rm[0]));
Chris@19 272 T1g = VADD(TX, TW);
Chris@19 273 T1h = VADD(T13, T14);
Chris@19 274 T1i = VMUL(LDK(KP500000000), VBYI(VMUL(LDK(KP866025403), VSUB(T1g, T1h))));
Chris@19 275 T1o = VMUL(LDK(KP500000000), VBYI(VMUL(LDK(KP866025403), VADD(T1g, T1h))));
Chris@19 276 T1j = VADD(TZ, T10);
Chris@19 277 T1k = VMUL(LDK(KP500000000), VADD(T17, T16));
Chris@19 278 T1l = VSUB(T1j, T1k);
Chris@19 279 T1p = VADD(T1j, T1k);
Chris@19 280 T1m = VADD(T1i, T1l);
Chris@19 281 ST(&(Rp[WS(rs, 2)]), T1m, ms, &(Rp[0]));
Chris@19 282 T1r = VCONJ(VSUB(T1p, T1o));
Chris@19 283 ST(&(Rm[WS(rs, 3)]), T1r, -ms, &(Rm[WS(rs, 1)]));
Chris@19 284 T1n = VCONJ(VSUB(T1l, T1i));
Chris@19 285 ST(&(Rm[WS(rs, 1)]), T1n, -ms, &(Rm[WS(rs, 1)]));
Chris@19 286 T1q = VADD(T1o, T1p);
Chris@19 287 ST(&(Rp[WS(rs, 4)]), T1q, ms, &(Rp[0]));
Chris@19 288 TY = VMUL(LDK(KP433012701), VSUB(TW, TX));
Chris@19 289 T11 = VSUB(TZ, T10);
Chris@19 290 T12 = VADD(TY, T11);
Chris@19 291 T1c = VSUB(T11, TY);
Chris@19 292 T15 = VMUL(LDK(KP866025403), VSUB(T13, T14));
Chris@19 293 T18 = VSUB(T16, T17);
Chris@19 294 T19 = VMUL(LDK(KP500000000), VBYI(VSUB(T15, T18)));
Chris@19 295 T1d = VMUL(LDK(KP500000000), VBYI(VADD(T15, T18)));
Chris@19 296 T1a = VCONJ(VSUB(T12, T19));
Chris@19 297 ST(&(Rm[0]), T1a, -ms, &(Rm[0]));
Chris@19 298 T1f = VCONJ(VADD(T1c, T1d));
Chris@19 299 ST(&(Rm[WS(rs, 4)]), T1f, -ms, &(Rm[0]));
Chris@19 300 T1b = VADD(T12, T19);
Chris@19 301 ST(&(Rp[WS(rs, 1)]), T1b, ms, &(Rp[WS(rs, 1)]));
Chris@19 302 T1e = VSUB(T1c, T1d);
Chris@19 303 ST(&(Rp[WS(rs, 5)]), T1e, ms, &(Rp[WS(rs, 1)]));
Chris@19 304 }
Chris@19 305 }
Chris@19 306 }
Chris@19 307 VLEAVE();
Chris@19 308 }
Chris@19 309
Chris@19 310 static const tw_instr twinstr[] = {
Chris@19 311 VTW(1, 1),
Chris@19 312 VTW(1, 2),
Chris@19 313 VTW(1, 3),
Chris@19 314 VTW(1, 4),
Chris@19 315 VTW(1, 5),
Chris@19 316 VTW(1, 6),
Chris@19 317 VTW(1, 7),
Chris@19 318 VTW(1, 8),
Chris@19 319 VTW(1, 9),
Chris@19 320 VTW(1, 10),
Chris@19 321 VTW(1, 11),
Chris@19 322 {TW_NEXT, VL, 0}
Chris@19 323 };
Chris@19 324
Chris@19 325 static const hc2c_desc desc = { 12, XSIMD_STRING("hc2cfdftv_12"), twinstr, &GENUS, {67, 37, 4, 0} };
Chris@19 326
Chris@19 327 void XSIMD(codelet_hc2cfdftv_12) (planner *p) {
Chris@19 328 X(khc2c_register) (p, hc2cfdftv_12, &desc, HC2C_VIA_DFT);
Chris@19 329 }
Chris@19 330 #endif /* HAVE_FMA */